Postgres 12 B 9TrHOMax

Oner baptyHoB, CEO Postgres Professional

OOOOOOOOOOOO

Pos}gres Agenda

« SQL/JSON
e Controllable CTE
e KNN

* Indexes:
covering GIST, less WAL, concurrent reindex

* Pluggable storage
* Partitioning improvements
* Other features

Pogggf%eog SQL/JSON in PostgreSQL

ol PROFESSIONAL

Pos{gres

£ i A

Key-Value Ordered Key-Value Big Table
alll Emesra
¥ L . .
ol g mea e

S TSI
Sl e
S e

|/ |iSEeMMl : “Mohana Pilla
_ : “Delivery

“projects” : [

{
—Il =
a confidential word or n

ination used as a SR to
BESEEEEN vwhen accessing

Column
Family

Time Value
stamp

SQL/JSON - 2019

* JSONPATH
SQL/JSON - 2016

* PostgreSQL 12

?

JSONB - 2014
* Binary storage
* Nesting objects & array

* Indexing
ﬁ

JSON - 2012
* Textual storage
* JSON verification

ﬁ

HSTORE - 2003

* Perl-like hash storage
* No nesting

* Indexing

nggres SQL/Foundation recognizes

JSON after 8 years

4.46 JSON data handling in SQL. 174
4.46.1 IntrodUcCtion. 174
4462 Implied JSON datamodel. 175
4.46.3 SQL/JSON data model. 176
4464 SQL/JSON funCHONS. e e e e e e e e e e e 177
4465 Overview of SQL/JSON path language. e 178
S Lexical elements.ouiiiiuitiiiiiiiiiiiiiiititieteeceseeencasessssasasesonsnsasnns 181
5.1 <SQL terminal character>. 181
52 <token> and <SEPATALOI.ttt ittt e e e e 185

viii Foundation (SQL/Foundation) ©ISO/IEC 2016 — All rights reserved

Pogga?%e"% jsonpath (committed)

Jsonpath provides an ability to operate (in standard
specified way) with json structure at SQL-language level

Dot notation — $.a.b.c

$ - the current context element
* Array - [*]

Filter ? - $.a.b.c ? (@.x > 10)

@ - current context in filter expression
* Methods - $.a.b.c.x.type()

type(), size(), double(), ceiling(), floor(), abs(),
datetime(), keyvalue()

Lax and strict modes to facilitate matching of the
(sloppy) document structure and path expression

'$.floor[*].apt[*] ? (@.area > 40 && @.area < 90)'

Poggaii%e"“é: JSONPATH: [lax] vs strict

— lax:missing keys ignored
select jsonb {"a":1} @?'lax $.b ? (@ > 1)’
?column?

(1 row)
select jsonb '{"a":1} @? 'strict $.b ? (@ > 1);
?column?

— lax: arrays unwrapped
select jsonb '[1,2,[3,4,5]]' @7 'lax $[*] ? (@ == 5)";
?column?

(1 row)
select jsonb [1,2,[3,4,5]]' @7 'strict $[*] ? (@[*] == 5);
?column?

Pogggi%eog Why JSON path is a type ?

* Standard permits only string literals in JSON path
specification.

* WHY a data type ?

* To accelerate JSON path queries using existing indexes
for]sonb we need boolean operators for json[b] and
jsonpath.

* Implementation as a type Is much easier than integration
of JSON path processing with executor (complication of
grammar and executor).

* In simple cases, expressions with operators can be more
concise than with SQL/JSON functions.

* |[tis Postgres-way to use operators with custom query
types (tsquery for FTS, Iquery for Itree, jsquery for
jsonb,...)

Posdgres

"address": {
"city": "Moscow",
"street": "Ulyanova, 7A"

1y
"1ift": false,

"floor": [
{
"level”: 1,
llaptll: [
{llnoll :
{Ilnoll:
{Ilnoll:

"level": 2,

"apt": [
{"HOH: : 100, "rooms": 3};
{"no": : 60, "rooms": 2}

ol PROFESSIONAL

Pos}gres $.floor[0,1].apt[1 to last]

$.floor[0, 1].apt[1 to last]

/lift fIN&sa
0] ci

"Ulyanova, 7A"

apt

.drea /.rooms\.no . . .darea |[rooms “.no

Pogggfsseméﬁ $.floor[0, 1].apt[1 to last]

