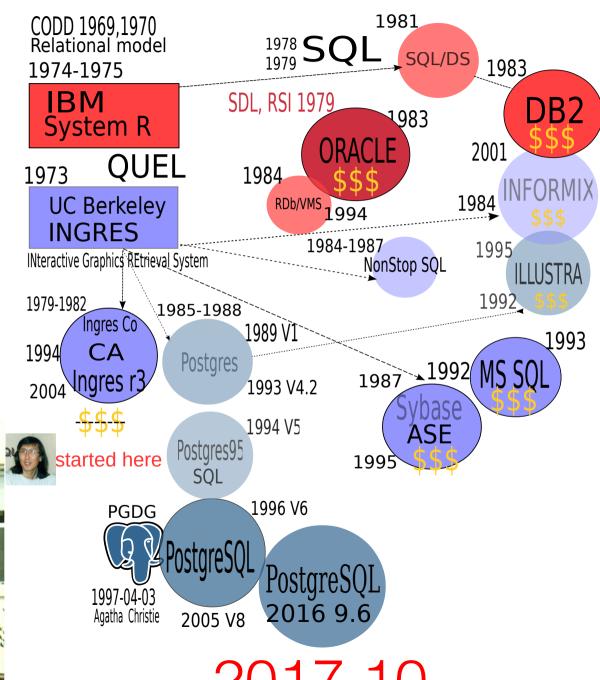
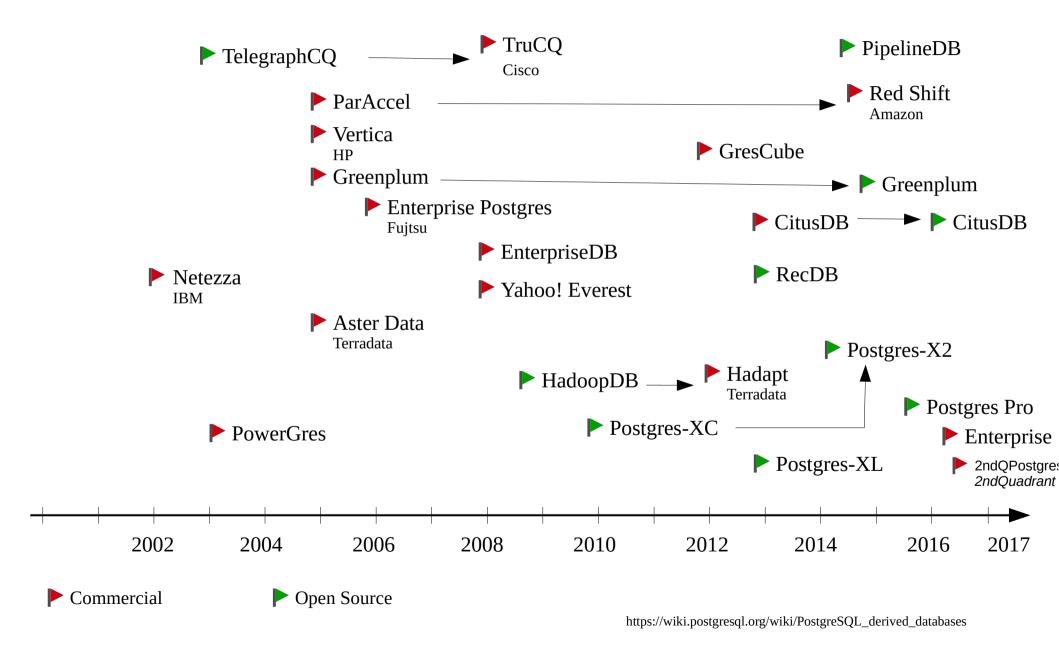


Postgres 10

Oleg Bartunov Moscow University, Postgres Professional


Sep 8, 2017, Tel Aviv


Michael Stonebreaker Turing Award, 2015

PostgreSQL History >20 years

PostgreSQL Forks (we love forks!)

PostgreSQL users

+BIG RUSSIAN Enterprise!

PostgreSQL is #4!

