Oleg Bartunov,
' ' ' NP f.Nepal, May 11, 2023
Moscow University, Postgres Professional " pug PGConf.Nepal, May 11,

Postgres developer/contributor since 1995

PostgresqL

vos(‘;‘esgs

Cows\
.|
(€]
(7]
5]
[
(0]
e
2]
O
P %659.6350,,
ko)
Q
k) 2
® we =,

OLEG BARTUNOV
Pogzgres

o \@

C

S6sg
¥
S0y

: e
[8] o 163, sy m
mfv\ “ m .._U_ Quos, S\D& /VJWLLWH=~ un:%h@fz - Wba~6g4 5
@umm 2 @ 1S19-dg oo] 2
v g \ T
Q - -
P\ N N wwkmu S, . P@A@ N a E.ucawma q
2 Z ° o S)
s ook
A
&

s smﬂsmca
18787 2y
- dJ
~J~d
S
4
&
=
<

N
2
mwﬂnﬂ
2 res95 19
or A.\A/ postd!

S
— #Gmmwﬁm M.o%cowﬁ

The first PostgreSQL talk in Nepal, May 4, 2009

—

® wiki.fossnepal.org/index.php?title=FOSS_Ka_Kura B | e O ® |search L\ yD A =

Introduction to PostgreSQL and talk on Full-text
search capabilities in PostgreSQL

Oleg Bartunov (/ hitp://www.sai.msu.su
/I~magera/ @

May 4th 2009

Engineering, IOE

M.Sc. Hall, Dept. of Electronics and Computer

I gave a talk about full text search in postgresql after trek. We made special
support of nepalese locale to make it works right. There was no light in the
university, so we used generator to power notebok and projector.It was really
funny to speak for people sitting in the darkness.

commit e43bb5beb78bef14f012279a730c3d1914db7e83
Author: Teodor Sigaev <teodc gaev.ru>
Date: Wed Mar 11 16:03:40 2009 +0000

Some languages have symbols with zero display's width or/and vowels/signs which

are not an alphabetic character although they are not word-breakers too.
So, treat them as part of word.

Per off-list discussion with Dibyendra Hyoju <dibyendra@gmail.com> and
and Bal Krishna Bal <balkrishna7bal@gmail.com> about [0l language and
Devanagari alphabet.

Kerosene was used to power
my notebook and projector

Pogzgres Pro

PostgreSQL has built-in Nepali support since 2018

PGConf Nepal 2018
May 04- 05, 2018 Nepali NLP Group

Nepali Support for Full Text Search
in PostgreSQL

- Ingroj Shrestha

Team Lead, NLP R&D Engineer and Tech Blogger
Nepali NLP Group

1 Pogzgres Pro

How to choose a right database ?

* People usually choose a database looking on
* Functionality, Performance
* Availability - License, price
* Local expertise, Personal experience
* Compatibility to existing environment
* Support

* After project started

* Need new functionality, Better performance

* Project is in production, no way to change database

* Starting to use various ugly «solutions»
* System works, but looks pretty strange

Pogzgres Pro

If you chose a wrong database

System works, but looks pretty strange

Pog%gres Pro

Database should be Extensible |

To adapt to

*a new types of DATA,

*new QUERIES,

*VVOLUME of data growth,
*VELOCITY of data processing

*New environment
PogzgresPro

Database Extensibility — Postgres Innovation !

“The main design goals of the new system are to:
2) provide user extendibility for data types, operators

"
and access methods,

Stonebraker M., Rowe L. A.
The design of Postgres. ACM, 1986. - T. 15, - Ne. 2. - C. 340-355.

"It is imperative that a user be able to construct new access methods to
provide efficient access to instances of nontraditional base types”
Michael Stonebraker, Jeff Anton, Michael Hirohama.