SELECT jsonb_path_query_array(js, '$.floor[0, 1].apt[1 to last]')
FROM house;

SELECT jsonb_agg(apt)

FROM (SELECT apt->generate_series(1, jsonb_array_length(apt) - 1)
FROM (SELECT js->'floor'->unnest(array[0, 1])->'apt'

FROM house) apts(apt)) apts(apt);

Pogggfsseo% Extension: wildcard search

$.7* ? (@ =="Moscow")

0] 1]

2]
.drea i,l‘OOI‘I‘lS i,r‘lO .darea i,l‘OOI‘I’IS i,l’lO ; .area i,l‘OOI‘I‘lS “\.NO / .area |rooms ;.no i.area iil‘ooms no

ol PROFESSIONAL

Posygres $.** ? (@ == "Moscow")

SELECT jsonb_path_exists(js, '$.** ? (@ == "Moscow")') FROM house;

WITH RECURSIVE t(value) AS
(SELECT * FROM house
UNION ALL
(SELECT
COALESCE(kv.value, e.value) AS value
FROM
t
LEFT JOIN LATERAL jsonb_each(
CASE WHEN jsonb_typeof(t.value) = 'object' THEN t.value ELSE NULL END
) kv ON true
LEFT JOIN LATERAL jsonb_array_elements(
CASE WHEN jsonb_typeof(t.value) = 'array' THEN t.value ELSE NULL END
) e ON true
WHERE
kv.value IS NOT NULL OR e.value IS NOT NULL)

)
SELECT EXISTS (SELECT 1 FROM t WHERE value = '"Moscow"');

ol PROFESSIONAL

Pos{gres jsonpath (committed)

The jsonpath functions for jsonb:

- Jjsonb_path_exists() => boolean

Test whether a JSON path expression returns any
SQL/JSON items (operator @?).

- jsonb_path_match() => boolean
Evaluate JSON path predicate (operator @@).

- jsonb_path_query() => setof jsonb
Extract a sequence of SQL/JSON items from a JSON value.

- Jsonb_path_query_array() => jsonb

Extract a sequence of SQL/JSON items wrapped into JSON
array.

- jsonb_path_query_first() => jsonb
Extract the first SQL/JSON item from a JSON value.

Pogga)?%eog jsonpath (committed)

All jsonb_path_xxx() functions have the same signature:
jsonb_path_xxx(

js jsonb,

jsp jsonpath,

vars jsonb DEFAULT '{}',

silent boolean DEFAULT false

)

"vars" Is a jsonb object used for passing jsonpath variables:
SELECT jsonb_path_query_array('[1,2,3,4,5]', '"$[*] ? (@ > $x)',
vars => '{"x": 2}");
jsonb_path_query_array

"silent" flag enables suppression of errors:

SELECT jsonb_path_query('[]', 'strict $.a');
ERROR: SQL/JSON member not found
DETAIL: jJjsonpath member accessor can only be applied to an object

SELECT jsonb_path_query('[]', 'strict $.a', silent => true);
jsonb_path_query

ol PROFESSIONAL

Pos{gres jsonpath (committed)

Jsonpath function examples:

jsonb_path_exists('{"a": 1}', '$.a') => true
jsonb_path_exists('{"a": 1}', '$.b') => false

jsonb_path_match('{"a": 1}', '$.a == 1') => true
jsonb_path_match('{"a": 1}', '$.a >= 2') => false
jsonb_path_query('{"a": [1,2,3,4,5]}"
'$.a[*] 2 (@ > 2)7)

51}

5)")

I~

> 3, 4, 5 (3 rows)

jsonb_path_query('{"a": [1,2, 3,4,
'$.a[*] ? (@ >

II‘

(0 rows)

jsonb_path_query_array('{"a": [1,2,3,4,5]}"',

'$.a["] ? (@ >2)") => [3, 4, 5]
jsonb_path_query_array('{"a": [1,2,3,4,5]}"',

'$.a[*] ? (@ > 5)") => []
jsonb_path_query_first('{"a": [1,2,3,4,5]}',

'$.a[*] ? (@ > 2)") => 3
jsonb_path_query_first('{"a": [1,2,3,4,5]}',

'$.a[*] ? (@ > 5)') => NULL

Pogggi%eog jsonpath (committed)

Boolean jsonpath operators for jsonb:

