

ol PROFESSIONAL

Pos{gres CTE

* ACTEs (Common Table Expression) is a temporary tables existing
for just one query, that can be referenced from a primary query.
Useful to break complex query to a readable parts — easy read
and maintain.

* Most databases consider CTEs as views and optimize overall
query
* Postgres implementation — always materialize CTEs

* CTE uses work_mem, beware large results of CTES

* Optimization fence like <OFFSET 0>

«CTEs are also treated as optimization fences; this is not so much an
optimizer limitation as to keep the semantics sane when the CTE contains a
writable query.», Tom Lane, 2011

Logically equivalent queries (subselects and WITH) executed
with different plans !

ol PROFESSIONAL

gres

Po

CTE

WITH RECURSIVE x(1i) — idea by Graeme Job
AS (
VALUES (0)
UNION ALL
SELECT i + 1 FROM x WHERE i < 101
) 1
Z(Ix, Iy, Cx, Cy, X, Y, I)
AS (
SELECT Ix,
Y::float, O
FROM (SELECT -2.2 + 0.031 * i, i FROM x) AS
xgen(x,1ix)
CROSS JOIN
(SELECT -1.5 + 0.031 * i,
ygen(y,iy)
UNION ALL
SELECT Ix,
Y*X*2 + Cy,
FROM Z
WHERE

Iy, X::float, Y::float, X::float,

i FROM x) AS

Iy, Cx, Cy, X*X - Y*Y + Cx AS X,

I +1
X*X + Y*Y < 16.0

AND I < 27

) 1
7t (Ix,
AS (

Iy, I)
SELECT Ix,
FROM 7

GROUP BY Iy,
ORDER BY Iy,

Iy, MAX(I) AS I
Ix
Ix

)
SELECT array to string(

array agg(

SUBSTRING(' .,,,-—-——++++3%33QQQR#### ',

GREATEST(I,1),1)),""
)

FROM Zt

GROUP BY Iy

ORDER BY Iy:

ey
ey
sy
cerr
serr
serr
serr
serr
sery
sery
serr
s
ey
ey

ines

Kalfay_WW_eoul 4Ally

-t
4%

#% -
Sttt

P
.
#e-

%t - -

frrrerrrs---tNENR AN

prrerpeppymmbetE %o

Focirrrrrrrrneee
tecvrrrerrreenes

e i
Fociirrrrrrrrenes

L T LI

B @---iiirrrrirrenes
B

Wbt A e

ol PROFESSIONAL

Pos{gres CTE

* Writable CTEs always executed

* Non-referenced CTEsS never executed

WITH yy AS
(SELECT * FROM cte WHERE y > 1),
not_executed AS
(SELECT * FROM cte),
always_executed AS
(INSERT INTO cte VALUES(2,2) RETURNING *)
SELECT FROM yy WHERE x=2;
QUERY PLAN
CTE Scan on yy
Filter: (X = 2)
CTE vyy
-> Seq Scan on cte
Filter: (y > 1)
CTE always_executed
-> |nsertonctecte 1
-> Result
(8 rows)

ol PROFESSIONAL

Pos{gres CTE is a black box for optimizer

* Break a really complex query to the well readable parts

CREATE TABLE cte AS SELECT x, x AS y FROM generate series(1,10000000) AS x;

CREATE INDEX ON cte(x,VY);
Table "public.cte"

Column | Type | Collation | Nullable | Default
-------- O Ot S SR
X integer ‘

y integer

Indexes:

"cte x y idx" btree (x, y)
—-— subselects

SELECT * FROM
(SELECT * FROM cte WHERE y>1) AS t
WHERE x=2;

— CTE

WITH yy AS (
SELECT * FROM cte
WHERE y>1
)
SELECT * FROM yy
WHERE x=2;

ol PROFESSIONAL

Pos{gres CTE is a black box for optimizer

WITH yy AS (- always materialized and cannot inlined into a parent query
SELECT * FROM cte
WHERE y>1

)
SELECT * FROM vyy

WHERE x=2;

CTE Scan on yy (actual time=0.099..3672.842 rows=1 loops=1)
Filter: (x = 2)
Rows Removed by Filter: 9999998
CTE yy
-> Seq Scan on cte (actual time=0.097..1355.367 rows=9999999 loops=1)
Filter: (y > 1)
Rows Removed by Filter: 1
Planning Time: 0.088 ms
Execution Time: 3735.986 ms
(9 rows)

SELECT * FROM (SELECT * FROM cte WHERE y>1) as t WHERE X=2;
QUERY PLAN
Index Only Scan using cte x y idx on cte (actual time=0.013..0.013 rows=1l loor
Index Cond: ((x = 2) AND (y > 1))
Heap Fetches: 0
Planning Time: 0.058 ms
Execution Time: 0.025 ms

(5 rows) SURPRISE: CTE is 150 000 slower than subselect !

