(@ Whatis a FTS ?

 Find documents, which satisty query
e optionally return them in some order

e Most common case:

- Find documents containing all query terms

- return them in order of their similarity to
the query

What's a document ?

* any text attribute

e combination of text attributes from one
or many tables.

* Document must be identified by some
unique key

@ ~, % | TKE, ILIKE for FTS

 Text search operators existed for years
- No linguistics
- No ordering (ranking)
- Tends to be slow (no index support)

(@ Improve FTS

 The idea is simple - preprocess
document at index time to save time at
search stage.

- document parsing - (token, token type)

- lingustic - normalize lexeme (depending on
token type)

- storage (sorted list of lexemes with
positional information)

@ Tsearch2 comes

e T'search? - is the full text engine for
PostgreSQL. Main features (new in 8.2

are bolded):

- Supports multiple table driven
configurations

- flexible and rich linguistic support
(dictionaries, stop words), thesaurus

- UTF-8 support
- full integration with PostgreSQL

@ Tsearch?2

- Sophisticated ranking functions with
support of proximity and structure
information (rank, rank cd)

- Index support (GiST and Gin) with
concurrency and recovery support

- Rich query language with query rewriting
support

- It is mature (5 years of development)

Tsearch?2

We introduced two new data types and
operator for FTS

tsvector @@ tsquery
tsquery @@ tsvector

@@ operator returns TRUE if tsvector
contains tsquery.

‘fat & cat'::tsquery @@
‘a fat cat sat on the nat'::tsvector;

Tsvector

* data type, which represents document,
optimized for FTS

e [t's a sorted list of lexemes - search is
faster than standard ~,LIKE operators.

 Lexeme, could have positional
information with optional labels (4

groups)
e select 'a:1 fat:2 cat:3A'::tsvector

e tsvector || tsvector

Tsquery

data type for textual queries with
support of boolean operators

* T'squery consists of lexemes (optionally
labelled by letter[s]) with boolean
operator between ('fat & cat'::tsquery)

 Concatenation
- tsquery && tsquery
- tsquery || tsquery

Limits

 Length of lexeme < 2K

 Length of tsvector (lexemes + positions)
< 1Mb

e The number of lexemes < 4732
* 0< Positional information < 16383
* No more than 256 positions per lexeme

e The number of nodes (lexemes +
operations) in tsquery < 32768

10

@ Some statistics

 PostgreSQL 8.1 documentation

- total 335420 lexemes
- 10441 unique lexemes

- 'postgresql' mentioned 6127 times in 655
documents

 PostgreSQL mailing list archive:

- total 57,491,343 lexemes in 461020 msgs
- 910989 uniquelexemes

11

Tsearch2 configurations
Four tables control FTS

e We want to control document-tsvector
convertation

* We want to do that in various ways

That means, we want to define how to parse
document, what lexemes to index and how to
process them.

12

Table driven configuration

* pg ts ctg - configurations
* pg ts dict - dictionaries
* pg ts parser - document parsers

* pg ts ctgmap - map configurations,
lexems and dictionaries

13

pg_ts_ cfg

 Each configuration has unique name
(ts name), parser (prs name), and
locale name

 Locale is used to identity detfault

configuration.
=# select * frompg ts cfqg;
ts_nane | prs_name | | ocal e

_________________ o
def aul t def aul t C

default russian | default ru RU. KA 8-R
ut f 8 russi an def aul t ru RU. UTF- 8
si npl e def aul t

14

Dictionary

e Dictionary is a program, which accepts
lexeme(s) on input and returns:

- array of lexeme(s) if input lexeme is known
to the dictionary

- void array - dictionary knows lexeme, but
it's stop word.

- NULL - dictionary doesn't recognized input
lexeme

15

@ Normalization

e Linguistic normalization - ispell,
stemmer

e Special
- http://www.pgsqgl.ru/db/mw/index.html
- http://www.pgsql.ru/db/../db/mw

- red,green,blue, magenta - FF000O,
O0OFFO00, 0O000FF, FFOOFF

- 3.14159265359, 2.71328182846

16

http://www.pgsql.ru/db/mw/index.html
http://www.pgsql.ru/db/mw/
http://www.pgsql.ru/db/../db/mw

pg_ts_dict

* pg ts dict is a dictionaries registry

e Tsearch? provides templates for
several dictionaries to simplify
registering of new dictionaries

17

Dictionaries templates

* simple - returns lowercased lexeme
(recognize everything)

e ispell - returns normalized lexeme(s) -
morphology, compound words support

e snowball stemmer - returns lexeme
stem (recognize everything)

* synonym - simple lexeme-to-lexeme
replacement

* thesaurus - phrase-to-phrase
replacement

Parser

=# select * fromtoken type();

tokid | al 1 as | descr
_______ e
1 | wor d Lati n word
2 nl wor d Non-|atin word
3 wor d Wor d
4 enal | Emal |
5 ur | URL
6 host Host
23 | entity | HTML Entity

19

Parser

e parse(|parser name], text)

e set curprs(parser name) — default
parser

=# select * from parse(' Fat cat');
tokid | token

13 <p>
1 Fat
13 </ b>

12

20

pg_ts cfgmap

* tsname — configuration name
e lexeme type - {dictl, dict2,...,dictN}

ts _nane | tok alias | di ct _nane
________________ e
default _russian | |word | {en_ispell,en_stent
default _russian | nlword | {ru_ispell,ru_stem koi 8}