* jsonb @7 jsonpath (exists)
Test whether a JSON path expression returns any
SQL/JSON items.

jsonb '[1,2,3]"' @? '$[*] ? (@ == 3)' => true

- jsonb @@ jsonpath (match)
Get the result of a JSON path predicate.
jsonb '[1,2,3]" @@ '$[*] == 3' => true

* Operators are interchangeable:
js @? '$.a'’ <=> 7Js @@ 'exists($.a)'
js @@ '$.a == 1' <=> Jjs @? '$? ($.a == 1)

Pogga?%e"% jsonpath (indexes)

Boolean jsonpath operators are supported by GIN
jsonb_ops and jsonb_path_ops:

CREATE INDEX ON house USING gin (js);

EXPLAIN (COSTS OFF)
SELECT * FROM house
WHERE js @? '$.floor[*].apt[*] ? (@.rooms == 3)'

QUERY PLAN

Bitmap Heap Scan on house
Recheck Cond: (js @? '$."floor"[*]."apt"[*]?(@."rooms" == 3)'::jsonpath)
-> Bitmap Index Scan on house js idx
Index Cond: (js @? '$."floor"[*]."apt"[*]?(@."rooms" ==
3)'::jsonpath)
(4 rows)

JsQuery(https://github.com/postgrespro/jsquery, branch
sgljson) provides jsonb path value ops, jsonb value path ops
GIN opclasses for more operators.

https://github.com/postgrespro/jsquery

Pogga’?%e"“é: jsonpath (committed)

« .datetime() item method not supported in PG12:

-- behavior required by standard
SELECT jsonb_path_query('"13.03.2019"', '$.datetime("DD.MM.YYYY")");

jsonb_path_query

"2019-03-13"
(1 row)

-- behavior of PG12
SELECT jsonb_path_query('"13.03.2019"', '$.datetime("DD.MM.YYYY")'");

ERROR: bad jsonpath representation

* Arithmetic errors in filters suppressed:
-- behavior required by standard

SELECT jsonb_path_query('[1,0,2]', '$[*]1 ? (1 / @ >= 1)");
jsonb_path_query

ol PROFESSIONAL

Pos{gres SQL/JSON (gon.matepunanbl)

* [Ipe3eHTauua no SQL/JSON

htdt]tca://www.sai.msu.su/~megera/postgres/talks/squson-china—2018.
P

 BBegeHune B SQL/JSON

httos://aithub.com/obartunov/sgljsondoc/blob/master/README.|so
npath.md

e [locTbl Npo SQL/JSON
https://obartunov.livejournal.com/tag/sqgljson

ol PROFESSIONAL

osygres

ARKET OKFORD ST S
ensmoTox (8

PRAY M
ODEOH ¥

ol PROFESSIONAL

Pos{gres CTE

* ACTEs (Common Table Expression) is a temporary tables existing
for just one query, that can be referenced from a primary query.
Useful to break complex query to a readable parts — easy read
and maintain.

* Most databases consider CTEs as views and optimize overall
query
* Postgres implementation — always materialize CTEs

* CTE uses work_mem, beware large results of CTES

* Optimization fence like <OFFSET 0>

«CTEs are also treated as optimization fences; this is not so much an
optimizer limitation as to keep the semantics sane when the CTE contains a
writable query.», Tom Lane, 2011

Logically equivalent queries (subselects and WITH) executed
with different plans !

ol PROFESSIONAL

gres

Po

CTE

WITH RECURSIVE x(1i) — idea by Graeme Job
AS (
VALUES (0)
UNION ALL
SELECT i + 1 FROM x WHERE i < 101
) 1
Z(Ix, Iy, Cx, Cy, X, Y, I)
AS (
SELECT Ix,
Y::float, O
FROM (SELECT -2.2 + 0.031 * i, i FROM x) AS
xgen(x,1ix)
CROSS JOIN
(SELECT -1.5 + 0.031 * i,
ygen(y,iy)
UNION ALL
SELECT Ix,
Y*X*2 + Cy,
FROM Z
WHERE

Iy, X::float, Y::float, X::float,

i FROM x) AS

Iy, Cx, Cy, X*X - Y*Y + Cx AS X,

I +1
X*X + Y*Y < 16.0

AND I < 27

) 1
7t (Ix,
AS (

Iy, I)
SELECT Ix,
FROM 7

GROUP BY Iy,
ORDER BY Iy,

Iy, MAX(I) AS I
Ix
Ix

)
SELECT array to string(

array agg(

SUBSTRING(' .,,,-—-——++++3%33QQQR#### ',

GREATEST(I,1),1)),""
)