Pogga’?%e"“é: PG12: Controllable CTE materialization
WITH cte name AS [NOT] MATERIALIZED

eWritable WITH query always materialized
e Recursive WITH query always materialized

* No fencing (new default) * Old behavior

WITH yy AS (

WITH yy AS MATERIALIZED (
SELECT * FROM cte SELECT * FROM cte
WHERE y=2 WHERE y=2

))

SELECT * FROM vyy SELECT * FROM vyy

WHERE x=2;

WHERE x=2;
QUERY PLAN

Index Only Scan using cte x y idx on cte

QUERY PLAN

CTE Scan on yy
Index Cond: ((x = 2) AND (y = 2)) Filter: (x = 2)
(2 rows) CTE yy

-> Seq Scan on cte
Filter: (y = 2)
(5 rows)

Poggaf%eog PG12: Controllable CTE materialization

WITH cte name AS [NOT] MATERIALIZED

 If a WITH query is referred to multiple times, CTE “materialize” its result
to prevent double execution, use EXPLICIT NOT MATERIALIZED

WITH yy AS (SELECT * FROM cte WHERE y > 1) SELECT (SELECT count(*) FROM
yy WHERE x=2), (SELECT count(*) FROM yy WHERE x=2);
QUERY PLAN
Result (actual time=3922.274..3922.275 rows=1 loops=1)
CTE yy
-> Seq Scan on cte (actual time=0.023..1295.262 rows=9999999 loops=1)
Filter: (y > 1)
Rows Removed by Filter: 1
InitPlan 2 (returns $1)
-> Aggregate (actual time=3109.687..3109.687 rows=1 loops=1)
-> CTE Scan on yy (actual time=0.027..3109.682 rows=1 loops=1)
Filter: (x = 2)
Rows Removed by Filter: 9999998
InitPlan 3 (returns $2)
-> Aggregate (actual time=812.580..812.580 rows=1 loops=1)
-> CTE Scan on yy yy 1 (actual time=0.016..812.575 rows=1
loops=1)
Filter: (x = 2)
Rows Removed by Filter: 9999998
Planning Time: 0.136 ms
Execution Time: 3939.848 ms
(17 rows)

Poggaii%e"“é: PG12: Controllable CTE materialization

WITH cte name AS [NOT] MATERIALIZED

* If a WITH query is referred to multiple times, CTE “materialize” its result
to prevent double execution, use EXPLICIT NOT MATERIALIZED

WITH yy AS NOT MATERIALIZED (SELECT * FROM cte WHERE y > 1) SELECT
(SELECT count(*) FROM yy WHERE x=2), (SELECT count(*) FROM yy WHERE x=2);
QUERY PLAN

Result (actual time=0.035..0.035 rows=1 loops=1)
InitPlan 1 (returns $0)
-> Aggregate (actual time=0.024..0.024 rows=1 loops=1)
-> 1Index Only Scan using cte x y idx on cte (actual
time=0.019..0.020 rows=1] loops=1)
Index Cond: ((x = 2) AND (y > 1))
Heap Fetches: 1
InitPlan 2 (returns $1)
-> Aggregate (actual time=0.006..0.006 rows=1] loops=1)
-> 1Index Only Scan using cte x y idx on cte cte 1 (actual
time=0.004..0.005 rows=1 loops=1)
Index Cond: ((x = 2) AND (y > 1))
Heap Fetches: 1
Planning Time: 0.253 ms
Execution Time: 0.075 ms
(13 rows)

Efficient K-nearest

neighbour search in
PostgreSQL

Knn-search: The problem

What are the closest restaurants near
HaUmanim 12, Tel Aviv ?

What happens in the world near the launch of
Sputnik ?

 Reverse image search, search by image

A F
o = et A
............ L . ..

GIS, Science (high-dimensional data)Z ;'"

ol PROFESSIONAL

Pos}gres K-nearest neighbour search

* 10 closest events to the launch of Sputnik ?

SELECT id, date, event FROM events
ORDER ABS(date - '1957-10-04'::date) ASC LIMIT 10;

id | date | event

________ o

58136 | 1957-10-04 | "Leave It to Beaver," debuts on CBS

58137 | 1957-10-04 | U.S.S.R. launches Sputnik I, 1st artificial Earth satellite
117062 | 1957-10-04 | Gregory T Linteris, Demarest, New Jersey, astronaut, sk: STS 83
117061 | 1957-10-04 | Christina Smith, born in Miami, Florida, playmate, Mar, 1978
102671 | 1957-10-05 | Lee "Kix" Thompson, saxophonist, Madness-Baggy Trousers

102670 | 1957-10-05 | Larry Saumell, jockey

58292 | 1957-10-05 | Yugoslav dissident Milovan Djilos sentenced to 7 years

58290 | 1957-10-05 | 11th NHL All-Star Game: All-Stars beat Montreal 5-3 at Montreal

