
VIRTUAL

ONE TOAST FITS ALL

Moscow, May, 13, 2022http://www.sai.msu.su/~megera/postgres/talks/toast-highload-2022.pdf

http://www.sai.msu.su/~megera/postgres/talks/toast-highload-2022.pdf

 Postgres breathed a second life into relational databases

db-engines.com/en/ranking

JSONB

• Postgres innovation - the first relational database with NoSQL support
• NoSQL Postgres attracts the NoSQL users
• JSON became a part of SQL Standard 2016 PG15: SQL/JSON/TABLE

2022 by #postgrespro

Why this talk ?

•Blossom of Microservice architecture

•Startups want/need JSON[B]

•JSONB is one of the main driver of Postgres popularity

•One-Type-Fits-All

•Client app — Backend - Database use JSON
•All server side languages support JSON
•JSON relaxed ORM (Object-Relational Mismatch),
mitigate contradictions between code-centric and data-centric paradigms.

•Performance of JSONB (not only) can be improved by several orders of
magnitude with proper modification of TOAST. How to integrate
improvements into PG CORE !?

Case 1: TOAST for JSONB

The Curse of TOAST: Unpredictable performance

CREATE TABLE test (jb jsonb);
ALTER TABLE test ALTER COLUMN jb SET STORAGE EXTERNAL;
INSERT INTO test
SELECT
 i id,
 jsonb_build_object(
 'id', i,
 'foo', (SELECT jsonb_agg(0)
 FROM generate_series(1, 1960/12))
) jb -- [0,0,0, ...]
FROM
 generate_series(1, 10000) i;

=# EXPLAIN(ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

Seq Scan on test (actual rows=10000 loops=1)
 Buffers: shared hit=2500
 Planning Time: 0.050 ms
 Execution Time: 6.147 ms
(4 rows)

=# UPDATE test SET jb = jb || '{"bar": "baz"}';
=# VACUUM FULL test; -- remove old versions

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

 Seq Scan on test (actual rows=10000 loops=1)
 Buffers: shared hit=30064
 Planning Time: 0.105 ms
 Execution Time: 38.719 ms
(4 rows)

Small update cause significant slowdown !

Pageinspect: 64 pages with 157 tuples per page

WHY 30064 pages !!!!

TOAST Explained
The Oversized-Attribute Storage Technique

•TOASTed (large field) values are compressed, then splitted into the fixed-size TOAST chunks
(1996B for 8KB page)

•TOAST chunks (along with
generated Oid chunk_id and
sequnce number chunk_seq)
stored in special TOAST relation
pg_toast.pg_toast_XXX, created
for each table containing
TOASTable attributes

•Attribute in the original heap
tuple is replaced with TOAST
pointer (18 bytes) containing
chunk_id, toast_relid,
raw_size, compressed_size

https://www.postgresql.org/docs/current/storage-toast.html

TOAST access

TOAST pointer has Oid chunk_id and refers to heap tuples with chunks using B-tree
index (chunk_id, chunk_seq). Overhead to read only a few bytes from the first chunk can
be 3,4 or even 5 index blocks.

The Curse of TOAST

Access to TOASTed JSONB requires reading at least 3 additional buffers:

• 2 TOAST index buffers (B-tree height is 2)

• 1 TOAST heap buffer

• 2 chunks can be read from the same page, but if JSONB size > Page size (8Kb),
then more TOAST heap buffers

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

 Seq Scan on test (actual rows=10000 loops=1)
 Buffers: shared hit=30064
 Planning Time: 0.105 ms
 Execution Time: 38.719 ms
(4 rows)

Table 64

TOAST index 2 * 10000

TOAST table 1 * 10000

Total 30064

Motivational example (synthetic test)

•A table with 100 jsonbs of different sizes (130B-13MB, compressed to 130B-247KB):
CREATE TABLE test_toast AS
SELECT
 i id,
 jsonb_build_object(
 'key1', i,
 'key2', (select jsonb_agg(0) from
 generate_series(1, pow(10, 1 + 5.0 * i / 100.0)::int)),-- 10-100k elems
 'key3', i,
 'key4', (select jsonb_agg(0) from
 generate_series(1, pow(10, 0 + 5.0 * i / 100.0)::int)) -- 1-10k elems

) jb
FROM generate_series(1, 100) i;

•Each jsonb looks like: key1, loooong key2[], key3, long key4[].
•We measure execution time of operator ->(jsonb, text) for each row by
repeating it 1000 times in the query:

SELECT jb -> 'keyN', jb -> 'keyN', … jb -> 'keyN' FROM test_toast WHERE id = ?;

Motivational example (synthetic test)

Key access time for TOASTed (raw size > 100 Kb) jsonbs linearly increase with
jsonb size, regardless of key size and position.

