

What's new

Oleg Bartunov, CEO Postgres Professional

CTE

● A CTEs (Common Table Expression) is a temporary tables existing
 for just one query, that can be referenced from a primary query.
Useful to break complex query to a readable parts — easy read
and maintain.

● Most databases consider CTEs as views and optimize overall
query

● Postgres implementation — always materialize CTEs
• CTE uses work_mem, beware large results of CTEs
• Optimization fence like <OFFSET 0>

«CTEs are also treated as optimization fences; this is not so much an
optimizer limitation as to keep the semantics sane when the CTE contains a
writable query.», Tom Lane, 2011

Logically equivalent queries (subselects and WITH) executed
with different plans !

СТЕ
WITH RECURSIVE x(i) – idea by Graeme Job
AS (
 VALUES(0)
UNION ALL
 SELECT i + 1 FROM x WHERE i < 101
),
Z(Ix, Iy, Cx, Cy, X, Y, I)
AS (
 SELECT Ix, Iy, X::float, Y::float, X::float,
Y::float, 0
 FROM (SELECT -2.2 + 0.031 * i, i FROM x) AS
xgen(x,ix)
 CROSS JOIN
 (SELECT -1.5 + 0.031 * i, i FROM x) AS
ygen(y,iy)
 UNION ALL
 SELECT Ix, Iy, Cx, Cy, X*X - Y*Y + Cx AS X,
Y*X*2 + Cy, I + 1
 FROM Z
 WHERE X*X + Y*Y < 16.0 AND I < 27
),
Zt (Ix, Iy, I)
AS (
 SELECT Ix, Iy, MAX(I) AS I
 FROM Z
 GROUP BY Iy, Ix
 ORDER BY Iy, Ix
)
SELECT array_to_string(
 array_agg(
 SUBSTRING(' .,,,-----++++%%%%@@@@#### ',

 GREATEST(I,1),1)),''
)
FROM Zt
GROUP BY Iy
ORDER BY Iy;

CTE

WITH yy AS
(SELECT * FROM cte WHERE y > 1),

not_executed AS
(SELECT * FROM cte),

always_executed AS
(INSERT INTO cte VALUES(2,2) RETURNING *)

SELECT FROM yy WHERE x=2;
 QUERY PLAN

 CTE Scan on yy
 Filter: (x = 2)
 CTE yy
 -> Seq Scan on cte
 Filter: (y > 1)
 CTE always_executed
 -> Insert on cte cte_1
 -> Result
(8 rows)

● Writable CTEs always executed
● Non-referenced CTEs never executed

CTE is a black box for optimizer

● Break a really complex query to the well readable parts

CREATE TABLE cte AS SELECT x, x AS y FROM generate_series(1,10000000) AS x;
CREATE INDEX ON cte(x,y);
 Table "public.cte"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 x | integer | | |
 y | integer | | |
Indexes:
 "cte_x_y_idx" btree (x, y)

-– subselects

SELECT * FROM
(SELECT * FROM cte WHERE y>1) AS t

WHERE x=2;

– CTE

WITH yy AS (
SELECT * FROM cte
WHERE y>1

)
SELECT * FROM yy
WHERE x=2;

CTE is a black box for optimizer

WITH yy AS (– always materialized and cannot inlined into a parent query
SELECT * FROM cte
WHERE y>1

)
SELECT * FROM yy
WHERE x=2;

 CTE Scan on yy (actual time=0.099..3672.842 rows=1 loops=1)
 Filter: (x = 2)
 Rows Removed by Filter: 9999998
 CTE yy
 -> Seq Scan on cte (actual time=0.097..1355.367 rows=9999999 loops=1)
 Filter: (y > 1)
 Rows Removed by Filter: 1
 Planning Time: 0.088 ms
 Execution Time: 3735.986 ms
(9 rows)

SELECT * FROM (SELECT * FROM cte WHERE y>1) as t WHERE X=2;
 QUERY PLAN
--
 Index Only Scan using cte_x_y_idx on cte (actual time=0.013..0.013 rows=1 loops=1)
 Index Cond: ((x = 2) AND (y > 1))
 Heap Fetches: 0
 Planning Time: 0.058 ms
 Execution Time: 0.025 ms
(5 rows)

SURPRISE: CTE is 150 000 slower than subselect !