FROM Zt

GROUP BY Iy

ORDER BY Iy:

ey
ey
sy
cerr
serr
serr
serr
serr
sery
sery
serr
s
ey
ey

ines

Kalfay_WW_eoul 4Ally

-t
4%

#% -
Sttt

P
.
#e-

%t - -

frrrerrrs---tNENR AN

prrerpeppymmbetE %o

Focirrrrrrrrneee
tecvrrrerrreenes

e i
Fociirrrrrrrrenes

L T LI

B @---iiirrrrirrenes
B

Wbt A e

ol PROFESSIONAL

Pos{gres CTE

* Writable CTEs always executed

* Non-referenced CTEsS never executed

WITH yy AS
(

),

not_executed AS

(
),

always executed AS

(

)
SELECT FROM yy WHERE x=2:;

SELECT * FROM cte WHERE y > 1

SELECT * FROM cte

INSERT INTO cte VALUES(2,2) RETURNING *

QUERY PLAN
CTE Scan on yy
Filter: (x = 2)
CTE vyy
-> Seq Scan on cte
Filter: (y > 1)
CTE always_executed
-> Insertoncte cte_1
-> Result
(8 rows)

http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.pdf
http://www.sai.msu.su/~megera/postgres/talks/sqljson-china-2018.pdf
https://github.com/obartunov/sqljsondoc/blob/master/README.jsonpath.md
https://github.com/obartunov/sqljsondoc/blob/master/README.jsonpath.md

ol PROFESSIONAL

Pos{gres CTE is a black box for optimizer

* Break a really complex query to the well readable parts

CREATE TABLE cte AS SELECT x, x AS y FROM generate series(1,10000000) AS x;

CREATE INDEX ON cte(x,VY);
Table "public.cte"

Column | Type | Collation | Nullable | Default
-------- O Ot S SR
X integer ‘

y integer

Indexes:

"cte x y idx" btree (x, y)
—-— subselects

SELECT * FROM
(SELECT * FROM cte WHERE y>1) AS t
WHERE x=2;

— CTE

WITH yy AS (
SELECT * FROM cte
WHERE y>1
)
SELECT * FROM yy
WHERE x=2;

ol PROFESSIONAL

Pos{gres CTE is a black box for optimizer

WITH yy AS (- always materialized and cannot inlined into a parent query
SELECT * FROM cte
WHERE y>1

)
SELECT * FROM vyy

WHERE x=2;

CTE Scan on yy (actual time=0.099..3672.842 rows=1 loops=1)
Filter: (x = 2)
Rows Removed by Filter: 9999998
CTE yy
-> Seq Scan on cte (actual time=0.097..1355.367 rows=9999999 loops=1)
Filter: (y > 1)
Rows Removed by Filter: 1
Planning Time: 0.088 ms
Execution Time: 3735.986 ms
(9 rows)

SELECT * FROM (SELECT * FROM cte WHERE y>1) as t WHERE X=2;
QUERY PLAN
Index Only Scan using cte x y idx on cte (actual time=0.013..0.013 rows=1l loor
Index Cond: ((x = 2) AND (y > 1))
Heap Fetches: 0
Planning Time: 0.058 ms
Execution Time: 0.025 ms

(5 rows) SURPRISE: CTE is 150 000 slower than subselect !

Pogga’?%e"“é: PG12: Controllable CTE materialization
WITH cte name AS [NOT] MATERIALIZED

eWritable WITH query always materialized
e Recursive WITH query always materialized

* No fencing (new default) * Old behavior

WITH yy AS (

WITH yy AS MATERIALIZED (
SELECT * FROM cte SELECT * FROM cte
WHERE y=2 WHERE y=2

))

SELECT * FROM vyy SELECT * FROM vyy

WHERE x=2;

WHERE x=2;
QUERY PLAN

Index Only Scan using cte x y idx on cte

QUERY PLAN

CTE Scan on yy
Index Cond: ((x = 2) AND (y = 2)) Filter: (x = 2)
(2 rows) CTE yy

-> Seq Scan on cte
Filter: (y = 2)
(5 rows)