31456 | 1957-10-03 | Willy Brandt elected mayor of West Berlin

58291 | 1957-10-05 | 12th Ryder Cup: Britain-Ireland, 7 -4 at Lindrick GC, England
(10 rows)

* Slow: Index Is useless, full heap scan, sort, limit

Limit (actual time=54.481..54.485 rows=10 loops=1)
Buffers: shared hit=1824
-> Sort (actual time=54.479..54.481 rows=10 loops=1)
Sort Key: (abs((date - '1957-10-04'::date)))
Sort Method: top-N heapsort Memory: 26kB
Buffers: shared hit=1824
-> Seq Scanonevents (actual time=0.020..25.896 rows=151643 loops=1)
Buffers: shared hit=1824
Planning Time: 0.091 ms
Execution Time: 54.513 ms
(10 rows)

Knn-search: Existing solutions

* Traditional way to speedup query

- Indexes are very inefficient (no predicate)
- Constrain data space (range search)

* Incremental search — to many queries

* Need to know in advance size of
neighbourhood, how ?
1Km is ok for Paris, but too small for
Siberia

 Maintain 'density map' ?

nn-search: What do we want !

« We want to avoid full table scan - read only
<right> tuples

- So, we need index

« We want to avoid sorting - read <right> tuples
in <right> order

- So, we need special strategy to traverse index
« We want to support tuples visibility

- So, we should be able to resume index
traverse

nn-search: What do we want !

« We want to avoid full table scan - read only
<right> tuples

- So, we need index

« We want to avoid sorting - read <right> tuples
in <right> order

- So, we need special strategy to traverse index
« We want to support tuples visibility

- So, we should be able to resume index
traverse

Knn-search: Index traverse

 Depth First Search (stack, LIFO)

R-tree search

 Both strategies are not good for us - full index
SCAan

Knn-search: Index traverse

« Best First Search (PQ, priority queue). Maintain order of
items in PQ according their distance from given point

- Distance to MBR (rectangle for Rtree) for internal pages
- minimum distance of all items in that MBR

- Distance = 0 for MBR with given point
- Distance to point for leaf pages

« Each time we extract point from PQ we output it - it is
next closest point ! If we extract rectangle, we expand it
by pushing their children (rectangles and points) into the
queue.

« We traverse index by visiting only interesting nodes !

Knn-search: Index traverse

 Simple example - non-overlapped partitioning

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

* Simple example - non-overlapped
partitioning

* Priority Queue
e 1: {1,2,3,4,5,6,7,8,9}
e 2: {2,5,6,7,9}, {1,3,4,8}

e 3: {5,6,7,9}, {1,3,4,8}, {2}
e 4: {5,9}, {1,3,4,8}, {2}, {6,7}
e 5: {1,3,4,8}, 5, {2}, {6,7}, 9

e 6: {1,3,4}, {8}, 5, {2}, {6,7}, 9
e 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9

we can output 4 without visit
other rectangles !

e 8: 5, {2}, {6,7}, 3, 8, 1, 9
e 9: {6,7}, 3, 2, 8, 1, 9
e 10: 3, 2, 8, 1, 9, 6, 7

Knn-search: Index traverse

* Simple example - non-overlapped
partitioning * Priority Queue

@xx - 1:{1,2,3,4,5,6,7,8,9)
- 2:{2,5,6,7,9}, {1,3,4,8}
;’@m ;’@)\ e 3: {5,6,7,9}, {1,3,4,8}, {2}
@# ; O @ - 4: {5,9}, {1,3,4,8}, {2}, {6,7}

5: {1,3,4,8}, 5, {2}, {6,7}, 9
: {1,3,4}, {8}, 5, {2}, {6,7}, 9

RO

4, {8}y, 5, {2}, {6,7}, 3, 1, 9

0O N o

5, {2}, {6,7}, 3, 8, 1, 9

Knn-search: Performance

« SEQ (no index) - base performance

- Sequentually read full table + Sort full table (can be
very bad, sort mem !)

« DFS - very bad !

- Full index scan + Random read full table + Sort full
table

e BFS - the best for small k !

- Partial index scan + Random read k-records
» T(index scan) ~ Height of Search tree ~ log(n)

- Performance win BFS/SEQ ~ Nrelpages/k, for small k.
The more rows, the more benefit !