21

pg_ts cfgmap

* Lexeme will not be indexed if:

e Lexeme's type is not in pg ts ctgmap
* Or

* Dictionary stack is NULL

update pg ts cfgmap set dict _name=NULL where
ts nane='default russian' and tok alias="uri"';

22

Tsquery

* to tsquery ([ts name], text)
* plainto_tsquery([ts name],text)

23

Tsquery - restricted search

e It's possible to use labels, stored in
tsvector, to limit search region.

e Flexibility - Several searches using one
tsvector

- 'supernovae & stars'::tsquery - search
everywhere

- 'supernovae:a & stars'::tsquery - search
only titles

- 'supernovae:ab & stars'::tsquery - search
titles and abstracts

24

@ query rewriting

* Query rewriting is a set of functions and
operators for tsquery type. Control
search at query time without reindexing

- Expand search using synonyms: new york,
big apple, nyc,gotham

- help search popular topic (online!):

- submarine kursk went down August 12,

2000 year: 'kursk' rewritten to 'submarine
kursk'

25

(@ Query rewriting

* rewrite (tsquery, tsquery, tsquery)
* rewrite

(ARRAY[tsquery,tsquery,tsquery])
* rewrite (tsquery, text)

- rewrite (tsquery, 'select tsquery,tsquery
from test'::text) - table driven

- tsquery @ (~) tsquery operators, index
support — using gist (keyword gist tp tsquery ops)

26

@ Getting results - ranking

 Ranking attempts to measure how
documents are relevant to particular

query.
* rank, rank cd - different algorithms
 rank([{weights}], tsvector, tsquery, norm.)
- weights, proximity
- doc. length normalization

- only local information is used, no way to
have true 0-1 rank. Cheat: r/r+1

27

Getting results - headline

» Headline is a fragment of document
with query terms.

* headline([ts name], document, tsquery,
options)

e Headline is slow (read document from
disk), use subselect !

28

Indexes

* Tsearch?2 provides indexed AM for

tsvector (indexes are not mandatory for
FTS 1)

e Signature tree — GiST

- =# create index fts idx on apod using gist(fts);

e Inverted index — Gin

- =# create index fts idx on apod using gin(fts);

29

Indexes - GIST

 Document represented as a bit string

with '1' in positions to which words are
hashed

 These bit strings are stored in RD-tree,
where parent is 'OR'-ed bit-strings of all
children

* This index is lossy, so we need to check
results, it could be very expensive

30

Root page, level N

Hash word
o bit's Bitwise OR: ™ —+=+110101011111 0111...
osition 100000000110 OR |
° , 010101011001 = \
i el 110101011111
Cat 1
Eat 11
Fat 3
Mat 8 Inner page, level 1
Rat 5
Sit 7 100000000110 010101011001
Sea 10 I I
View 0
Port 9

/

Leaf page 2, level O

'sea view' 'sea port’

Leaf page 1, level O

Indexed value (stripped tsvector):
‘cat eat fat mat rat sit’
Really stores values hashed to int4

'cat eat rat’

1

Text:
A fat cat sat on a mat and ate a fat rat

TsVector: 'cat:3 eat:9 fat:2,11 mat: rat: 12 sit:4'
Words 'a’, 'on’, 'and' are stop-words

Indexes — GIST

e good for on]

ine indexing

* support mul

ticolumn indices

e not well scaled with the number of
distinct words and the number of

documents

32

Indexes - GIN

An inverted index is an index structure
storing a set of (key, posting list) pairs,
where 'posting list' is a set of document
id in which the key occurs.

» weak dependence on the size of
vocabulary, good scalability

e fast bulk indexing

e slow update

33

Indexes - Usage

e GiST index for online documents
e GIN - for archives
 Cron jobs for archiving

34

Acknowledgements

e ABC Startsiden - compound words
support

* PostGIS community - GiST Concurrency
and Recovery

 ifg://networks - GIN
 University of Mannheim - UTF-8

 Georgia Public Library Service and
LibLime, Inc. - Thesaurus support

e Russian Foundation for Basic Research
35

Todo - Tsearch?2

 phrase search, exact search, wildcard
search

e configurable number of weight groups
in tsvector

e parser and dictionaries could define
lexeme's weight

* built-in support pg trgm (it can be used
with GIN)

e configurable length of signature in GiST
index

36

Todo - GIST

 Better interaction of GiST with
optimizer and planner

» cost functions for several popular
extensions (intarray, ltree, tsearch?2,,,)

 Extend GiST interface to support SP-
GIST

37

@ Todo - Gin

* Increase the number of strategies.
Currently - only one (full match)

- entries B-tree: <,<=,>,>=,prefix
 Extend Gin to support new data types.

- replace entries B-tree by GiST similar tree
(requres support of unique values in GiST).

— This further increase the number of
possible strategies.

 Optimize insert operations (background
index insertion)

38

@ Todo - Gin

 Extend pgsql's intertface to use GIN for
ranking:

- store position information in GIN

- propagate ranking from index to final sort
of tuples

 Better interaction of GIN with
optimizer and planner, developing cost
functions (tsearch?2, built-in support for
array,,)

39