Inline

Compressed
 Inline

Inline

Toasted

Inline+

Toasted

Large jsonb is TOASTed !

Jsonb deTOAST improvements goal

Ideal goal: no dependency on jsonb size and position
● Access time ~ O(level)
● Update time ~ O(level) + O(key size)

• Original TOAST doesn’t use inline, only TOAST pointers are stored.

Utilize inline (fast access) as much as possible:
• Keep inline as much as possible uncompressed short fields and compressed

medium-size fields

• Keep compressed long fields in TOAST chunks separately for
independent access and update.

Jsonb deTOAST improvements (root level)

• Partial (prefix) decompression - eliminates overhead of pglz decompression
of the whole jsonb – FULL deTOAST and partial decompression:

Decompress(offset) + Detoast(jsonb compressed size),
offset depends on key position

• Sort jsonb object key by their length – good for short keys
Decompress(key_rank * key size) + Detoast(jsonb compressed size),
offset depends on key size

• Partial deTOAST and partial decompression (deTOASTing iterator)
Decompress(key_rank * key size) + Detoast(key_rankc * key size)

• Inline TOAST – store inline prefix of compressed data (jsonb header and
probably some short keys)

Decompress(key_rank * key size) -- great benefit for inline short keys !
Decompress(key_rank * key size) + Detoast(key_rankc * key size)

Jsonb deTOAST improvements

• Compress_fields – compress fields sorted by size until jsonb fits inline,
fallback to Inline TOAST.

O(1) – short keys
Decompress(key size) – mid size keys

• Shared TOAST – compress fields sorted by size until jsonb fits inline,
fallback to store compressed fields separately in chunks, fallback to Inline
TOAST if inline overfilled by toast pointers (too many fields).
• Access

O(1) – short keys
Decompress(key size) – mid size keys
Decompress(key size) + Detoast(key size) – long keys

• Update
O(inline size) – short keys (inline size < 2KВ)
O(inline size) + O(key size) – keys in chunks
O(jsonb size) – inline TOAST

Jsonb deTOAST improvements

• In-place updates for TOASTed jsonb:
• Store new element values, their offsets and lengths together with TOAST

pointer (some kind of diff) instead of rewriting TOAST chunk chains, if
element’s size and type is not changed (in-place update) and new value fits
into inline.
• Old values are replaced with new ones during deTOASTing.

• Update:
• O(element size) – if in-place update and new value fits into inline
• O(array size) – otherwise

JSONB optimizations

Relative speedup: TOAST opt. vs Master

Jsonb aggregated statistics

JSONB partial update

TOAST was originally designed for atomic data types, it knows nothing
about internal structure of composite data types like jsonb, hstore, and
even ordinary arrays.

TOAST works only with binary BLOBs, it does not try to find differencies
between old and new values of updated attributes. So, when the TOASTed
attribute is being updated (does not matter at the beginning or at the end
and how much data is changed), its chunks are simply fully copied. The
consequences are:

•TOAST storage is duplicated

•WAL traffic is increased in comparison with updates of non-TOASTED
attributes, because the whole TOASTed values is logged

•Performance is too low

UPDATE JSONB: Query execution time

Update time of array elements depends on their position:

•First elements updated very fast (like inline fields)

•Last elements updated slower (need to read the whole JEntry array)

shared toast + in-place updates

UPDATE JSONB: Blocks read

Number of blocks read depends on element position:

•First elements do not require reading of additional blocks

•Last elements require reading the whole JEntry array (4В * array size)

shared toast + in-place updates

UPDATE JSONB: WAL traffic

•WAL size of in-place updates is almost independent on element position

•Only inline data with TOAST pointer diff are logged

shared toast + in-place updates

TODO

• Random access to objects keys and array elements of TOAST-ed jsonb
• Physical level — add compression to the sliced detoast (easy)
• Logical level - shared toast with array support (difficult, require jsonb

modification — new storage for array, JSONB API + range support)