334 systems in ranking, September 2017

	Rank				Score
Sep 2017	Aug 2017	Sep 2016	DBMS	Database Model	Sep Aug Sep 2017 2017 2016
1.	1.	1.	Oracle 🚹 🔐	Relational DBMS	1359.09 -8.78 -66.47
2.	2.	2.	MySQL 🔠 👾	Relational DBMS	1312.61 -27.69 -41.41
3.	3.	3.	Microsoft SQL Server 🚹 👾	Relational DBMS	1212.54 -12.93 +0.99
4.	4.	4.	PostgreSQL 🔠 👾	Relational DBMS	372.36 +2.60 +56.01
5.	5.	5.	MongoDB 🚹 👾	Document store	332.73 +2.24 +16.74
6.	6.	6.	DB2 🚹	Relational DBMS	198.34 +0.87 +17.15
7.	7.	1 8.	Microsoft Access	Relational DBMS	128.81 +1.78 +5.50
8.	8.	4 7.	Cassandra 🖽	Wide column store	126.20 -0.52 -4.29
9.	9.	1 0.	Redis 🖽	Key-value store	120.41 -1.49 +12.61
10.	10.	1 1.	Elasticsearch 🖽	Search engine	120.00 +2.35 +23.52

https://db-engines.com/en/ranking

PostgreSQL 10

- New version numbering
- DBA visible changes
- Logical Replication
- Native Table Partitioning
- Improved Query Parallelism
- Performance improvement
- Quorum Commit for Sync Replication
- Assorted improvements

New version numbering

- Postgres version numbering was always weird
 - Check https://www.postgresql.org/docs/10/static/release.html 0.01, 0.02, 0.03, 1.0, 1.01,..,1.02.1, 1.09 - Postgres95
 - 6.0,..,6.5.3
 - 7.0,..,7.4.30
 - 8.0,..,8.4.22
 - 9.0,...9.6.5
 - Generally version looks like major1.major2.minor1, difficult to decide which major number to advance
 - 6.0 PostgreSQL, Postgres95 was known as Postgres Release 5 commit 9b41da6ce48e3bed6730faa6347a5461175cff83

Commit 90410d0Ce40e30e00730idd0347d340117

Author: Bruce Momjian <bruce@momjian.us>

Date: Wed Dec 11 00:28:15 1996 +0000

Rename postgres95 to PostgreSQL. Add comment for SELECT NULL

- 7.0 really usable server (FK, SQL 92 JOIN, better optimizer)
- 8.0 Microsoft Windows Native Server
- 9.0 Built-in replication
- Now version numbering is simple: major.minor
- Expect 10.0 release Sep 25, 2017
- Next major release will be 11.0

DBA visible changes 1/2

Fool-tolerance

- Directories pg_xlog to pg_wal, pg_clog to pg_xact, all functions with reference to "xlog"
- log_directory (for log files) from pg_log to log
- HASH indexes must be rebuilt after pg_upgrade
- ICU library (--with-icu, ICU4C needed), stable collation support
- Replication in pg_hba.conf
 - Allow replication connections from localhost by a user with the replication privilige (^^Gitlab)
- wal_level = replica support pg_basebackup new default to include required WALs
 - max_wal_senders = 10, max_replication_slots = 10
 - wal_level can be on of {minimal, replica (replaced archive and hot_standby), or logical}

DBA visible changes 2/2

- password_encryption is md5 (on, default)
 - #password_encryption = **md5**, scram-sha-256
 - no plain, no UNENCRYPTED option in CREATE/ALTER USER, --unencrypted option removed from createuser command
- + ssl_dh_params_file (Diffie-Hellman parameters)
- - {create,drop}lang (create/drop extensions) contrib/tsearch2
- + idle_in_transaction_session_timeout = 0 # in milliseconds,0 is disabled
- sql_inheritance = on
- Better commenting importance of fsync = on (eat my data off)
 - # flush data to disk for crash safe (turning this off can cause unrecoverable data corruption)

Logical Replication

- 9.4: logical decoding of WAL records
- 10.0: functionality (some) pglogical extension was ported to the core, added SQL interface
- Big step to multimaster
- Partial replication (individual objects)
 - One-to-many, many-to-one
- Replication between different versions (starting from 10.0), different platforms (Linux to Windows)
- Upgrades (with minimal or no downtime)
- Write operations on secondary servers are possible

Logical Replication

SQL interface:

```
ON MASTER: wal_level = logical

CREATE/ALTER/DROP PUBLICATION name
    [FOR TABLE [ ONLY ] table_name [ * ] [, ...]
    |FOR ALL TABLES ]
    [WITH ( publication_parameter [= value] [, ... ] ) ]

WITH (publish = 'insert, delete')
```

```
ON SECONDARY:

CREATE/ALTER/DROP SUBSCRIPTION subscription_name
    CONNECTION 'conninfo'
    PUBLICATION publication_name [, ...]
    [ WITH ( subscription_parameter [= value] [, ... ] ) ]

WITH ( copy_data = false )
```


Logical Replication

- Limitations in 10.0
 - does not replicate schema/DDL
 - does not replicate sequences
 - does not replicate TRUNCATE
 - only supports replicating base (normal) table to base table
- Wait for the next releases!