PG12: Controllable CTE materialization

WITH cte_name AS [NOT] MATERIALIZED

● Writable WITH query always materialized
● Recursive WITH query always materialized

WITH yy AS (
SELECT * FROM cte
WHERE y=2

)
SELECT * FROM yy
WHERE x=2;

 QUERY PLAN
--
 Index Only Scan using cte_x_y_idx on cte
 Index Cond: ((x = 2) AND (y = 2))
(2 rows)

● No fencing (new default) ● Old behavior
WITH yy AS MATERIALIZED (

SELECT * FROM cte
WHERE y=2

)
SELECT * FROM yy
WHERE x=2;

 QUERY PLAN

 CTE Scan on yy
 Filter: (x = 2)
 CTE yy
 -> Seq Scan on cte
 Filter: (y = 2)
(5 rows)

PG12: Controllable CTE materialization

WITH cte_name AS [NOT] MATERIALIZED

● If a WITH query is referred to multiple times, CTE “materialize” its result
to prevent double execution, use EXPLICIT NOT MATERIALIZED

WITH yy AS (SELECT * FROM cte WHERE y > 1) SELECT (SELECT count(*) FROM
yy WHERE x=2), (SELECT count(*) FROM yy WHERE x=2);
 QUERY PLAN

 Result (actual time=3922.274..3922.275 rows=1 loops=1)
 CTE yy
 -> Seq Scan on cte (actual time=0.023..1295.262 rows=9999999 loops=1)
 Filter: (y > 1)
 Rows Removed by Filter: 1
 InitPlan 2 (returns $1)
 -> Aggregate (actual time=3109.687..3109.687 rows=1 loops=1)
 -> CTE Scan on yy (actual time=0.027..3109.682 rows=1 loops=1)
 Filter: (x = 2)
 Rows Removed by Filter: 9999998
 InitPlan 3 (returns $2)
 -> Aggregate (actual time=812.580..812.580 rows=1 loops=1)
 -> CTE Scan on yy yy_1 (actual time=0.016..812.575 rows=1
loops=1)
 Filter: (x = 2)
 Rows Removed by Filter: 9999998
 Planning Time: 0.136 ms
 Execution Time: 3939.848 ms
(17 rows)

PG12: Controllable CTE materialization

WITH cte_name AS [NOT] MATERIALIZED

● If a WITH query is referred to multiple times, CTE “materialize” its result
to prevent double execution, use EXPLICIT NOT MATERIALIZED

 WITH yy AS NOT MATERIALIZED (SELECT * FROM cte WHERE y > 1) SELECT
(SELECT count(*) FROM yy WHERE x=2), (SELECT count(*) FROM yy WHERE x=2);
 QUERY PLAN

 Result (actual time=0.035..0.035 rows=1 loops=1)
 InitPlan 1 (returns $0)
 -> Aggregate (actual time=0.024..0.024 rows=1 loops=1)
 -> Index Only Scan using cte_x_y_idx on cte (actual
time=0.019..0.020 rows=1 loops=1)
 Index Cond: ((x = 2) AND (y > 1))
 Heap Fetches: 1
 InitPlan 2 (returns $1)
 -> Aggregate (actual time=0.006..0.006 rows=1 loops=1)
 -> Index Only Scan using cte_x_y_idx on cte cte_1 (actual
time=0.004..0.005 rows=1 loops=1)
 Index Cond: ((x = 2) AND (y > 1))
 Heap Fetches: 1
 Planning Time: 0.253 ms
 Execution Time: 0.075 ms
(13 rows)

Oleg Bartunov PGDay-2010, Roma, Dec 10, 2010

Efficient K-nearest
neighbour search in

PostgreSQL

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: The problem

● What are the closest restaurants near
HaUmanim 12, Tel Aviv ?

● What happens in the world near the launch of
Sputnik ?

● Reverse image search, search by image

●

● GIS, Science (high-dimensional data)

K-nearest neighbour search

● 10 closest events to the launch of Sputnik ?