Extendability in POSTGRES , IEEE Data Eng. Bull. 10 (2) pp.16-23, 1987
Pogzgres Pro

PostgreSQL Universal Database

Any project (startup) could start with PostgreSQL

PostgreSQL is a reliable and stable database with rich functionality and long history
PostgreSQL has liberal BSD license, cross platform (~30)

Developed by international community, no vendor lock

Postgres inspire people to build new databaases, We love Forks |

PostgreSQL is EXTENSIBLE, this is the very important feature, which people miss ! It
allow database to support

* New workloads

* New functionality

* New environment

* Often without restarting a server, no need core developers

Pogggres Pro

PostgreSQL in Database World

CODD 1969,1970 "', J

Relational model
1974-1975

). PostgreSQL: OLTP, MPP, OLAP, CLOUD, GIS,
Pos{gres STREAM, TIMESERIES, GPU, BLOCKCHAIN

P> TelegraphCQ - P ;Frl;gg? > Z_I'UCQ P> PipelineDB
1973 Q U E P> ParAccel gl N EedShift P> Aurora
mazon PostgreSQL
..................... P> Bizgres ——» P Greenplum . P Cicerhim

L 1984-1 987 005 > Euptzitprise Postgres P CitusDB — - P CitusDB — P MS

INteractive Graphicg F{Etneval System . NonStop SQL ILLUSTRA] P EnterpriseDB P Vitesse DB CitusDB
P B P> Netezza P> Vertica
P = P> Yahoo! Everest P TimescaleDB
1979-1982 1985 1988 1992 P Aster Data P AgensGraph
. Terradata ostgres- e ostgres-
'- 1939 VI P Postgres-XC PP X2
P> HadoopDB — P> Hadapt P> Postgres Pro
PDSth'ES) P PowerGres g > EmePrp(g.lr;eéiereum
1993 V4, “‘ SRA P> Postgres-XL P 2ndoPostgres
________ 1 i i i i ‘ i i i i 1 i i i i i i -
Postgresgs 199 V5 2002 2004 2006 2008 2010 2012 2014 2016 2017 2018
. .19 7.3 8.0 9.0 9.4 86 10 11
a SQL - P> Commercial P> Open Source -
10970403 b R jsonb PQ LRP JIT
PGDG

.199? V6
| Json
|." . - I' £ ‘\'* . +46

+ many university projects ! PO%QFGSPFO

Professional Postgres

* Academic Postgres (x10)
* Community Postgres95 (<400)
* PostgreSQL V6
Community develops for Community

* 200X — First Postgres-centric companies
(GreatBridge, 2ndQuadrant, EDB...)
+Full-time developers for Community
* First enterprise forks

Pogggres Pro

Professional Postgres

* 2010 — Enterprise customers
New features for Enterprises
* 2015 — Majority of major developers were hired by PG-
companies (+Citus Data, +Postgres Professional)
* Now the companies drive the development
* Community: test, approve
* Postgres became Enterprise ready (More forks)
* Postgres became Professional

Pogzgres Pro

PG-companies drive the development
PG-companies - proxy between Enterprise and Community

* Big enterprises require additional features "right now"

* PG-companies develop, support and test these featuresin
their forks

* Some features returned back to community (not easy)
* Community accept (if) and support code

Pogzgres Pro

Example: Postgres Pro Enterprise

* 64-bit XID (enterprise, PG17 ?)

* Adaptive Query Optimization (enterprise, opensource)

* CFS — page level compression (enterprise)

* Multi Master cluster (enterprise, opensource)

* Probackup - Incremental backup (enterprise, opensource)

* Advanced partitioning (opensource)

* Threaded Postgres (prototype)

* Built-in HA, Sharding (in development)

* SQL/JSON (PG12, PG16)

* Pluggable TOAST, Jsonb on steroids (PG17 ?) \
* Check https://github.com/posterespro Pogzgrespro

Postgres Popularity is growing |

DB
== PostgreSQL
== MongoDB
- MySQL
Oracle
Microsoft SQL Server

=
=
P
L
2
Q
o .
Q

2014-01 2016-01 2018-01 2020-01
date

Database Popularity Trend — Db-engines.com
Postgres - database of the Year: 2017, 2018, 2020 PogzgresPro

Stack Overflow Developer Survey 2022

Loved vs. Dreaded

PostgreSQL

Redis

MongoDB

SQLite

Cloud Firestore
Elasticsearch
Microsoft SQL Server
MariaDB

DynamoDB

MySQL

Firebase Realtime Database
Couchbase

Neo4j

Cassandra

Loved vs. Dreaded

PostgreSQL
MongoDB
Redis
Elasticsearch
SQLite

MySQL

Firebase Realtime
Database

DynamoDB
Cassandra
Neo4j

MariaDB

Microsoft SQL
Server

Cloud Firestore

19.05%

17.26%

14.3%

8.29%

8.18%

7.99%

5.08%

4.82%

4.39%

2.95%

2.71%

2.62%

2.54%

Pos}gresPro

Postgres expert will always have a job !

