

Postgres Innovations

Oleg Bartunov,
Moscow University, Postgres Professional PGConf.Nepal, May 11, 2023

Postgres developer/contributor since 1995

OLEG BARTUNOV

The first PostgreSQL talk in Nepal, May 4, 2009

I gave a talk about full text search in postgresql after trek. We made special
support of nepalese locale to make it works right. There was no light in the
university, so we used generator to power notebok and projector.It was really
funny to speak for people sitting in the darkness.

Kerosene was used to power
 my notebook and projector

PostgreSQL has built-in Nepali support since 2018

How to choose a right database ?

● People usually choose a database looking on
● Functionality, Performance
● Availability - License, price
● Local expertise, Personal experience
● Compatibility to existing environment
● Support

● After project started
● Need new functionality, Better performance

● Project is in production, no way to change database
● Starting to use various ugly «solutions»
● System works, but looks pretty strange

If you chose a wrong database
System works, but looks pretty strange

Database should be Extensible !

To adapt to
●a new types of DATA,
●new QUERIES,
●VOLUME of data growth,
●VELOCITY of data processing
●New environment

Database Extensibility — Postgres Innovation !

“The main design goals of the new system are to:
2) provide user extendibility for data types, operators

 and access methods,”
Stonebraker M., Rowe L. A.
The design of Postgres. ACM, 1986. – Т. 15. – №. 2. – С. 340-355.

“It is imperative that a user be able to construct new access methods to
provide efficient access to instances of nontraditional base types”
Michael Stonebraker, Jeff Anton, Michael Hirohama.

Extendability in POSTGRES , IEEE Data Eng. Bull. 10 (2) pp.16-23, 1987

PostgreSQL Universal Database

● Any project (startup) could start with PostgreSQL
● PostgreSQL is a reliable and stable database with rich functionality and long history
● PostgreSQL has liberal BSD license, cross platform (~30)
● Developed by international community, no vendor lock
● Postgres inspire people to build new databaases, We love Forks !

● PostgreSQL is EXTENSIBLE, this is the very important feature, which people miss ! It
allow database to support
● New workloads
● New functionality
● New environment
● Often without restarting a server, no need core developers

 PostgreSQL in Database World

+ many university projects !

Professional Postgres

• Academic Postgres (x10)
• Community Postgres95 (<400)
• PostgreSQL V6

 Community develops for Community
• 200X — First Postgres-centric companies

(GreatBridge, 2ndQuadrant, EDB...)
+Full-time developers for Community
• First enterprise forks

Professional Postgres

• 2010 — Enterprise customers
New features for Enterprises

• 2015 — Majority of major developers were hired by PG-
companies (+Citus Data, +Postgres Professional)

• Now the companies drive the development
• Community: test, approve
• Postgres became Enterprise ready (More forks)
• Postgres became Professional

PG-companies drive the development

PG-companies - proxy between Enterprise and Community

• Big enterprises require additional features "right now"
• PG-companies develop, support and test these features in

their forks
• Some features returned back to community (not easy)
• Community accept (if) and support code

Example: Postgres Pro Enterprise

• 64-bit XID (enterprise, PG17 ?)
• Adaptive Query Optimization (enterprise, opensource)
• CFS — page level compression (enterprise)
• Multi Master cluster (enterprise, opensource)
• Probackup - Incremental backup (enterprise, opensource)
• Advanced partitioning (opensource)
• Threaded Postgres (prototype)
• Built-in HA, Sharding (in development)
• SQL/JSON (PG12, PG16)
• Pluggable TOAST, Jsonb on steroids (PG17 ?)
• Check https://github.com/postgrespro

Postgres Popularity is growing !

Postgres - database of the Year: 2017, 2018, 2020
Database Popularity Trend — Db-engines.com

Stack Overflow Developer Survey 2022

Postgres expert will always have a job !

Hackers News Hiring Trends - 2023

My experience with Postgres Extensibility
• 1996: Start using Postgres on Web, no 8-bit support — introduced i18n (locale)
• 1999: World’s top-5 portal. We start with PostgreSQL 6.5.?

Hardware ~ my smartphone to support > 1 mln. users/day, quickly run out of resources
• Denormalize, use arrays -> slow -> improve GiST - contrib/intarray — GiST/GIN indexes
• Need FTS, made contrib/tsearch2 using intarray and GiST indexes

• Need fast search on hierarchical data — contrib/ltree — GiST indexes
• Need flexible schema — contrib/hstore — GiST index
• Need faster FTS — GIN index for tsearch, hstore
• Need misprint search — contrib/pg_trgm — GiST/GIN indexes
• Need Indexing the Sky — pgsphere, Q3C
• NoSQL Postgres - better/binary json - jsonb — GIN index
• Need faster FTS — RUM access methods
• SQL-2016 standard — Jsonpath, SQL/JSON
• Need faster JSONB — working in TOAST extensibility, Jsonb TOASTER

• 2023: STILL USING and Developing Postgres !