● Slow: Index is useless, full heap scan, sort, limit

SELECT id, date, event FROM events
ORDER ABS(date - '1957-10-04'::date) ASC LIMIT 10;
 id | date | event
--------+------------+---
 58136 | 1957-10-04 | "Leave It to Beaver," debuts on CBS
 58137 | 1957-10-04 | U.S.S.R. launches Sputnik I, 1st artificial Earth satellite
 117062 | 1957-10-04 | Gregory T Linteris, Demarest, New Jersey, astronaut, sk: STS 83
 117061 | 1957-10-04 | Christina Smith, born in Miami, Florida, playmate, Mar, 1978
 102671 | 1957-10-05 | Lee "Kix" Thompson, saxophonist, Madness-Baggy Trousers
 102670 | 1957-10-05 | Larry Saumell, jockey
 58292 | 1957-10-05 | Yugoslav dissident Milovan Djilos sentenced to 7 years
 58290 | 1957-10-05 | 11th NHL All-Star Game: All-Stars beat Montreal 5-3 at Montreal
 31456 | 1957-10-03 | Willy Brandt elected mayor of West Berlin
 58291 | 1957-10-05 | 12th Ryder Cup: Britain-Ireland, 7 -4 at Lindrick GC, England
(10 rows)

Limit (actual time=54.481..54.485 rows=10 loops=1)
 Buffers: shared hit=1824
 -> Sort (actual time=54.479..54.481 rows=10 loops=1)
 Sort Key: (abs((date - '1957-10-04'::date)))
 Sort Method: top-N heapsort Memory: 26kB
 Buffers: shared hit=1824
 -> Seq Scan on events (actual time=0.020..25.896 rows=151643 loops=1)
 Buffers: shared hit=1824
 Planning Time: 0.091 ms
 Execution Time: 54.513 ms
(10 rows)

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Existing solutions

● Traditional way to speedup query

– Indexes are very inefficient (no predicate)

– Constrain data space (range search)
● Incremental search → to many queries
● Need to know in advance size of

neighbourhood, how ?
1Km is ok for Paris, but too small for
Siberia

● Maintain 'density map' ?

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: What do we want !

● We want to avoid full table scan – read only
<right> tuples

– So, we need index
● We want to avoid sorting – read <right> tuples

in <right> order

– So, we need special strategy to traverse index
● We want to support tuples visibility

– So, we should be able to resume index
traverse

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: What do we want !

● We want to avoid full table scan – read only
<right> tuples

– So, we need index
● We want to avoid sorting – read <right> tuples

in <right> order

– So, we need special strategy to traverse index
● We want to support tuples visibility

– So, we should be able to resume index
traverse

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

● Depth First Search (stack, LIFO)

R-tree search

● Breadth First Search (queue, FIFO)

● Both strategies are not good for us – full index
scan

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

● Best First Search (PQ, priority queue). Maintain order of
items in PQ according their distance from given point

– Distance to MBR (rectangle for Rtree) for internal pages
– minimum distance of all items in that MBR

– Distance = 0 for MBR with given point

– Distance to point for leaf pages

● Each time we extract point from PQ we output it – it is
next closest point ! If we extract rectangle, we expand it
by pushing their children (rectangles and points) into the
queue.

● We traverse index by visiting only interesting nodes !

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

● Simple example – non-overlapped partitioning

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

● Simple example – non-overlapped
partitioning

● Priority Queue
● 1: {1,2,3,4,5,6,7,8,9}

● 2: {2,5,6,7,9}, {1,3,4,8}

● 3: {5,6,7,9}, {1,3,4,8}, {2}

● 4: {5,9}, {1,3,4,8}, {2}, {6,7}

● 5: {1,3,4,8}, 5, {2}, {6,7}, 9

● 6: {1,3,4}, {8}, 5, {2}, {6,7}, 9

● 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9

we can output 4 without visit
other rectangles !

● 8: 5, {2}, {6,7}, 3, 8, 1, 9

● 9: {6,7}, 3, 2, 8, 1, 9

● 10: 3, 2, 8, 1, 9, 6, 7

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

● Simple example – non-overlapped
partitioning

● Priority Queue
● 1: {1,2,3,4,5,6,7,8,9}

● 2: {2,5,6,7,9}, {1,3,4,8}

● 3: {5,6,7,9}, {1,3,4,8}, {2}

● 4: {5,9}, {1,3,4,8}, {2}, {6,7}

● 5: {1,3,4,8}, 5, {2}, {6,7}, 9

● 6: {1,3,4}, {8}, 5, {2}, {6,7}, 9

● 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9

● 8: 5, {2}, {6,7}, 3, 8, 1, 9

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Performance

● SEQ (no index) – base performance

– Sequentually read full table + Sort full table (can be
very bad, sort_mem !)