Case 2: TOAST for Appendable BYTEA

Motivational example

•A table with 100 MB bytea (uncompressed):
CREATE TABLE test (data bytea);
ALTER TABLE test ALTER COLUMN data SET STORAGE EXTERNAL;
INSERT INTO test SELECT repeat('a', 100000000)::bytea data;

•Append 1 byte to bytea:
EXPLAIN (ANALYZE, BUFFERS, COSTS OFF)
UPDATE test SET data = data || 'x'::bytea;

 Update on test (actual time=1359.229..1359.232 rows=0 loops=1)
 Buffers: shared hit=238260 read=12663 dirtied=25189 written=33840
 -> Seq Scan on test (actual time=155.499..166.509 rows=1 loops=1)
 Buffers: shared hit=12665
 Planning Time: 0.127 ms
 Execution Time: 1382.959 ms

•>1 second to append 1 byte !!!
Table size doubled to 200 MB, 100 MB of WAL generated.

Motivational example (explanation)

• Current TOAST is
not sufficient for
partial updates

• All data is
deTOASTed before
in-memory
modification

• Updated data is
TOASTed back after
modification with
new TOAST oid

Solution

• Special datum
format: TOAST
pointer + inline data

• Inline data serves as
a buffer for TOASTing

• Operator || does not
deTOAST data, it
appends inline data
producing datum in
the new format

Solution

• When size of inline
data exceeds 2 KB,
TOASTer recognizes
changes in old and
new datums and
TOASTs only the new
inline data with the
same TOAST oid

• Last not filled chunk
can be rewritten with
creation of new tuple
version

• First unmodified
chunks are shared

TOAST optimized

•Append 1 byte to bytea:
EXPLAIN (ANALYZE, BUFFERS, COSTS OFF)
UPDATE test SET data = data || 'x'::bytea;

 Update on test (actual time=0.060..0.061 rows=0 loops=1)
 Buffers: shared hit=2
 -> Seq Scan on test (actual time=0.017..0.020 rows=1 loops=1)
 Buffers: shared hit=1
 Planning Time: 0.727 ms
 Execution Time: 0.496 ms (was 1382 ms)

•2750x speed up!

•Table size remains 100 MB

•Only 143 bytes of WAL generated (was 100 MB)

•No unnecessary buffer reads and writes

Results – query execution time

OLD + APPEND SIZE APPEND SIZE

Results – WAL traffic

OLD + APPEND SIZE INLINE OLD + APPEND SIZE

Appendable bytea: stream

Stream organized as follows:

•1 row (id, bytea) grows from 0 up to 1Mb

UPDATE test SET data = data || repeat('a', append_size)::bytea; COMMIT;

• append_size = 10b, 100b,…,100Kb

•pg_stat_statements: time, blocks r/rw, wal

Appendable bytea: stream (time)

Appendable bytea: stream (WAL)

Appendable bytea: stream (througput MB/s)

Conclusions

•TOAST in Postgres can be improved for specific data types: jsonb,
appendable bytea

•How integrate them to the Postgres — that is the question !

•Data type aware TOAST — Pluggable TOAST

 Extend Postgres Extensibility !

VIRTUALONE TOAST FITS ALL

PLUGGABLE TOAST

Huge values — how to store?

• Page limit — 8KB by default (up to 64KB)
•Obviously, not enough

• Large object
•2nd class citizen (no structure, isn’t accessible at SQL-level, issues
with backup)

• TOAST — slice to chain of small chunks
•Could be compressed

•Store in heap table with index (hidden)

•TOAST doesn’t know internals of data type, works with as just a long byte
array.

•Any update make a copy of whole value

•TOAST is integrated in heap TAM

•The single advantage - versatility

Extend Postgres Extensibility

•Let us extend Postgres even further!