Postgres Extensibility: CORE-APIs-Extensions

Nested Extensibility

● CITY provides CORE infrastructure
(expensive) for construction company to
build an appartment building

● Construction company provides building
infrastructure (elevator, garbage collection,
cleaning ….) to apartment owner

● Apartment owner just implements his own
design

● Improvements in infrastructure become
available to all apartment owners

● Alternative: Build your house himself and
take over all the work

GIN

Postgres Extensibility: Nested API example - GIN

GIN stands for Generalized Inverted Index
(Bartunov, Sigaev, 2006)

TSVECTOR (FTS) ARRAYS (data types)TSVECTOR (FTS)Full-Text Search JSONB …………...

tsvector_ops

……...

jsonb_ops

jsonb_hash_ops

……...

array_ops

……...

opclass

opclass

……...

Everything could be implemented in Extension(s) !

Navigation, insert/delete,
concurrency,recovery

Postgres Extensibility: Nested API — GIN (FTS)

QUERY: compensation accelerometers

INDEX: accelerometers compensation
 5,10,25,28,3030,36,58,59,61,73,74 3030,68

 RESULT: 3030

GIN for FTS: data type tsvector

● Words organized as B-tree
● Each word has TIDs organized as B-tree or List

Postgres Extensibility: Nested API - GIN (FTS)

E
N
T
R
Y

T
R
E
E

GIN for FTS: data type tsvector

● Words organized as B-tree
● Each word has TIDs organized as B-tree or List

Postgres Extensibility: Nested API (GIN AM)
Sample jsonb: {"k1": "v1", "k2": ["v2", "v3"]}

● jsonb_ops - default GIN opclass for jsonb) extracts keys,values
"k1", "k2", "v1", "v2", "v3"
Supports top-level key-exists operators ?, ?&
and ?| , contains @> operator
Overlapping of large postings might be slow

● jsonb_hash_ops extracts hashes of paths:
hash("k1"."v1"), hash("k2".#."v2"),
hash("k2".#."v3")

Supports only contains @> operator
Much faster and smaller than default opclass (for @>)

● Extension jsquery - jsonb_path_value_ops,
jsonb_value_path_ops, jsonb_laxpath_value_ops

GIN for JSONB

Extensible (Pluggable) TOAST
TOAST allows the database to handle large column values that would not fit in
a single database block. TOAST breaks up wide field values into smaller pieces,
which are stored "out of line" in a TOAST table associated with the user table.

The Curse of TOAST: Unpredictable performance
CREATE TABLE test (id int, jb jsonb);
ALTER TABLE test ALTER COLUMN jb SET STORAGE EXTERNAL;
INSERT INTO test
SELECT
 i id,
 jsonb_build_object(
 'id', i,
 'foo', (SELECT jsonb_agg(0)
 FROM generate_series(1, 1960/12))
) jb -- [0,0,0, ...]
FROM
 generate_series(1, 10000) i;

=# EXPLAIN(ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

Seq Scan on test (actual rows=10000 loops=1)
 Buffers: shared hit=2500
 Planning Time: 0.050 ms
 Execution Time: 6.147 ms
(4 rows)

=# UPDATE test SET jb = jb || '{"bar": "baz"}';
=# VACUUM FULL test; -- remove old versions

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

 Seq Scan on test (actual rows=10000 loops=1)
 Buffers: shared hit=30064
 Planning Time: 0.105 ms
 Execution Time: 38.719 ms
(4 rows)

Small update cause significant slowdown !

Pageinspect: 64 pages with 157 tuples per page

WHY 30064 pages !!!!

TOAST Explained
The Oversized-Attribute Storage Technique

TOASTed (large field) values are compressed, then splitted into the fixed-size TOAST chunks
(1996B for 8KB page)

•TOAST chunks (along with
generated Oid chunk_id and
sequence number chunk_seq)
stored in special TOAST relation
pg_toast.pg_toast_relid,
created for each table with
TOASTed attributes.