April 2023 Hacker News Hiring Trends

Top5 v~ 9 Postgresql MySQL SQL Server Oracle

April 2023 Hacker News Hiring Trends

20

15

O\MW\M\

0

Percentage of posts

RPN NN NN TN T N NI TN B RIS Y
XS S S S S SIS S S S S ST S S ST S S S ST ST ST S S S S S S Sl S S S S Sl S S

-o- Postgresql - MySQL Oracle -« SQL Server

Highcharts.com

Hackers News Hiring Trends - 2023 PogzgresPro

My experience with Postgres Extensibility

1996: Start using Postgres on Web, no 8-bit support — introduced i18n (locale)
1999: World’s top-5 portal. We start with PostgreSQL 6.5.?

Hardware ~ my smartphone to support > 1 min. users/day, quickly run out of resources
* Denormalize, use arrays -> slow -> improve GiST - contrib/intarray — GiST/GIN indexes

* Need FTS, made contrib/tsearch2 using intarray and GiST indexes
Need fast search on hierarchical data — contrib/Itree — GiST indexes
Need flexible schema — contrib/hstore — GiST index
Need faster FTS — GIN index for tsearch, hstore
Need misprint search — contrib/pg_trgm — GiST/GIN indexes
Need Indexing the Sky — pgsphere, Q3C
NoSQL Postgres - better/binary json - jsonb — GIN index
Need faster FTS — RUM access methods
SQL-2016 standard — Jsonpath, SQL/JSON
Need faster JSONB — working in TOAST extensibility, Jsonb TOASTER

2023: STILL USING and Developing Postgres |

Pogggres Pro

Postgres Extensibility: CORE-APIs-Extensions

EXTENSION

ACCESS METHOD
FOREIGN DATA WRAPFER '
FOREIGN TABLE | OPERATOR CLASS
SERVER H ' OPERATOR FAMILY
USER MAPPING H 1

FUNCTION TEXT SEARCH:

LANGUAGE FROCEDURE - ggg;ig; MIHL?DN COLLATION

TRANSFORM AGGREGATE — CONVERSION
OPERATOR -

- TEMPLATE

Expression | |Execution Full Text Search Internationalization
] |

Core PostgreSQL

Extensions

System Catalog
pg_catalog.*

ﬁ ﬁ Executor

Parse Tree
SQL | Query : Expression
Parser Planner : Executor Executor

Result

Pos}gresPro

Nested Extensibility

* CITY provides CORE infrastructure TS
(expensive) for construction company to (5) ELecTROALUNE.
build an appartment building (&) wirune_)

* Construction company provides building (@) sewnse une_
infrastructure (elevator, garbage collection,
cleaning) to apartment owner

* Apartment owner just implements his own
design

* Improvements in infrastructure become
available to all apartment owners

* Alternative: Build your house himself and \
take over all the work Pogzgres Pro

Postgres Extensibility: Nested APl example - GIN

EXTENSION

BN GIN stands for Generalized Inverted Index
[roome ax }_>| el (Bartunov, Sigaev, 2006)
N Navigation, insert/delete,

G I N coﬂwcu rrency,recovery

Full-Text Search JSONB ARRAYS (datatypes) =

v v v v
tsvector_ops jsonb_ops array_ops opclass
jsonb_hash_ops opclass
......... — 1 T -

Everything could be implemented in Extension(s) ! pogzgrespro

Postgres Extensibility: Nested APl — GIN (FTS)