- Can still win even for k=n (for large tables) - no sort !

ol PROFESSIONAL

Pos}gres K-nearest neighbour search

SELECT id, date, event FROM events
ORDER ABS(date - '1957-10-04'::date) ASC LIMIT 10;

Limit (actual time=54.481..54.485 rows=10 loops=1)
Buffers: shared hit=1824
-> Sort (actual time=54.479..54.481 rows=10 loops=1)
Sort Key: (abs((date - '1957-10-04'::date)))
Sort Method: top-N heapsort Memory: 26kB
Buffers: shared hit=1824
-> SeqScanonevents (actual time=0.020..25.896 rows=151643 1loops=1)
Buffers: shared hit=1824
Planning Time: 0.091 ms
Execution Time: 54.513 ms
(10 rows)

KNN-GIST (Btree-GiST)
SELECT id, date, event FROM events

ORDER BY date <-> '1957-10-04'::date ASC LIMIT 10;
QUERY PLAN
Limit (actual time=0.128..0.145 rows=10 loops=1)
-> Index Scan using events date idxl on events (actual time=0.128..0.142 rows=10 loops=1)
Order By: (date <-> "'"1957-10-04'::date)

Planning Time: 0.155 ms

Execution Time: 0.186 ms

(5 rows)

PPPPP

Pogggres

L]

SSSSSSS

KNN SP-GIST (committed)

LCT *

O]

FROM knn_ test

ORDER BY p <-> point(:x,:y) LIMIT :n;
GIST SP-GIST
n time, ms buffers time, ms buffers
10 0,12 14 0,07 18
100 0,27 110 0,2 118
1000 1,58 1231 1,51 1264

ol PROFESSIONAL

Pos{gres KNN-SPGIST (committed)

7240858 points (geonames)

SELECT point, point <->? FROM geo_all ORDER BY 2 LIMIT ?
KD-tree, Quad-tree

AM
Illgﬁst

spgist kd
spgist quad
segscan

Pogga’?%e"“éi KNN-SPGIST (committed)

KNN Speedup

AM

. gist
spgist kd
spgist quad
segscan

—_
=]
o
o

Q.
=
o
[
o
Q.
w
S
£
=

ol PROFESSIONAL

Pos{gres KNN B-tree (in-progress)

SELECT * FROM events

ORDER BY date <->'2000-01-01"::date ASC
LIMIT 100;

KNN B-tree btree_gist union seq scan
K time, ms buffers time, ms buffers time, ms buffers time, ms buffers
1 0.041 4 0.079 4 0.060 8 41.1 1824
10 0.048 7 0.091 9 0.097 17 41.8 1824
100 0.107 47 0.192 52 0.342 104 42.3 1824
1000 0.735 573 0.913 650 2.970 1160 43.5 1824
10000 5.070 5622 6.240 6760 36.300 11031 54.1 1824

100000 49.600 51608 61.900 64194 295.100 94980 115.0 1824

OOOOOOOOOOOO

Posigres Covering GiST

* Include non-indexed columns into index to greatly
iImprove Index-only scan (index should contains all
columns from query)

* Index Is smaller than composite index
* No need opclass for column

 PG11: INCLUDE for B-tree
One index for UNIQUE/PRIMARY and INCLUDE to

use Index-only scan

CREATE TABLE foo (id int, coll text, col2 text, primary key (id) include (coll,col2));

*PG12: INCLUDE for GIST

CREATE INDEX ON mowboxes USING gist(bounds) INCLUDING (ip);

PogggF%ég Covering GiST

Test data — 7803499 boxes with additional column

\d mowboxes
Column Type

Ip cidr
num integer
center point
bounds box
Tsbounds tsrange

Indexes:

gist (bounds)
gist (bounds,ip) EEI AR
gist (bounds)INCLUDE (ip) {i % 4 5 & &
gist (bounds)INCLUDE (alljiaiii{ | A/ i

SELECT ip,bounds FROM mowboxes WHERE bounds @> some::point

S

TR

€

Pogggi%o% Covering GiST

Test data — 7803499 boxes with additional columns

\d mowboxes

Column Type
__________ e
Ip cidr
num integer
center point
bounds box
Tsbounds tsrange

Indexes:

gist (bounds) 665 MB
gist (bounds,ip) 876 MB
gist (bounds)INCLUDE (ip) 788 MB

gist (bounds)INCLUDE(all) 1498 MB

TEST QUERY (POINTs from (37.0, 55.0) - (47.5, 65.0) , step 0.5):

SELECT ip,bounds FROM mowboxes WHERE bounds @> POINT::point

ol PROFESSIONAL

Pos{gres Covering GiST

am

— gist (bounds)

= gist (bounds) include (ip)
gist (bounds) include (all)

o
E
G

£

2000 3000 4000 5000 6000 7000 8000 9000 10000 2000 3000 4000 5000 6000 7000 8000 9000 10000 =10000
row count row count

ol PROFESSIONAL

Pos{gres Covering GiST

am
. gist (bounds)
. gist (bounds) include (ip)

gist (bounds) include (all)

4000
blocks

Pogggi?sé% Covering GiST (randomize)