•TOASTed attribute in the
original heap tuple is replaced
with TOAST pointer (18 bytes)
containing chunk_id,
toast_relid, raw_size,
compressed_size.

https://www.postgresql.org/docs/current/storage-toast.html

TOAST access

TOAST pointer refers (by Oid chunk_id) to heap tuples with chunks using B-tree index
(chunk_id, chunk_seq). Overhead to read only a few bytes from the first chunk can be 3,4
or even 5 index blocks.

The Curse of TOAST

Access to TOASTed JSONB requires reading at least 3 additional buffers:
• 2 TOAST index buffers (B-tree height is 2)
• 1 TOAST heap buffer

•2 chunks can be read from the same page, but if JSONB size > Page size (8Kb), then
more TOAST heap buffers

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

 Seq Scan on test (actual rows=10000 loops=1)
 Buffers: shared hit=30064
 Planning Time: 0.105 ms
 Execution Time: 38.719 ms
(4 rows)

Table 64

TOAST index 2 * 10000

TOAST table 1 * 10000

Total 30064

Extensible (Pluggable) TOAST

● TOAST is a very stable technology, which just works !
● TOAST has several hard-coded strategies to work with different data types, but it is

"ancient" and knows nothing about jsonb, arrays, and other non-atomic data types.
● TOAST makes no attempt to take into account a workload, for example, append-only

data.
● TOAST works only with binary BLOBs, when the TOASTed attribute is being updated,

its chunks are simply fully copied. The consequences are:
• TOAST storage is duplicated
• WAL traffic is increased in comparison with updates of non-TOASTED attributes, since
the whole TOASTed values is logged
• As a result, performance is too low

• It’s time to improve it !

Extensible (Pluggable) TOAST

TOAST API (WIP):
● Data type aware TOAST

● Blazing fast JSONB for SELECT and UPDATE
● BINARY BLOBS storage

● Workload aware TOAST — appendable Bytea (streaming
binary data into Postgres !)

● More details in
http://www.sai.msu.su/~megera/postgres/talks/toast-
nizhny-2022.pdf

NOSQL
Postgres

 Postgres breathed a second life into relational databases

db-engines.com/en/ranking

JSONB

• Postgres innovation - the first relational database with NoSQL support
• NoSQL Postgres attracts the NoSQL users
• JSON became a part of SQL Standard 2016

PG16: SQL/JSON/TABLE (#postgrespro)

Tnanks, Alvaro Herera for committing !

SQL/Foundation recognized JSON after the success of Postgres

SQL:2016 — 22 JSON features out of 44 new optional. December of 2016

Why we love JSON[B] ?

Startups want/need JSON[B]

● Popular — microservices, clouds, startups
● Ubiquitous format for data interchange, storing API messages

(XML is too much)
● Simple database design (simple queries) , support of Agile development
● Data migration (schema evolution). Old applications can easy accept new

data.
● Compact storage of metadata — one column for all
● One-Type-Fits-All: Client app, backend, database — one format, all server side

languages support JSON, now SQL support JSON
● JSON relaxed code-centric vs data-centric

CREATE JSON products (
 ……………...
);

Why we love JSON[B] ?

JSONB - 2014
● Binary storage
● Nesting objects & arrays
● Indexing

 HSTORE - 2003
● Perl-like hash storage
● No nesting, no arrays
● Indexing

JSON - 2012
● Textual storage
● JSON verification

JSONPATH - 2019
● SQL/JSON - 2016
● Functions & operators
● Indexing

NOSQL POSTGRES STORY
SQL/JSON — PG16(2023)
● Complete SQL/JSON
● Better indexing, syntax

NoSQL Postgres Future

• JSONB - 1st-class citizen in Postgres:
Efficient storage,select, update, API
• Extend further Postgres Extensibility - TOAST API
• JSONB TOASTER - blazing performance!

•Dot notation for JSONB, Jsonpath syntax extension
• JSONB executor for efficient intra-operations
•Projective indexing for JSONB — index what you want
• COPY with FORMAT JSONPATH - copy what you want
•Unification of JSON and JSONB - choose what you want

Contribute to Postgres, Build you career !

Contribute to Postgres, Build your career !

Core development
Development, review, testing, reporting bugs.
Google Summer of Code (GSoC) — good start
for students, we love students.

Ecosystem
Extensions, drivers, ORM, monitoring tools…
Postgres support in applications
Distributions, packages

Documentation
Improvement, translations, writing books,
papers, ...blogging!

Meetings, Education
Creating of local communities,
conference, meetups, seminars,
hackatons, educational and training
courses. Teach Postgres !

Use PostgreSQL!
Use Postgres in your company !

Sponsorship
Help development, sponsor community
events.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