EXTENSION
Report Index
OPERATOR CLASS compensation, 30, 68
OPERATOR FAMILY A compressive 55r§ngth, 54
. COMPressors,
abrasives, 27 computational fluid dynamics, 23, 29
acceleration measurement, 58 computer games, 56
accelerometers, 5, 10, 25, 28, 30, 36, 58, 59, 61, concurrent engineering, 14
73,74 contact resistance, 47, 66
actuators, 4, 37, 46, 49 convertars, 22
ﬂgﬁﬂﬁ‘iﬂ Kggmgﬂ filters, 60, 61 coplanar waveguide components, 40
¢ i r r 4
GIN for FTS: data type tsvector e i
ad QUERY: compensation accelerometers
ae
ae
ae .
* Words organized as B-tree - INDEX: accelerometers compensation
* Each word has TIDs organized as B-tree or List] 5,10,25,28,30,36,58,59,61,73,74 30,68
ar; : UTETELLTTL PUAdr isauunn, 3L
assembling, 22 dielectric relaxation, 64
atomic force microscopy, 13, 27, 35 dielectric thin films, 16
atomic layer deposition, 15 differential amplifiers, 28
attllll.ide Cﬂntrﬂl, EEI, 61 diffraction grating&r [ts]
attitude measurement, 59, 61 discrete wavelet transforms, 72
auturnat!c testleqmpmﬂnt, 71 displacement measurement, 11
automatic testing, 24 display devices, 56
distributed feedback lasers, 38
B

backward wawve oscillators, 45

Posggres Pro

Postgres Extensibility: Nested API - GIN (FTS)

EXTENSION

OPERATOR CLASS
OPERATOR FAMILY

GIN for FTS: data type tsvector

* Words organized as B-tree

* Each word has TIDs organized as B-tree or List

< 0 4 Z m

m m 0o —

Report Index
A

abrasives, 27

acceleration measurement, 58

accelerometers, 5, 10, 25, 28, 30, 36, 58, 59, 61,
73,74

actuators, 4, 37, 46, 45

adaptive Kalman filters, &0, 61

adhesion, 63, 64

adhesive bonding, 15

adsorption, 44

aerodynamics, 29

aerospace instrumentation, 61

aerospace propulsion, 52

compensation, 30, 68

compressive strength, 54
compressors, 29

computational fluid dynamics, 23, 29
computer games, 56

concurrent engineering, 14

contact resistance, 47, 66
convertars, 22

coplanar waveguide components, 40
Couette flow, 21
creep, 17
crystallisation, 64

4 -

. | Posting tree

aerospace robotics, 68
aluminium, 17

amorphous state, 57

angular velocity measurement, 58
antenna phased arrays, 41, 46, 66
argon, 21

assembling, 22

atomic force microscopy, 13, 27, 35
atomic layer deposition, 15
attitude contral, 60, 61

attitude measurement, 59, 61
automatic test equipment, 71
automatic testing, 24

Metapage

Entry tree

\ . A .
a— —
v Posting tree

[]

>

O

1\

/

i

backward wave oscillators, 45

Posting tree

Fast update list

Pos}gresPro

Postgres Extensibility: Nested APl (GIN AM)

EXTENSION Samp-l_e JSOnb: {llklll : IIV1||, ||k2|| : ["V2", "V3"]}

INDEX AM

}_)|m ras IR J SOﬂb_OpS - default GIN opclass for jsonb) extracts keys,values
\\”m‘m“ MMLY__,. M . Mo , 1y . nyon . 3"
' Supports top-level key-exists operators ?, ?&
and ?| , contains @> operator

G|N for _]SONB Over lapping of large postings might be slow

* Jsonb_hash_ops extracts hashes of paths:

h&Sh("kl"."Vl"), haSh("kzu.#."VZH),
hash("k2".#."v3")

Supports only contains @> operator
Much faster and smaller than default opclass (for @>)
* Extension jsquery - jsonb_path_value_ops,
jsonb_value_path_ops, jsonb_laxpath_value_qps
Pos}gresPro

Extensible (Pluggable) TOAST

TOAST allows the database to handle large column values that would not fit in
a single database block. TOAST breaks up wide field values into smaller pieces,
which are stored "out of line" in a TOAST table associated with the user table.