Poggaf%eog PG12: Controllable CTE materialization

WITH cte name AS [NOT] MATERIALIZED

 If a WITH query is referred to multiple times, CTE “materialize” its result
to prevent double execution, use EXPLICIT NOT MATERIALIZED

WITH yy AS (SELECT * FROM cte WHERE y > 1) SELECT (SELECT count(*) FROM
yy WHERE x=2), (SELECT count(*) FROM yy WHERE x=2);
QUERY PLAN
Result (actual time=3922.274..3922.275 rows=1 loops=1)
CTE yy
-> Seq Scan on cte (actual time=0.023..1295.262 rows=9999999 loops=1)
Filter: (y > 1)
Rows Removed by Filter: 1
InitPlan 2 (returns $1)
-> Aggregate (actual time=3109.687..3109.687 rows=1 loops=1)
-> CTE Scan on yy (actual time=0.027..3109.682 rows=1 loops=1)
Filter: (x = 2)
Rows Removed by Filter: 9999998
InitPlan 3 (returns $2)
-> Aggregate (actual time=812.580..812.580 rows=1 loops=1)
-> CTE Scan on yy yy 1 (actual time=0.016..812.575 rows=1
loops=1)
Filter: (x = 2)
Rows Removed by Filter: 9999998
Planning Time: 0.136 ms
Execution Time: 3939.848 ms
(17 rows)

Poggaii%e"“é: PG12: Controllable CTE materialization

WITH cte name AS [NOT] MATERIALIZED

* If a WITH query is referred to multiple times, CTE “materialize” its result
to prevent double execution, use EXPLICIT NOT MATERIALIZED

WITH yy AS NOT MATERIALIZED (SELECT * FROM cte WHERE y > 1) SELECT
(SELECT count(*) FROM yy WHERE x=2), (SELECT count(*) FROM yy WHERE x=2);
QUERY PLAN

Result (actual time=0.035..0.035 rows=1 loops=1)
InitPlan 1 (returns $0)
-> Aggregate (actual time=0.024..0.024 rows=1 loops=1)
-> 1Index Only Scan using cte x y idx on cte (actual
time=0.019..0.020 rows=1] loops=1)
Index Cond: ((x = 2) AND (y > 1))
Heap Fetches: 1
InitPlan 2 (returns $1)
-> Aggregate (actual time=0.006..0.006 rows=1] loops=1)
-> 1Index Only Scan using cte x y idx on cte cte 1 (actual
time=0.004..0.005 rows=1 loops=1)
Index Cond: ((x = 2) AND (y > 1))
Heap Fetches: 1
Planning Time: 0.253 ms
Execution Time: 0.075 ms
(13 rows)

Efficient K-nearest

neighbour search in
PostgreSQL

Knn-search: The problem

What are the closest restaurants near Park Inn
IIynkoBckasi, CaHKT-IleTepOypr ?

What happens in the world near the launch of
Sputnik ?

 Reverse image search, search by image

A &
o o LT T
oooooooooooo Py [} .

GIS, Science (high-dimensional data)Z ' Q

ol PROFESSIONAL

Pos}gres K-nearest neighbour search

* 10 closest events to the launch of Sputnik ?

SELECT id, date, event FROM events
ORDER ABS(date - '1957-10-04'::date) ASC LIMIT 10;

id | date | event

________ o

58136 | 1957-10-04 | "Leave It to Beaver," debuts on CBS

58137 | 1957-10-04 | U.S.S.R. launches Sputnik I, 1st artificial Earth satellite
117062 | 1957-10-04 | Gregory T Linteris, Demarest, New Jersey, astronaut, sk: STS 83
117061 | 1957-10-04 | Christina Smith, born in Miami, Florida, playmate, Mar, 1978
102671 | 1957-10-05 | Lee "Kix" Thompson, saxophonist, Madness-Baggy Trousers

102670 | 1957-10-05 | Larry Saumell, jockey

58292 | 1957-10-05 | Yugoslav dissident Milovan Djilos sentenced to 7 years

58290 | 1957-10-05 | 11th NHL All-Star Game: All-Stars beat Montreal 5-3 at Montreal

31456 | 1957-10-03 | Willy Brandt elected mayor of West Berlin

58291 | 1957-10-05 | 12th Ryder Cup: Britain-Ireland, 7 -4 at Lindrick GC, England
(10 rows)