•Create extension …

•Toaster is «class» encapsulated all work with huge values

•Toaster could be specific for datatype (ex jsonb)

•Toaster could be specific for workload (ex append only)

•Toaster could be specific for column (different columns in table
could use different toasters)

•Default toaster — compatibility with previous versions

Toaster - basis

CREATE EXTENSION name;

Toaster - basis

CREATE TOASTER my_toaster HANDLER handler;

=# \d pg_toaster

 Table "pg_catalog.pg_toaster"

 Column | Type | Collation | Nullable | Default

------------+---------+-----------+----------+---------

 oid | oid | | not null |

 tsrname | name | | not null |

 tsrhandler | regproc | | not null |

Indexes:

 "pg_toaster_oid_index" PRIMARY KEY, btree (oid)

 "pg_toaster_name_index" UNIQUE CONSTRAINT, btree (tsrname)

Toaster - basis

CREATE TABLE tst1 (

 foo text [STORAGE plain],

 bar text STORAGE external TOASTER my_toaster,

 id int4

);

ALTER TABLE tst1 ALTER COLUMN name SET TOASTER my_toaster;

=# \d+ tst1

 Column | Type | Collation | Nullable | Default | Storage | Toaster |...

--------+---------+-----------+----------+---------+----------+------------+...

 foo | text | | | | plain | deftoaster |...

 bar | text | | | | external | my_toaster |...

 id | integer | | | | plain | |...

Access method: heap

Toaster - basis
=# \d pg_attribute

 Table "pg_catalog.pg_attribute"

 Column | Type | Collation | Nullable | Default

----------------+-----------+-----------+----------+---------

 attrelid | oid | | not null |

 attname | name | | not null |

 atttypid | oid | | not null |

...

 attstorage | "char" | | not null |

 atttoaster | oid | | not null |

 attcompression | "char" | | not null |

....

Toaster storage in tuple

Custom toaster (>=10 bytes, alignment 2)

Tuple’s header ...

Toast pointer

int32
rawsize

int32
extinfo

Oid
valueid

Oid
toastrelid

Tuple’s header ...

Toast pointer

int16
toasterdatalen

uint32
rawsize

Oid
toaster

...
...

...

Default (current) toaster (16 bytes, alignment 4)

Сonsequences

Toast pointer is aware of toaster id it was toasted by

• toaster could not be dropped (is it really necessary?)
• In one column could be data toasted by different toasters

Toaster - API

typedef struct TsrRoutine {
 NodeTag type;

 /* interface functions */
 toast_init init;
 toast_function toast;
 update_toast_function update_toast;
 copy_toast_function copy_toast;
 detoast_function detoast;
 del_toast_function deltoast;
 get_vtable_function get_vtable; //?
 toastervalidate_function toastervalidate; //?
}

Toaster — validate?

/* validate definition of a toaster Oid */
typedef bool (*toastervalidate_function)

(Oid typeoid,char storage, char compression,
 Oid amoid, bool false_ok);

● Validate method is required for Toaster
compatibility check.
● Toaster is specific for datatype and workload,
it depends on compression and storage.

Toaster — vtable?

/* Return virtual table of functions, optional */
typedef void * (*get_vtable_function)

(Datum toast_ptr);

Current Toast/Detoast

• Part of the Heap AM

• Single Toast/Detoast
strategy - full Toast/Detoast
only

• Not extensible

Toaster API Magic

• Detached from Heap AM,
Independent

• Possibility extend with
any
Custom Toaster

•Does not affect
performance

Toaster Handlers

Virtual Table of User-Defined Functions

vtable is an inner API of Toaster API. It allows Custom Toasters to have any user-
defined function a developer wants – just put it into TsrRoutine virtual function table,
and it is ready to use!

For example, bytea Toaster has append() function to append two bytea Datums instead
of creating new (third) copy. There functions may not be directly used for
toasting/detoasting, but could provide additional operations

static void *

bytea_toaster_vtable(Datum toast_ptr)

{

 ByteaToastRoutine *routine = palloc0(sizeof(*routine));

 routine->magic = BYTEA_TOASTER_MAGIC;

 routine->append = bytea_toaster_append;

 return routine;

}

BYTEA and JSONB Toasters

• We are glad to present two Toasters developed by PostgresPro Team –
bytea Appendable Toaster and Jsonb Toaster.