-
(4]

am
= gist (bounds)
— gist (bounds) include (ip)

o
<
5

£

iy
o

2000 3000 4000 5000 6000 7000 8000 9000 10000 =100 2000 3000 4000 5000 6000 7000 8000 9000 10000:=>10000
row count row count

Randomize table:

CREATE TABLE mowboxes rnd AS SELECT * FROM mowboxes ORDER BY random();

Pogggf%eog Covering GiST (randomize)

am

. gist (bounds)

. gist (bounds) include (ip)

10 15 10000
time, ms blocks

Randomize table:

CREATE TABLE mowboxes rnd AS SELECT * FROM mowboxes ORDER BY random();

OOOOOOOOOOOO

Pos}gres Covering GiST

* Covering GIST improves utility and performance
of index-only scan

Pogzaiisseog Pluggable storage

* Better Postgres extensibility
* Storage is about tables/mat.views
* Replace hardcoded heap by Table Access Manager
* Several Table AMs coexists, could be added online
* Examples: columnar, append-only, ZHeap, In-

Client

Client

Postgres

e

POSTGRES Kemel

Kemel - .
DB

POSTGRES

[PmEGe bk

Andres Freund, http://anarazel.de/talks/2018-10-25-pgconfeu-pluggable-storage/pluggable.pdf

ol PROFESSIONAL

Pos{gres Pluggable storage

* Better Postgres extensibility

* Table access method
CREATE ACCESS METHOD ... TYPE TABLE

PG 11 PG 12

select amname, amtype from pg am; select amname, amtype from pg am;
amname | amtype amname | amtype

ol PROFESSIONAL

Pos{gres Pluggable storage

* Better Postgres extensibility
* CREATE EXTENSION my_storage;
* CREATE TABLE ... USING my_storage;
- SET default_table access method ='my_storage’

=# CREATE TABLE bar() USING HEAP;
CREATE TABLE
=# show default table access method;
default table access method

OOOOOOOOOOOO

Pos}gres Pluggable storage (in-progress)

e Support for INSERT/UPDATE/DELETE, triggers
etc.

e Support for custom maintenance (own vacuum).
e Support for table rewrite.

e Support for custom tuple format.

* Support for custom tuple storage.

* Index-heap relationship must be the same. Only
HOT-like update OR insertion to EVERY index.

* Row must be identified by 6-byte TID.
e System catalog must be heap.

Pogggf%eog ZHeap (in-progress)

* MVCC implementation:
* Oracle, MySQL, SQL Server: old versions are In
other place
* MVCC In Postgres: all row versions are in table
* Table bloat, write amplification

index 1 index 2 iIndex 3

OOOOOOOOOOOO

Pos}gres ZHeap (in-progress)

* ZHeap — new storage for PostgreSQL with UNDO
(No Vacuum storage)
* The old versions of rows are in undo log
* Reverse all changes made by aborted
transactions

index 1 index 2 index 3

—————————————————————

Eundo

OOOOOOOOOOOO

Pos}gres ZHeap (in-progress)

* ZHeap — new storage for PostgreSQL with UNDO

* In-place updates (when possible) — less bloat
* But, In-place update don“t need an extra space for new
tuple on page as HOT, only if new tuple is wider.
* In-place update like a HOT update (can“t modify any
Indexed columns)

* Reclame space after transaction (committed or
aborted)
* Avoid non-modification data writes, like hint-bits

* Shorter tuple header (no xmin,xmax, cmin,cmax)
* UNDO log contains most of data for MVCC
* Zheap Is smaller on disk

nggres SQL/Foundation recognizes

JSON after 8 years

4.46 JSON data handling in SQL.o 174
4461 IntoduCtiON.ot e 174
4462 Implied JSON datamodel. oo 175
4463 SQLASON data model. oo 176
4464 SQLSON fUNCHONS.ttt e e e e e e 177
446.5 Overview of SQL/JSON path language. 178
5 Lexical elements..........ooovvvniiiiiiiiiiiiiiiii 181
5.1 <SQL termunal character>. 181
5.2 <token> and <SEPATALOT>.\ttt et e e 185

viii Foundation (SQL/Foundation) ©ISO/EC 2016 - All rights reserved

ol PROFESSIONAL

Pos{gres jsonpath (committed)

Jsonpath provides an ability to operate (in standard
specified way) with json structure at SQL-language level

* Dot notation — $.a.b.c
$ - +the current context element

* Array - [*]
* Filter ? - $.a.b.c ? (@.x > 10)

@ - current context in filter expression
* Methods - $.a.b.c.x.type()

type(), size(), double(), ceiling(), floor(), abs(),
datetime(), keyvalue()

'$.floor[*].apt[*] ? (@.area > 40 && @.area < 90)'

Pogggi%eog Why JSON path is a type ?

* Standard permits only string literals in JSON path
specification.