* Slow: Index Is useless, full heap scan, sort, limit

Limit (actual time=54.481..54.485 rows=10 loops=1)
Buffers: shared hit=1824
-> Sort (actual time=54.479..54.481 rows=10 loops=1)
Sort Key: (abs((date - '1957-10-04'::date)))
Sort Method: top-N heapsort Memory: 26kB
Buffers: shared hit=1824
-> Seq Scanonevents (actual time=0.020..25.896 rows=151643 loops=1)
Buffers: shared hit=1824
Planning Time: 0.091 ms
Execution Time: 54.513 ms
(10 rows)

Knn-search: Existing solutions

* Traditional way to speedup query

- Indexes are very inefficient (no predicate)
- Constrain data space (range search)

* Incremental search — to many queries

* Need to know in advance size of
neighbourhood, how ?
1Km is ok for Paris, but too small for
Siberia

 Maintain 'density map' ?

nn-search: What do we want !

« We want to avoid full table scan - read only
<right> tuples

- So, we need index

« We want to avoid sorting - read <right> tuples
in <right> order

- So, we need special strategy to traverse index
« We want to support tuples visibility

- So, we should be able to resume index
traverse

nn-search: What do we want !

« We want to avoid full table scan - read only
<right> tuples

- So, we need index

« We want to avoid sorting - read <right> tuples
in <right> order

- So, we need special strategy to traverse index
« We want to support tuples visibility

- So, we should be able to resume index
traverse

Knn-search: Index traverse

 Depth First Search (stack, LIFO)

R-tree search

 Both strategies are not good for us - full index
SCAan

Knn-search: Index traverse

« Best First Search (PQ, priority queue). Maintain order of
items in PQ according their distance from given point

- Distance to MBR (rectangle for Rtree) for internal pages
- minimum distance of all items in that MBR

- Distance = 0 for MBR with given point
- Distance to point for leaf pages

« Each time we extract point from PQ we output it - it is
next closest point ! If we extract rectangle, we expand it
by pushing their children (rectangles and points) into the
queue.

« We traverse index by visiting only interesting nodes !

Knn-search: Index traverse

 Simple example - non-overlapped partitioning

Oleg Bartunov, Teodor Sigaev PGCon-2010, Ottawa, May 20-21, 2010

Knn-search: Index traverse

* Example - non-overlapped partitioning

* Priority Queue
e 1: {1,2,3,4,5,6,7,8,9}
e 2: {2,5,6,7,9}, {1,3,4,8}

e 3: {5,6,7,9}, {1,3,4,8}, {2}
e 4: {5,9}, {1,3,4,8}, {2}, {6,7}
e 5: {1,3,4,8}, 5, {2}, {6,7}, 9

e 6: {1,3,4}, {8}, 5, {2}, {6,7}, 9
e 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9

we can output 4 without visit
other rectangles !

e 8: 5, {2}, {6,7}, 3, 8, 1, 9
e 9: {6,7}, 3, 2, 8, 1, 9
e 10: 3, 2, 8, 1, 9, 6, 7

Knn-search: Index traverse

* Example - non-overlapped partitioning
* Priority Queue

@xx - 1:{1,2,3,4,5,6,7,8,9)
- 2:{2,5,6,7,9}, {1,3,4,8)
@ @)\ - 3: {5,6,7,9}, {1,3.,4,8}, {2}
@# O @ - 4: {5,9}, {1,3,4,8}, {2}, {6,7}

e 5: {1,3,4,8}, 5, {2}, {6,7}, 9

{ 6: {1.3.4}. {8}, 5. {2}, {6.7}, 9
1 ° ¢ : " - 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9
8d b 4 % . g5 oy (67 1
S e 3 8: 5, {2}, {6.7}, 3. 8, 1, 9

Knn-search: Performance

« SEQ (no index) - base performance

- Sequentually read full table + Sort full table (can be
very bad, sort mem !)

« DFS - very bad !

- Full index scan + Random read full table + Sort full
table

e BFS - the best for small k !

- Partial index scan + Random read k-records
» T(index scan) ~ Height of Search tree ~ log(n)

- Performance win BFS/SEQ ~ Nrelpages/k, for small k.
The more rows, the more benefit !