● DFS – very bad !

– Full index scan + Random read full table + Sort full
table

● BFS – the best for small k !

– Partial index scan + Random read k-records
● T(index scan) ~ Height of Search tree ~ log(n)

– Performance win BFS/SEQ ~ Nrelpages/k, for small k.
The more rows, the more benefit !

– Can still win even for k=n (for large tables) - no sort !

K-nearest neighbour search

SELECT id, date, event FROM events
ORDER ABS(date - '1957-10-04'::date) ASC LIMIT 10;
Limit (actual time=54.481..54.485 rows=10 loops=1)
 Buffers: shared hit=1824
 -> Sort (actual time=54.479..54.481 rows=10 loops=1)
 Sort Key: (abs((date - '1957-10-04'::date)))
 Sort Method: top-N heapsort Memory: 26kB
 Buffers: shared hit=1824
 -> Seq Scan on events (actual time=0.020..25.896 rows=151643 loops=1)
 Buffers: shared hit=1824
 Planning Time: 0.091 ms
 Execution Time: 54.513 ms
(10 rows)

SELECT id, date, event FROM events
ORDER BY date <-> '1957-10-04'::date ASC LIMIT 10;
 QUERY PLAN
--
 Limit (actual time=0.128..0.145 rows=10 loops=1)
 -> Index Scan using events_date_idx1 on events (actual time=0.128..0.142 rows=10 loops=1)
 Order By: (date <-> '1957-10-04'::date)
 Planning Time: 0.155 ms
 Execution Time: 0.186 ms
(5 rows)

KNN-GiST (Btree-GiST)

KNN SP-GiST (committed)

SELECT *
FROM knn_test
ORDER BY p <-> point(:x,:y) LIMIT :n;

GiST SP-GiST

n time, ms buffers time, ms buffers

10 0,12 14 0,07 18

100 0,27 110 0,2 118

1000 1,58 1231 1,51 1264

KNN-SPGiST (committed)

7240858 points (geonames)

SELECT point, point <-> ? FROM geo_all ORDER BY 2 LIMIT ?
KD-tree, Quad-tree

KNN-SPGiST (committed)

KNN Speedup

KNN B-tree (in-progress)

SELECT * FROM events
ORDER BY date <-> '2000-01-01'::date ASC
LIMIT 100;

KNN B-tree btree_gist union seq scan

k time, ms buffers time, ms buffers time, ms buffers time, ms buffers

1 0.041 4 0.079 4 0.060 8 41.1 1824

10 0.048 7 0.091 9 0.097 17 41.8 1824

100 0.107 47 0.192 52 0.342 104 42.3 1824

1000 0.735 573 0.913 650 2.970 1160 43.5 1824

10000 5.070 5622 6.240 6760 36.300 11031 54.1 1824

100000 49.600 51608 61.900 64194 295.100 94980 115.0 1824

Covering GiST

● Include non-indexed columns into index to greatly
improve Index-only scan (index should contains all
columns from query)
● Index is smaller than composite index
● No need opclass for column

● PG11: INCLUDE for B-tree
One index for UNIQUE/PRIMARY and INCLUDE to
use Index-only scan

● PG12: INCLUDE for GiST
CREATE TABLE foo (id int, col1 text, col2 text, primary key (id) include (col1,col2));

CREATE INDEX ON mowboxes USING gist(bounds) INCLUDING (ip);

Covering GiST

Test data — 7803499 boxes with additional columns

\d mowboxes

 Column | Type
----------+---------
 Ip | cidr
 num | integer
 center | point
 bounds | box
 Tsbounds | tsrange

Indexes:
gist (bounds)
gist (bounds,ip)
gist (bounds)INCLUDE(ip)
gist (bounds)INCLUDE(all)

SELECT ip,bounds FROM mowboxes WHERE bounds @> some::point

Covering GiST

Test data — 7803499 boxes with additional columns

\d mowboxes

 Column | Type
----------+---------
 Ip | cidr
 num | integer
 center | point
 bounds | box
 Tsbounds | tsrange