Both types could store huge amounts of data, and current Toast
mechanics does not perform well with accessing and updating:

- bytea type is suitable for streaming, which require special fast update
mode – “append” without re-writing full data record;

- Values stored in JSONb objects are often accessed “by-key”, and full
detoast to fetch just one key is very ineffective

Bytea Update Performance

• Update time
depends on the
size of the
updated and
appended values

•Huge WAL
traffic is
generated – full
record is placed
in WAL with
update

The Solution is – bytea Appendable Toaster!

• Toaster package specially designed for bytea datatype.

• Fast, effective, extensible.

The main difference, along with the toast/detoast and update functions, is
Custom ByteaAppendablePointer

- Modified tail is stored as inline data;

- When inline tail exceeds Toast size limit, it is toasted, but unmodified
chunks are left as-is

Bytea Toaster Extension
•Special datum format: TOAST pointer + inline data

•“append” operation - operator || does not deTOAST data, it appends inline data
producing datum in new format

•TOASTer recognizes changes and TOASTs only the new inline data, possibly rewriting last
chunk in chain

Toasting Appended Data
• Toaster API Bytea Toaster is called via Toast

•Last not filled chunk can be rewritten with creation of new tuple version

•First unmodified chunks are shared

Bytea Fetch and Insert

Bytea Toaster Performance

MASTER
● T ~ OLD SIZE + APPEND SIZE

BYTEA TOASTER
● T ~ APPEND SIZE

MASTER
● WAL ~ OLD SIZE + APPEND SIZE

BYTEA TOASTER
● WAL ~ INLINE + APPEND SIZE

JSONb

•Json is very popular datatype used by many applications;

•People want SQL/JSON and want it to be fast an effective;

•Json objects are mostly accessed by keys;

•JSONb is a PostgreSQL internal binary representation of Json objects;

•Full JSONb object needs to be detoasted to access single key-value pair –
very ineffective;

Default JSONb Access Performance
Key access time linearly increases with jsonb size, regardless of value size
and position

Jsonb Toaster Extension

Jsonb Toaster is plugged in
with Toaster API.

Along with Toast/Detoast
Jsonb Toaster provides new
functions to work with
Jsonb Containers and
Iterators

Jsonb Toaster aggregated statistics

Jsonb Toaster needs more work !

Jsonb Toaster

Patched Toaster

TODO

•Random access to objects keys and array elements of TOAST-ed jsonb

•Physical level — add compression to the sliced detoast (easy)

•Logical level - shared toast with array support (difficult, require jsonb
modification — new storage for array, JSONB API + range support)

•Additional Access Methods

Roadmap and patch set

References

● Our experiments:
• Understanding Jsonb performance

http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgconfnyc-2021.pdf
• Details - http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgvision-2021.pdf
• Slides of this talk

http://www.sai.msu.su/~megera/postgres/talks/toast-highload-2022.pdf
• Борьба с TOAST или будущее JSONB в PostgreSQL

https://habr.com/ru/company/oleg-bunin/blog/646987/

• Pluggable TOAST at Commitfest
https://commitfest.postgresql.org/38/3490/

• Jsonb is ubiquitous and is continuously developing
• JSON[B] Roadmap V2, Postgres Professional Webinar, Sep 17, 2020
• JSON[B] Roadmap V3, Postgres Build 2020, Dec 8, 2020

http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgvision-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/toast-highload-2022.pdf
https://habr.com/ru/company/oleg-bunin/blog/646987/
https://commitfest.postgresql.org/38/3490/
http://www.sai.msu.su/~megera/postgres/talks/json-webinar-2020.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-build-2020.pdf

When children climb trees and tear their pants off,
 we can forbid them to do so or teach them climbing techniques.

Let’s not say that json is the wrong technology,
 Let’s make json a first class citizen instead.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide76
	Slide77
	Slide78
	Slide79
	Slide80
	Slide81
	Slide44
	Slide82
	Slide83
	Slide84
	Slide85
	Slide74
	Slide75
	Slide45
	Slide46
	Slide47
	Slide 53
	Slide50
	Slide51
	Slide52
	Slide88
	Slide 58
	Slide55
	Slide54
	Slide 62
	Slide 63
	Slide 64
	Slide91
	page23
	Slide 67
	page25
	page26
	page27