* WHY a data type ?

* To accelerate JSON path queries using existing indexes
for]sonb we need boolean operators for json[b] and
jsonpath.

* Implementation as a type Is much easier than integration
of JSON path processing with executor (complication of
grammar and executor).

* In simple cases, expressions with operators can be more
concise than with SQL/JSON functions.

* |[tis Postgres-way to use operators with custom query
types (tsquery for FTS, Iquery for Itree, jsquery for
jsonb,...)

Posdgres

"address": {
"city": "Moscow",
"street": "Ulyanova, 7A"

1y
"1ift": false,

"floor": [
{
"level”: 1,
llaptll: [
{llnoll :
{Ilnoll:
{Ilnoll:

"level": 2,

"apt": [
{"HOH: : 100, "rooms": 3};
{"no": : 60, "rooms": 2}

ol PROFESSIONAL

Pos}gres $.floor[0,1].apt[1 to last]

$.floor[0, 1].apt[1 to last]

/lift fIN&sa
0] ci

"Ulyanova, 7A"

apt

.drea /.rooms\.no . . .darea |[rooms “.no

Pogggfsseméﬁ $.floor[0, 1].apt[1 to last]

SELECT jsonb_path_query_array(js, '$.floor[0, 1].apt[1 to last]')
FROM house;

SELECT jsonb_agg(apt)

FROM (SELECT apt->generate_series(1, jsonb_array_length(apt) - 1)
FROM (SELECT js->'floor'->unnest(array[0, 1])->'apt'

FROM house) apts(apt)) apts(apt);

Pogggfsseo% Extension: wildcard search

$.7* ? (@ =="Moscow")

0] 1]

2]
.drea i,l‘OOI‘I‘lS i,r‘lO .darea i,l‘OOI‘I’IS i,l’lO ; .area i,l‘OOI‘I‘lS “\.NO / .area |rooms ;.no i.area iil‘ooms no

ol PROFESSIONAL

Posygres $.** ? (@ == "Moscow")

SELECT jsonb_path_exists(js, '$.** ? (@ == "Moscow")') FROM house;

WITH RECURSIVE t(value) AS
(SELECT * FROM house
UNION ALL
(SELECT
COALESCE(kv.value, e.value) AS value
FROM
t
LEFT JOIN LATERAL jsonb_each(
CASE WHEN jsonb_typeof(t.value) = 'object' THEN t.value ELSE NULL END
) kv ON true
LEFT JOIN LATERAL jsonb_array_elements(
CASE WHEN jsonb_typeof(t.value) = 'array' THEN t.value ELSE NULL END
) e ON true
WHERE
kv.value IS NOT NULL OR e.value IS NOT NULL)

)
SELECT EXISTS (SELECT 1 FROM t WHERE value = '"Moscow"');

ol PROFESSIONAL

Pos{gres jsonpath (committed)

The jsonpath functions for jsonb:

- Jjsonb_path_exists() => boolean

Test whether a JSON path expression returns any
SQL/JSON items (operator @?).

- jsonb_path_match() => boolean
Get the result of a JSON path predicate (operator @@).

- jsonb_path_query() => setof jsonb
Extract a sequence of SQL/JSON items from a JSON value.
- jsonb_path_query_array() => jsonb

Extract a sequence of SQL/JSON items wrapped into JSON
array.

- jsonb_path_query_first() => jsonb
Extract the first SQL/JSON item from a JSON value.

Pogga)?%eog jsonpath (committed)

All jsonb_path_xxx() functions have the same signature:
jsonb_path_xxx(

js jsonb,

jsp jsonpath,

vars jsonb DEFAULT '{}',

silent boolean DEFAULT false

)

"vars" Is a jsonb object used for passing jsonpath variables:
SELECT jsonb_path_query_array('[1,2,3,4,5]', '"$[*] ? (@ > $x)',
vars => '{"x": 2}");
jsonb_path_query_array

"silent" flag enables suppression of errors:

SELECT jsonb_path_query('[]', 'strict $.a');
ERROR: SQL/JSON member not found
DETAIL: jJjsonpath member accessor can only be applied to an object

SELECT jsonb_path_query('[]', 'strict $.a', silent => true);
jsonb_path_query

ol PROFESSIONAL

Pos{gres jsonpath (committed)

Jsonpath function examples:

jsonb_path_exists('{"a": 1}', '$.a') => true
jsonb_path_exists('{"a": 1}', '$.b') => false

jsonb_path_match('{"a": 1}', '$.a == 1') => true
jsonb_path_match('{"a": 1}', '$.a >= 2') => false
jsonb_path_query('{"a": [1,2,3,4,5]}"
'$.a[*] 2 (@ > 2)7)

51}

5)")