‘*
'f'|

“w % ¢

F ‘ '
4

= 4

Pogggres Pro

The Curse of TOAST: Unpredictable performance

CREATE TABLE test (id int, jb jsonb);
ALTER TABLE test ALTER COLUMN jb SET STORAGE EXTERNAL;
INSERT INTO test
SELECT
i id,
=# EXPLAIN(ANALYZE, BUFFERS) SELECT jb->'id' FROM test; JSOnb_build object(
QUERY PLAN id*, 1, .
___ 'foo', (SELECT jsonb agg(0)
Seq Scan on test (actual rows=10000 loops=1) FROM generate series(1l, 1960/12))
Buffers: shared hit=2500) jb -- [0,0,0, ...]
Planning Time: 0.050 ms FROM
Execution Time: 6.147 ms generate series(1l, 10000) 1i;
(4 rows)
Small update cause significant slowdown !
=# UPDATE test SET jb = jb || '{"bar": "baz"}';
=# VACUUM FULL test; -- remove old versions
= RS) SELECT jb->'id' FROM test; . .
EXPLAIN éﬁgﬁthEANBUFFE >) SELECT/3p->4d PNree Pageinspect: 64 pages with 157 tuples per page
Seq Scan on test (actual rows=10000 loops=1) WHY 30064 pages !!!!

Buffers: shared hit=30064
Planning Time: 0.105 ms
Execution Time: 38.719 ms

(4 rows)

Pogggres Pro

TOAST Explained

The Oversized-Attribute Storage Technique

TOASTed (large field) values are compressed, then splitted into the fixed-size TOAST chunks
(19968 for 8KB page)
In-Memory Tuple

“TOAST chunks (along with ﬂ_

generated Oid chunk id and
sequence number chunk seq)
stored in special TOAST relation
pg toast.pg toast relid,
created for each table with
TOASTed attributes

*TOASTed attribute in the ,

Heaprel [/ TOAST rel

PG TOASTer (typstorage = "extended") I

pglz compression
J5

compressed js

original heap tuple is replaced -
with TOAST pointer (18 bytes) Heap Tuple TDAST Tuplel TOAST Tup|e2 TOAST TupIeS

50 5| | e | e
toast relid, raw size,

compressed size.

https://www.postgresql.org/docs/current/storage-toast.html PO%QFGS Pro

TOAST access

TOAST pointer refers (by Oid chunk id) to heap tuples with chunks using B-tree index
(chunk id, chunk_seq). Overhead to read only a few bytes from the first chunk can be 3,4
or even 5 index blocks.

pg_toast.pg_toast_16460_index

pg_toast.pg toast 16460 table

_ / _ToAsT chunk_data (bytea, <= 2KB)
test table (oid = 16460) /" B-Treelndex °
TOAST pointer 1

| ~
S/ . ' 2 1 chunk 2.1

TOAST TOAST relid :
X /!) - . \ chunk 3.0

ponter3 1 chunk id = 3 :
. s ; chunk 3.1

o] BN
|
o e ol e

Pogzgres Pro

The Curse of TOAST

Access to TOASTed JSONB requires reading at least 3 additional buffers:
* 2 TOAST index buffers (B-tree height is 2)

* 1 TOAST heap buffer

*2 chunks can be read from the same page, but if JISONB size > Page size (8Kb), then
more TOAST heap buffers

Table 64

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test; TOAST index 2 * 10000
QUERY PLAN
--- TOAST table 1 *10000

Seq Scan on test (actual rows=10000 loops=1)
Buffers: shared hit=30064 - Total 30064

Planning Time: 0.105 ms
Execution Time: 38.719 ms
(4 rows)

Pogggres Pro

EXTENSION

Extensible (Pluggable) TOAST = "

* TOAST is a very stable technology, which just works !

* TOAST has several hard-coded strategies to work with different data types, but it is
"ancient" and knows nothing about jsonb, arrays, and other non-atomic data types.

* TOAST makes no attempt to take into account a workload, for example, append-only
data.

* TOAST works only with binary BLOBs, when the TOASTed attribute is being updated,
its chunks are simply fully copied. The consequences are:
*TOAST storage is duplicated

* WAL traffic is increased in comparison with updates of non-TOASTED attributes, since
the whole TOASTed values is logged

*As a result, performance is too low

* |t’s time to improve it |
PogggresPro

Extensible (Pluggable) TOAST

TOAST API (WIP):
* Data type aware TOAST
* Blazing fast JSONB for SELECT and UPDATE
* BINARY BLOBS storage
* Workload aware TOAST — appendable Bytea (streaming
binary data into Postgres !)