Indexes:
gist (bounds) 665 MB
gist (bounds,ip) 876 MB
gist (bounds)INCLUDE(ip) 788 MB
gist (bounds)INCLUDE(all) 1498 MB

TEST QUERY (POINTs from (37.0, 55.0) - (47.5, 65.0) , step 0.5):

SELECT ip,bounds FROM mowboxes WHERE bounds @> POINT::point

Covering GiST

Covering GiST

Covering GiST (randomize)

Randomize table:

CREATE TABLE mowboxes_rnd AS SELECT * FROM mowboxes ORDER BY random();

Covering GiST (randomize)

Randomize table:

CREATE TABLE mowboxes_rnd AS SELECT * FROM mowboxes ORDER BY random();

Covering GiST

● Covering GiST improves utility and performance
of index-only scan

Pluggable storage

● Better Postgres extensibility
• Storage is about tables/mat.views
• Replace hardcoded heap by Table Access Manager
• Several Table AMs coexists, could be added online
• Examples: columnar, append-only, ZHeap, in-

memory..

Andres Freund, http://anarazel.de/talks/2018-10-25-pgconfeu-pluggable-storage/pluggable.pdf

Pluggable storage

● Better Postgres extensibility
• Table access method

CREATE ACCESS METHOD ... TYPE TABLE

select amname, amtype from pg_am;
 amname | amtype
--------+--------
 btree | i
 hash | i
 gist | i
 gin | i
 spgist | i
 brin | i
(6 rows)

select amname, amtype from pg_am;
 amname | amtype
--------+--------
 heap | t
 btree | i
 hash | i
 gist | i
 gin | i
 spgist | i
 brin | i
(7 rows)

PG 11 PG 12

Pluggable storage

● Better Postgres extensibility
• CREATE EXTENSION my_storage;
• CREATE TABLE ... USING my_storage;
• SET default_table_access_method = 'my_storage';

 =# CREATE TABLE bar() USING HEAP;
CREATE TABLE
=# show default_table_access_method;
 default_table_access_method

 heap
(1 row)

Pluggable storage (in-progress)

● Support for INSERT/UPDATE/DELETE, triggers
etc.

● Support for custom maintenance (own vacuum).
● Support for table rewrite.
● Support for custom tuple format.
● Support for custom tuple storage.
● Index-heap relationship must be the same. Only

HOT-like update OR insertion to EVERY index.
● Row must be identified by 6-byte TID.
● System catalog must be heap.

ZHeap (in-progress)

● MVCC implementation:
● Oracle, MySQL, SQL Server: old versions are in
other place

● MVCC in Postgres: all row versions are in table
● Table bloat, write amplification

ZHeap (in-progress)

● ZHeap — new storage for PostgreSQL with UNDO
(No Vacuum storage)

● The old versions of rows are in undo log
● Reverse all changes made by aborted
transactions

ZHeap (in-progress)

● ZHeap — new storage for PostgreSQL with UNDO
● In-place updates (when possible) — less bloat

● But, In-place update don“t need an extra space for new
tuple on page as HOT, only if new tuple is wider.

● In-place update like a HOT update (can“t modify any
indexed columns)

● Reclame space after transaction (committed or
aborted)

● Avoid non-modification data writes, like hint-bits
● Shorter tuple header (no xmin,xmax, cmin,cmax)

● UNDO log contains most of data for MVCC
● Zheap is smaller on disk

SQL/Foundation recognizes
JSON after 8 years

jsonpath (committed)

Jsonpath provides an ability to operate (in standard
specified way) with json structure at SQL-language level

• Dot notation — $.a.b.c
$ - the current context element

• Array - [*]
• Filter ? - $.a.b.c ? (@.x > 10)
@ - current context in filter expression

• Methods - $.a.b.c.x.type()
type(), size(), double(), ceiling(), floor(), abs(),
datetime(), keyvalue()

 '$.floor[*].apt[*] ? (@.area > 40 && @.area < 90)'

Why JSON path is a type ?

● Standard permits only string literals in JSON path
specification.

● WHY a data type ?
● To accelerate JSON path queries using existing indexes

for jsonb we need boolean operators for json[b] and
jsonpath.

● Implementation as a type is much easier than integration
of JSON path processing with executor (complication of
grammar and executor).

● In simple cases, expressions with operators can be more
concise than with SQL/JSON functions.