Table partitioning

- Before 10.0: table inheritance + constraint exclusion
- Manual setup, slow for partitions pruning
- 10.0: still table inheritance+metadata
- Declarative syntax, still slow for partition pruning
- But, metadata makes possible to improve planner in future releases!
- pg_pathman for really fast partitioning
 - It doesn"t uses table inheritance
 - It demonstrate how fast could be native partitioning orders of magnitude faster (for 500 partitions)
 - https://github.com/postgrespro/pg_pathman

Table Partitioning

- Declarative Partitioning provides SQL syntax for:
 - range and list partitioning, Multi-level partitioning
 - Attach/detach partitions, creating partitions as foreign tables
 - Fast tuple routing

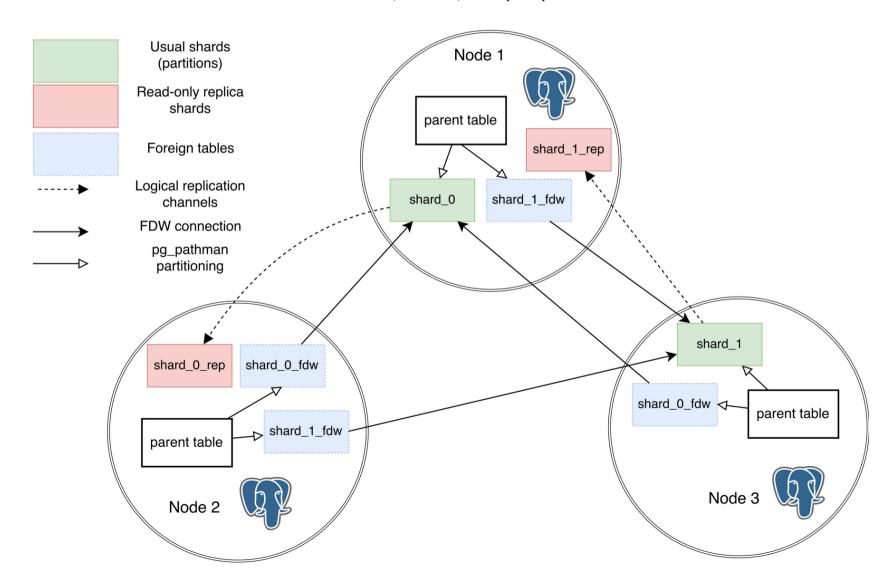
```
CREATE TABLE t1(created timestamp)
PARTITION BY RANGE(EXTRACT(YEAR FROM created));
CREATE TABLE t1_2017
PARTITON OF t1 FOR VALUES FROM (2017) TO (2018);

By list:
CREATE TABLE t2(category text)
PARTITION BY LIST(category);
CREATE TABLE t2_books
PARTITON OF t2 FOR VALUES IN ('books');
```


Table Partitioning

- Limitations:
- Need to manually create indexes on partitioned tables
- No automatic creation of partitions
- No routing tuples to foreign partitions
- No splitting or merging partitions

Future improvements:


- Add hash partitioning
- Global index
- Sharding

Sharding

pg_shardman: sharding via pg_pathman, postgres_fdw and logical replication

3 nodes, 2 shards, one replica per shard

Improved Query Parallelism

- 9.3: Infrastructure
 - background workers
- 9.6: Feature introduction
 - Parallel sequential scans
 - Hash joins
 - Nested Loops
- 10.0: Improvement
 - Bitmap heap scans
 - Index scans
 - Merge joins
 - Subqueries
- >10.0: Even better
 - Create index
 - Parallel Append