* More details in
http://www.sai.msu.su/~megera/postgres/talks/toast-
nizhny-2022.pdf

Pogzgres Pro

Pogggres Pro

Postgres breathed a second life into relational databases

* Postgres innovation - the first relational database with NoSQL support

* NoSQL Postgres attracts the NoSQL users
* JSON became a part of SQL Standard 2016

Relative Growth

= Pg == MySQL == Oracle == MS SQL

JSONB

PG16: SQL/JSON/TABLE (#postgrespro)

db-engines.com/en/ranking

Tnanks, Alvaro Herera for committing !

SQL/Foundation recognized JSON after the success of Postgres

SQL:2016 — 22 JSON features out of 44 new optional. December of 2016

4.46 JSON data handling 1n SQL. e 174
4.46.1 IntrodUCtIOn. 174
4462 Implied JSON data model. 175
4.46.3 SQL/ISON data model. 176
4.464 SQL/AISON funcCtions.o e e e e e e e e 177
4.46.5 Overview of SQL/JSON path language. e 178
5 Lexical elements.uiuiiuiitiitiiiiiiiiiiitieeeeeecsesessessesossssscsssssnssnnes 181
51 <SQL terminal character>. e 181
5.2 <token> and <SePaTator>. e e 185
viii Foundation (SQL/Foundation) ©ISO/IEC 2016 — All rights reserved

Pogzgres Pro

Why we love JSONI[B] ?

Startups want/need JSON[B] CREATE JSON products (

Popular — microservices, clouds, startups)

Ubiquitous format for data interchange, storing APl messages
(XML is too much)

Simple database design (simple queries) , support of Agile development

Data migration (schema evolution). Old applications can easy accept new
data.

Compact storage of metadata — one column for all

One-Type-Fits-All: Client app, backend, database — one format, all server side
languages support JSON, now SQL support JSON

JSON relaxed code-centric vs data-centric

Pogzgres Pro

Why we love JSONI[B] ?

Which of these features have you used to organize
and access data for your production apps?

Note: respondents could choose as many options as desired.

JSON/JSONB

EVENT TRIGGERS

PROCEDURES (WITH CALL)

LOGICAL REPLICATION

DECLARATIVE PARTITIONING

BRIN INDEX

CUSTOM FOREIGN DATA WRAPPERS

HAVEN'T USED ANY OF THESE

Pogggres Pro

SQL/JSON — PG16(2023)

NOSQL POSTGRES STORY + Complete SQL/JSON

* Better indexing, syntax

JSONPATH - 2019
* SQL/JSON - 2016
* Functions & operators

: * Indexing
Key-Value Ordered Key-Value Big Table E:ﬁ:’?;néearch JSONB 2014
| — R g e i
= | | | * Binary storage
S | , N4 * Nesting objects & arrays

il e Eﬂ‘ * Indexing
* Textual storage

S RSN o) | — " JSON verification

HSTORE - 2003

RS ——— =1 * Perl-like hash storage
* No nesting, no arrays
* Indexing

Pog%gres Pro

NoSQL Postgres Future

* JSONB - 1st-class citizen in Postgres:
Efficient storage,select, update, API
* Extend further Postgres Extensibility - TOAST API
* JSONB TOASTER - blazing performance!

* Dot notation for JSONB, Jsonpath syntax extension
* JSONB executor for efficient intra-operations

* Projective indexing for JSONB — index what you want
* COPY with FORMAT JSONPATH - copy what you want

* Unification of JSON and JSONB - choose what y?—’%s %rrgspro

Contribute to Postgres, Build you career !

Core Code

Other Code

Everything Else
Pogzgres Pro

Contribute to Postgres, Build your career !

Core development

Development, review, testing, reporting bugs.

Google Summer of Code (GSoC) — good start
for students, we love students.

Ecosystem

Extensions, drivers, ORM, monitoring tools...
Postgres support in applications
Distributions, packages

Documentation
Improvement, translations, writing books,
papers, ...blogging!

Meetings, Education
Creating of local communities,
conference, meetups, seminars,
hackatons, educational and training
courses. Teach Postgres |

Use PostgreSQL!

Use Postgres in your company !

Sponsorship
Help development, sponsor community
events.

Pogzgres Pro

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