● It is Postgres-way to use operators with custom query
types (tsquery for FTS, lquery for ltree, jsquery for
jsonb,...)

$.floor[0,1].apt[1 to last]

$.floor[0, 1].apt[1 to last]

SELECT jsonb_path_query_array(js, '$.floor[0, 1].apt[1 to last]')
FROM house;

SELECT jsonb_agg(apt)
FROM (SELECT apt->generate_series(1, jsonb_array_length(apt) - 1)
FROM (SELECT js->'floor'->unnest(array[0, 1])->'apt'
FROM house) apts(apt)) apts(apt);

Extension: wildcard search

$.** ? (@ == "Moscow")

SELECT jsonb_path_exists(js, '$.** ? (@ == "Moscow")') FROM house;

WITH RECURSIVE t(value) AS
(SELECT * FROM house
 UNION ALL
 (SELECT
 COALESCE(kv.value, e.value) AS value
 FROM
 t
 LEFT JOIN LATERAL jsonb_each(
 CASE WHEN jsonb_typeof(t.value) = 'object' THEN t.value ELSE NULL END
) kv ON true
 LEFT JOIN LATERAL jsonb_array_elements(
 CASE WHEN jsonb_typeof(t.value) = 'array' THEN t.value ELSE NULL END
) e ON true
 WHERE
 kv.value IS NOT NULL OR e.value IS NOT NULL)
)
SELECT EXISTS (SELECT 1 FROM t WHERE value = '"Moscow"');

jsonpath (committed)

The jsonpath functions for jsonb:
• jsonb_path_exists() => boolean

Test whether a JSON path expression returns any
SQL/JSON items (operator @?).

• jsonb_path_match() => boolean
Get the result of a JSON path predicate (operator @@).

• jsonb_path_query() => setof jsonb
Extract a sequence of SQL/JSON items from a JSON value.

• jsonb_path_query_array() => jsonb

Extract a sequence of SQL/JSON items wrapped into JSON
array.

• jsonb_path_query_first() => jsonb

Extract the first SQL/JSON item from a JSON value.

jsonpath (committed)

All jsonb_path_xxx() functions have the same signature:
jsonb_path_xxx(
 js jsonb,
 jsp jsonpath,
 vars jsonb DEFAULT '{}',
 silent boolean DEFAULT false
)

● "vars" is a jsonb object used for passing jsonpath variables:
SELECT jsonb_path_query_array('[1,2,3,4,5]', '$[*] ? (@ > $x)',

 vars => '{"x": 2}');
 jsonb_path_query_array

 [3, 4, 5]

● "silent" flag enables suppression of errors:
SELECT jsonb_path_query('[]', 'strict $.a');
ERROR: SQL/JSON member not found
DETAIL: jsonpath member accessor can only be applied to an object

SELECT jsonb_path_query('[]', 'strict $.a', silent => true);
 jsonb_path_query

(0 rows)

jsonpath (committed)

Jsonpath function examples:
• jsonb_path_exists('{"a": 1}', '$.a') => true

jsonb_path_exists('{"a": 1}', '$.b') => false

• jsonb_path_match('{"a": 1}', '$.a == 1') => true
jsonb_path_match('{"a": 1}', '$.a >= 2') => false

• jsonb_path_query('{"a": [1,2,3,4,5]}',
 '$.a[*] ? (@ > 2)') => 3, 4, 5 (3 rows)
jsonb_path_query('{"a": [1,2,3,4,5]}',
 '$.a[*] ? (@ > 5)') => (0 rows)

• jsonb_path_query_array('{"a": [1,2,3,4,5]}',
 '$.a[*] ? (@ > 2)') => [3, 4, 5]
jsonb_path_query_array('{"a": [1,2,3,4,5]}',
 '$.a[*] ? (@ > 5)') => []

• jsonb_path_query_first('{"a": [1,2,3,4,5]}',
 '$.a[*] ? (@ > 2)') => 3
jsonb_path_query_first('{"a": [1,2,3,4,5]}',
 '$.a[*] ? (@ > 5)') => NULL

jsonpath (committed)

Boolean jsonpath operators for jsonb:
• jsonb @? jsonpath (exists)

Test whether a JSON path expression returns any
SQL/JSON items.
jsonb '[1,2,3]' @? '$[*] ? (@ == 3)' => true