I~

> 3, 4, 5 (3 rows)

jsonb_path_query('{"a": [1,2, 3,4,
'$.a[*] ? (@ >

II‘

(0 rows)

jsonb_path_query_array('{"a": [1,2,3,4,5]}"',

'$.a["] ? (@ >2)") => [3, 4, 5]
jsonb_path_query_array('{"a": [1,2,3,4,5]}"',

'$.a[*] ? (@ > 5)") => []
jsonb_path_query_first('{"a": [1,2,3,4,5]}',

'$.a[*] ? (@ > 2)") => 3
jsonb_path_query_first('{"a": [1,2,3,4,5]}',

'$.a[*] ? (@ > 5)') => NULL

Pogggi%eog jsonpath (committed)

Boolean jsonpath operators for jsonb:

* jsonb @7 jsonpath (exists)
Test whether a JSON path expression returns any
SQL/JSON items.

jsonb '[1,2,3]"' @? '$[*] ? (@ == 3)' => true

- jsonb @@ jsonpath (match)
Get the result of a JSON path predicate.
jsonb '[1,2,3]" @@ '$[*] == 3' => true

* Operators are interchangeable:
js @? '$.a'’ <=> 7Js @@ 'exists($.a)'
js @@ '$.a == 1' <=> Jjs @? '$? ($.a == 1)

Pogga’?%e"“éi jsonpath (committed)

Boolena jsonpath operators are supported by GIN
jsonb_ops and jsonb_path_ops:
CREATE INDEX ON house USING gin (js);

EXPLAIN (COSTS OFF)
SELECT * FROM house

WHERE js @? '$.floor[*].apt[*] ? (@.rooms == 3)'
QUERY PLAN
Bitmap Heap Scan on house
Recheck Cond: (js @? '$."floor"[*]."apt"[*]?(@."rooms" == 3)'::jsonpath)
-> Bitmap Index Scan on house js 1idx
Index Cond: (js @? '$."floor"[*]."apt"[*]?(@."rooms" == 3)'::jsonpath)

(4 rows)

Pogga)?%eog jsonpath (committed)

Exists @? and match @~ operators can be speeded up by GIN index
using built-in jsonb_ops or jsonb_path_ops.

EXPLAIN (ANALYZE)

SELECT COUNT(*) FROM bookmarks

WHERE jb @~ '$.tags[*].term == "NYC"';
QUERY PLAN

Aggregate (cost=4732.10..4732.11 rows=1 width=8) (actual time=1.238..1.238 rows=1
loops=1)
-> Bitmap Heap Scan on bookmarks (cost=33.71..4728.97 rows=1253 width=0) (actual
time=0.128..1.196 rows=285 loops=1)
Recheck Cond: (jb @~ '($."tags"[*]."term" == "NYC")'::jsonpath)
Heap Blocks: exact=285
-> Bitmap Index Scan on bookmarks jb idx (cost=0.00..33.40 rows=1253 width=0)
(actual time=0.071..0.071 rows=285 loops=1)
Index Cond: (jb @~ '($."tags"[*]."term" == "NYC")'::jsonpath)
Planning time: 0.080 ms
Execution time: 1.283 ms
(8 rows)

Pogga’?%e"“éi jsonpath (committed)

« .datetime() item method will not be implemented in PG12:

-- behavior required by standard
SELECT jsonb_path_query('"13.03.2019"', '$.datetime("DD.MM.YYYY")");

jsonb_path_query

"2019-03-13"
(1 row)

-- behavior of PG12
SELECT jsonb_path_query('"13.03.2019"', '$.datetime("DD.MM.YYYY")'");

ERROR: bad jsonpath representation

* Arithmetic errors in filters may be not suppressed:
-- behavior required by standard
SELECT jsonb_path_query('[1,0,2]', '$[*] ? (1 / @ >= 1)");
jsonb_path_query

-- possible behavior of PG12
SELECT jsonb_path_query('[1,0,2]', '"$[*] ? (1 / @ >= 1)');
ERROR: division by zero

ol PROFESSIONAL

Pos{gres SQL/JSON (gon.matepunanbl)

* [Ipe3eHTauua no SQL/JSON

htdt]tca://www.sai.msu.su/~megera/postgres/talks/squson-china—2018.
P

 BBegeHune B SQL/JSON

httos://aithub.com/obartunov/sgljsondoc/blob/master/README.|so
npath.md

e [locTbl Npo SQL/JSON
https://obartunov.livejournal.com/tag/sqgljson

e Generalized expression syntax for
9 partition bounds (committed)

CREATE TABLE part (ts timestamp)
PARTITION BY RANGE(ts);

CREATE TABLE partl

PARTITION OF part FOR VALUES

FROM ('2018-01-01")

TO (current_timestamp + 'l day');

Support for expressions in partition bounds!