Performance improvements

- Faster expression evaluations in executor
 - Currently benefit is about 6-20%
 - But it made possible future JIT-ing (expected several times improvements)

res Quorum Commit for Sync Replication

- 9.6: primary wait for commit confirmation from N of M
 - Priority set of N nodes with M standbys (order of standbys is important)
 - GUC variable synchronous_standby_names
 - synchronous_standby_names = N(standby_1,...,standby_M)
- 10.0: Quorum Commit
 - Quorum set of N nodes (order of standbys is not important)
 - synchronous_standby_names = ANY N(standby_1,...,standby_M)
 - Use FIRST instead of ANY to emulate 9.6 this is default

Assorted Improvements

- XMLTABLE (better standard, infrastucture for json_table)
- Durable HASH indexes
- FDW aggregate pushdown
- Transaction traceability
 - txid_status(BIGINT) useful to recover from indeterminate COMMIT.
 - https://blog.2ndquadrant.com/traceable-commit-postgresql-10/
- pg_stat_activity
 - More wait events: client reads/writes, server reads/writes and fsync ops, synchronous replication
 - · Worker processes, WAL senders and more
- Extended Statistics Functional Dependencies, Multivariate N-Distinct Counts
 - CREATE STATISTICS stname (dependecies, ndistinct) ON col1, col2,... FROM tabname;
- Security Technical Implementation Guide (STIG DoD), 1st OSS database
- RLS (permissive +restrictive) policies can be AND-ed
- Better (than md5) authentication SCRAM-SHA-256
- FTS for JSONB (https://obartunov.livejournal.com/194683.html)
- +many (>100) features

PostgreSQL Future

Several Postgres groups are working on

Postgres Distributed

Postgres Vectorized

Postgres Parallel

Postgres Asynchronous

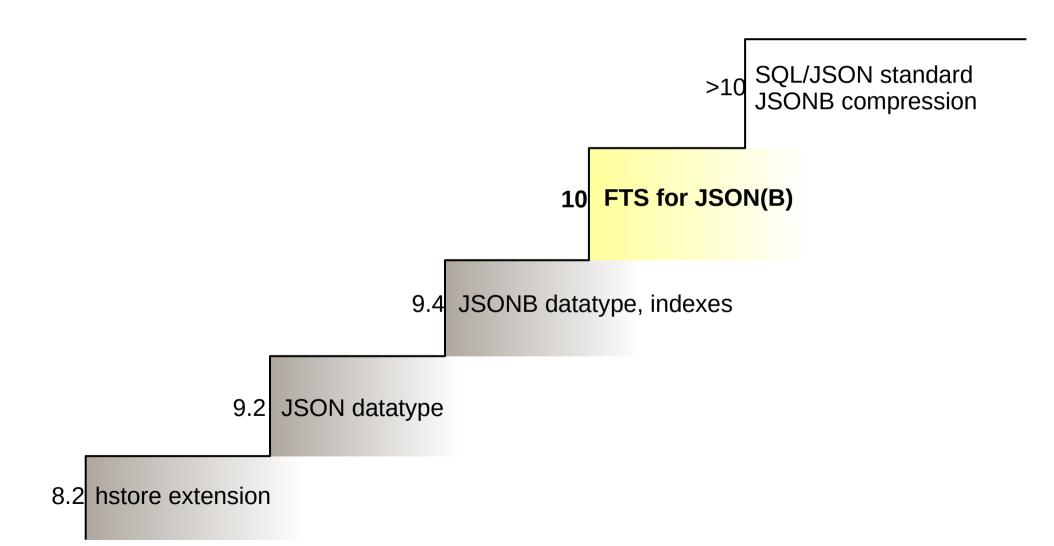
Postgres Extendable+

Postgres NoSQL — check SQL/JSON http://sqlfiddle.postgrespro.ru:6081/#!21/

Postgres Scalable (Vertical & Horizontal)

Conclusions

- PostgreSQL is the universal database with clear roadmap
- Proven technology of developing major features
- Postgres 10 is a big step in product evolution



JSON Roadmap

References

- Documentation: Release Notes for version 10
- Postgres Wiki: New in Postgres 10
- Bruce Momjian: Major Features: Postgres 10
- Robert Haas: New Features Coming in PostgreSQL 10
- Michael Paquier: Postgres 10 highlight ... series
- Hubert (depesz) Lubaczewski:
 Waiting for PostgreSQL 10 ... series
- Robert Haas: Parallel Query v2
- Robert Haas: Partitioning plans for v11
- Simon Riggs: News and Roadmap for BDR
- Petr Jelinek: Logical Replication in PostgreSQL 10