• jsonb @@ jsonpath (match)
Get the result of a JSON path predicate.
jsonb '[1,2,3]' @@ '$[*] == 3' => true

• Operators are interchangeable:
js @? '$.a' <=> js @@ 'exists($.a)'

js @@ '$.a == 1' <=> js @? '$? ($.a == 1)'

jsonpath (committed)

Boolena jsonpath operators are supported by GIN
jsonb_ops and jsonb_path_ops:

CREATE INDEX ON house USING gin (js);

EXPLAIN (COSTS OFF)
SELECT * FROM house
WHERE js @? '$.floor[*].apt[*] ? (@.rooms == 3)'

 QUERY PLAN
--
 Bitmap Heap Scan on house
 Recheck Cond: (js @? '$."floor"[*]."apt"[*]?(@."rooms" == 3)'::jsonpath)
 -> Bitmap Index Scan on house_js_idx
 Index Cond: (js @? '$."floor"[*]."apt"[*]?(@."rooms" == 3)'::jsonpath)
(4 rows)

jsonpath (committed)

Exists @? and match @~ operators can be speeded up by GIN index
using built-in jsonb_ops or jsonb_path_ops.

EXPLAIN (ANALYZE)
SELECT COUNT(*) FROM bookmarks
WHERE jb @~ '$.tags[*].term == "NYC"';

 QUERY PLAN

--
Aggregate (cost=4732.10..4732.11 rows=1 width=8) (actual time=1.238..1.238 rows=1
loops=1)
 -> Bitmap Heap Scan on bookmarks (cost=33.71..4728.97 rows=1253 width=0) (actual
time=0.128..1.196 rows=285 loops=1)
 Recheck Cond: (jb @~ '($."tags"[*]."term" == "NYC")'::jsonpath)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on bookmarks_jb_idx (cost=0.00..33.40 rows=1253 width=0)
(actual time=0.071..0.071 rows=285 loops=1)
 Index Cond: (jb @~ '($."tags"[*]."term" == "NYC")'::jsonpath)
 Planning time: 0.080 ms
 Execution time: 1.283 ms
(8 rows)

jsonpath (committed)

● .datetime() item method will not be implemented in PG12:
-- behavior required by standard
SELECT jsonb_path_query('"13.03.2019"', '$.datetime("DD.MM.YYYY")');
 jsonb_path_query

 "2019-03-13"
(1 row)

-- behavior of PG12
SELECT jsonb_path_query('"13.03.2019"', '$.datetime("DD.MM.YYYY")');
ERROR: bad jsonpath representation

● Arithmetic errors in filters may be not suppressed:
-- behavior required by standard
SELECT jsonb_path_query('[1,0,2]', '$[*] ? (1 / @ >= 1)');
jsonb_path_query

 1
(1 row)

-- possible behavior of PG12
SELECT jsonb_path_query('[1,0,2]', '$[*] ? (1 / @ >= 1)');
ERROR: division by zero

SQL/JSON (доп.материалы)

● Презентация по SQL/JSON
http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.
pdf

● Введение в SQL/JSON
https://github.com/obartunov/sqljsondoc/blob/master/README.jso
npath.md

● Посты про SQL/JSON
https://obartunov.livejournal.com/tag/sqljson

Generalized expression syntax for
partition bounds (committed)

CREATE TABLE part (ts timestamp)
PARTITION BY RANGE(ts);

CREATE TABLE part1

PARTITION OF part FOR VALUES

FROM ('2018-01-01')

TO (current_timestamp + '1 day');

Support for expressions in partition bounds!

Run-time partition pruning for
MergeAppend (committed)

explain analyze select * from news
 where category = (select category from hot_category)
 order by ts limit 10;
 QUERY PLAN
 Limit (cost=36.79..37.26 rows=10 width=12) (actual time=0.035..0.044 rows=10 loops=1)
 InitPlan 1 (returns $0)
 -> Seq Scan on hot_category (cost=0.00..35.50 rows=2550 width=4) (actual time=0.011..0.012 rows=1 loops=1)
 -> Merge Append (cost=1.29..46833.10 rows=1000000 width=12) (actual time=0.033..0.040 rows=10 loops=1)
 Sort Key: news_cat1.ts
 -> Index Scan using news_cat1_ts_idx on news_cat1
 (cost=0.42..11302.75 rows=333333 width=12)
 (actual time=0.016..0.021 rows=10 loops=1)
 Filter: (category = $0)
 -> Index Scan using news_cat2_ts_idx on news_cat2
 (cost=0.42..11302.77 rows=333334 width=12)
 (never executed)
 Filter: (category = $0)
 -> Index Scan using news_cat3_ts_idx on news_cat3
 (cost=0.42..11302.75 rows=333333 width=12)
 (never executed)
 Filter: (category = $0)