Podlaras Run-time partition pruning for
9 MergeAppend (committed)

explain analyze select * from news
where category = (select category from hot category)
order by ts limit 10;

Limit (cost=36.79..37.26 rows=10 width=12) (actual time=0.0
InitPlan 1 (returns $0)
-> Seqg Scan on hot category (cost=0.00..35.50 rows=255
-> Merge Append (cost=1.29..46833.10 rows=1000000 width=
Sort Key: news catl.ts
-> Index Scan using news catl ts idx on news_catl
(cost=0.42..11302.75 rows=333333 width=12)
(actual time=0.016..0.021 rows=10 loops=1)
Filter: (category = $0)
-> Index Scan using news cat2 ts idx on news_cat2
(cost=0.42..11302.77 rows=333334 width=12)
(never executed)
Filter: (category $0)
-> Index Scan using news cat3 ts _idx on news_ cat3
(cost=0.42..11302.75 rows=333333 width=12)
(never executed)
Filter: (category = $0)

Poslares Reduce partition tuple routing
9 overheads (committed)

Inserts into 10k partitions table:

original: 96 TPS
patched: 17729 TPS
non-partitioned: 19121 TPS

http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.pdf
http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.pdf
https://github.com/obartunov/sqljsondoc/blob/master/README.jsonpath.md
https://github.com/obartunov/sqljsondoc/blob/master/README.jsonpath.md

PostgreSQL version in log
(committed)

Pos{gres

2019-02-02 09:23:11.711 MSK [59708] LOG:

starting

PostgreSQL 12devel on x86_64-apple-darwinl?7.7.0, compiled
by Apple LLVM version 10.0.0 (clang-1000.11.45.5), 64-bit

2019-02-02 ©09:23:11.715 MSK [59708]
IPv6 address "::1", port 5434

2019-02-02 09:23:11.715 MSK [59708]

LOG:

LOG:

IPv6 address "fe80::1%100", port 5434

2019-02-02 ©09:23:11.715 MSK [59708]
IPv4 address "127.0.0.1", port 5434

2019-02-02 09:23:11.716 MSK [59708
Unix socket "/tmp/.s.PGSQL.5434"

LOG:

LOG:

listening
listening
listening

listening

on

on

on

on

)0 LOCKING B-tree leafs immediately in

Pos)qgres : :
9 exclusive mode (committed)
test original, TPS patched, TPS
unordered inserts 409 591 412 765
ordered inserts 252 796 314 541

duplicate inserts 44 811 202 325

Poggmfsseméi Improve behavior of to_timestamp()
9 | to_date() functions (committed)

Before

select to timestamp('2019-13-01', 'YYYYMMDD');
to_timestamp

2018-11-03 00:00:00+03

select to timestamp('2019 -01-01', 'YYYY-MM-DD');
ERROR: date/time field value out of range: "2019 -01-01"

After

select to timestamp('2019-13-01', 'YYYYMMDD');
ERROR: date/time field value out of range: "2019-13-01"

select to timestamp('2019 -01-01', 'YYYY-MM-DD');
to_timestamp

2019-01-01 00:00:00+03
(1 row)

Now well documented!

Poyim Function to promote standby servers
9 (committed)

How to promote a standby?
* Trigger file
* pg_ctl promote
« SELECT pg_promote();

Step towards managing cluster in pure SQL!

gres

chz Speedup of relation deletes

during recovery (committed)

Relation delete or truncate:

* Causes sequential scan of shared_buffers
* Slow with large shared_buffers

Especially bad for standby, because of single-process recovery

Now, instead of
DELETE tabl; DELETE tab2; .. DELETE tabN;

It's better to do

BEGIN;
DELETE tabl; DELETE tab2; .. DELETE tabN;
COMMIT;

Single pass over shared_buffers instead of N.
Less replication lag!

P ogzres Use the built-in float datatypes to
9 Implement geometric types (committed)

* Check for underflow, overflow and division by zero
* Consider NaN values to be equal

 Return NULL when the distance is NaN for all closest point
operators

 Favour not-NaN over NaN where It makes sense

Before
select point('NaN', 'NaN') ~= point('NaN', 'NaN');
’column?

After
select point('NaN', 'NaN') ~= point('NaN', 'NaN');
scolumn?

Poyim Add log_statement_sample_rate
9 parameter (committed)

* Logging all the statements consumes much of
resources

* Logging only long statements may distort your
picture

 Sample logging is the solution!

log statement_sample rate =
log statement _sample rate =
log statement _sample rate

1 ; log every statement

© ; log no statements

0.5 ; log half of statement
0.1

; log one tenth of
; Statement

log statement _sample rate

OOOOOOOOOOOO

Pos}gres Hyperbolic functions

 SQL:2016 standard introduced
* Sinh()
* Cosh()
* Tanh()
* Only float8, no numeric support
* Logl0() - alias to log()

0NALOID AT YIX NNXNY NN D