Reduce partition tuple routing
overheads (committed)

Inserts into 10k partitions table:

original: 96 TPS
patched: 17729 TPS
non-partitioned: 19121 TPS

http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.pdf
http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.pdf
https://github.com/obartunov/sqljsondoc/blob/master/README.jsonpath.md
https://github.com/obartunov/sqljsondoc/blob/master/README.jsonpath.md

2019-02-02 09:23:11.711 MSK [59708] LOG: starting
PostgreSQL 12devel on x86_64-apple-darwin17.7.0, compiled
by Apple LLVM version 10.0.0 (clang-1000.11.45.5), 64-bit

2019-02-02 09:23:11.715 MSK [59708] LOG: listening on
IPv6 address "::1", port 5434

2019-02-02 09:23:11.715 MSK [59708] LOG: listening on
IPv6 address "fe80::1%lo0", port 5434

2019-02-02 09:23:11.715 MSK [59708] LOG: listening on
IPv4 address "127.0.0.1", port 5434

2019-02-02 09:23:11.716 MSK [59708] LOG: listening on
Unix socket "/tmp/.s.PGSQL.5434"

...

PostgreSQL version in log
(committed)

Locking B-tree leafs immediately in
exclusive mode (committed)

test original, TPS patched, TPS

unordered inserts 409 591 412 765

ordered inserts 252 796 314 541

duplicate inserts 44 811 202 325

Improve behavior of to_timestamp()
/ to_date() functions (committed)

Before
select to_timestamp('2019-13-01', 'YYYYMMDD');
 to_timestamp

 2018-11-03 00:00:00+03

select to_timestamp('2019 -01-01', 'YYYY-MM-DD');
 ERROR: date/time field value out of range: "2019 -01-01"

After
select to_timestamp('2019-13-01', 'YYYYMMDD');
ERROR: date/time field value out of range: "2019-13-01"

select to_timestamp('2019 -01-01', 'YYYY-MM-DD');
 to_timestamp

 2019-01-01 00:00:00+03
(1 row)

Now well documented!

Function to promote standby servers
(committed)

How to promote a standby?
● Trigger file
● pg_ctl promote
● SELECT pg_promote();

Step towards managing cluster in pure SQL!

Speedup of relation deletes
during recovery (committed)

Relation delete or truncate:
● Causes sequential scan of shared_buffers
● Slow with large shared_buffers
● Especially bad for standby, because of single-process recovery

Now, instead of
DELETE tab1; DELETE tab2; … DELETE tabN;

it's better to do
BEGIN;
DELETE tab1; DELETE tab2; … DELETE tabN;
COMMIT;

Single pass over shared_buffers instead of N.
Less replication lag!

Use the built-in float datatypes to
implement geometric types (committed)

● Check for underflow, overflow and division by zero
● Consider NaN values to be equal
● Return NULL when the distance is NaN for all closest point

operators
● Favour not-NaN over NaN where it makes sense

Before
select point('NaN', 'NaN') ~= point('NaN', 'NaN');
 ?column?

 f

After
select point('NaN', 'NaN') ~= point('NaN', 'NaN');
 ?column?

 t

Add log_statement_sample_rate
parameter (committed)

● Logging all the statements consumes much of
resources

● Logging only long statements may distort your
picture

● Sample logging is the solution!

log_statement_sample_rate = 1 ; log every statement

log_statement_sample_rate = 0 ; log no statements

log_statement_sample_rate = 0.5 ; log half of statement

log_statement_sample_rate = 0.1 ; log one tenth of
 ; statement

Hyperbolic functions

● SQL:2016 standard introduced
• Sinh()
• Cosh()
• Tanh()
• Only float8, no numeric support
• Log10() - alias to log()

כל מה שאתה צריך זה פוסטגרס