- Can still win even for k=n (for large tables) - no sort !

ol PROFESSIONAL

Pos}gres K-nearest neighbour search

SELECT id, date, event FROM events
ORDER ABS(date - '1957-10-04'::date) ASC LIMIT 10;

Limit (actual time=54.481..54.485 rows=10 loops=1)
Buffers: shared hit=1824
-> Sort (actual time=54.479..54.481 rows=10 loops=1)
Sort Key: (abs((date - '1957-10-04'::date)))
Sort Method: top-N heapsort Memory: 26kB
Buffers: shared hit=1824
-> SeqScanonevents (actual time=0.020..25.896 rows=151643 1loops=1)
Buffers: shared hit=1824
Planning Time: 0.091 ms
Execution Time: 54.513 ms
(10 rows)

KNN-GIST (Btree-GiST)
SELECT id, date, event FROM events

ORDER BY date <-> '1957-10-04'::date ASC LIMIT 10;
QUERY PLAN
Limit (actual time=0.128..0.145 rows=10 loops=1)
-> Index Scan using events date idxl on events (actual time=0.128..0.142 rows=10 loops=1)
Order By: (date <-> "'"1957-10-04'::date)

Planning Time: 0.155 ms

Execution Time: 0.186 ms

(5 rows)

PPPPP

Pogggres

L]

SSSSSSS

KNN SP-GIST (committed)

LCT *

O]

FROM knn_ test

ORDER BY p <-> point(:x,:y) LIMIT :n;
GIST SP-GIST
n time, ms buffers time, ms buffers
10 0,12 14 0,07 18
100 0,27 110 0,2 118
1000 1,58 1231 1,51 1264

ol PROFESSIONAL

Pos{gres KNN-SPGIST (committed)

7240858 points (geonames)

SELECT point, point <->? FROM geo_all ORDER BY 2 LIMIT ?
KD-tree, Quad-tree

AM
Illgﬁst

spgist kd
spgist quad
segscan

Pogga’?%e"“éi KNN-SPGIST (committed)

KNN Speedup

AM

. gist
spgist kd
spgist quad
segscan

—_
=]
o
o

Q.
=
o
[
o
Q.
w
S
£
=

ol PROFESSIONAL

Pos{gres KNN B-tree (in-progress)

SELECT * FROM events

ORDER BY date <->'2000-01-01"::date ASC
LIMIT 100;

KNN B-tree btree_gist union seq scan
K time, ms buffers time, ms buffers time, ms buffers time, ms buffers
1 0.041 4 0.079 4 0.060 8 41.1 1824
10 0.048 7 0.091 9 0.097 17 41.8 1824
100 0.107 47 0.192 52 0.342 104 42.3 1824
1000 0.735 573 0.913 650 2.970 1160 43.5 1824
10000 5.070 5622 6.240 6760 36.300 11031 54.1 1824

100000 49.600 51608 61.900 64194 295.100 94980 115.0 1824

OOOOOOOOOOOO

Posigres Covering GiST

* Include non-indexed columns into index to greatly
iImprove Index-only scan (index should contains all
columns from query)

* Index Is smaller than composite index
* No need opclass for column

 PG11: INCLUDE for B-tree
One index for UNIQUE/PRIMARY and INCLUDE to

use Index-only scan

CREATE TABLE foo (id int, coll text, col2 text, primary key (id) include (coll,col2));

*PG12: INCLUDE for GIST

CREATE INDEX ON mowboxes USING gist(bounds) INCLUDING (ip);

PogggF%ég Covering GiST

Test data — 7803499 boxes with additional column

\d mowboxes
Column Type

Ip cidr
num integer
center point
bounds box
Tsbounds tsrange

Indexes:

gist (bounds)
gist (bounds,ip) EEI AR
gist (bounds)INCLUDE (ip) {i % 4 5 & &
gist (bounds)INCLUDE (alljiaiii{ | A/ i

SELECT ip,bounds FROM mowboxes WHERE bounds @> some::point

S

TR

€

Pogggi%o% Covering GiST

Test data — 7803499 boxes with additional columns

\d mowboxes

Column Type
__________ e
Ip cidr
num integer
center point
bounds box
Tsbounds tsrange

Indexes:

gist (bounds) 665 MB
gist (bounds,ip) 876 MB
gist (bounds)INCLUDE (ip) 788 MB

gist (bounds)INCLUDE(all) 1498 MB

TEST QUERY (POINTs from (37.0, 55.0) - (47.5, 65.0) , step 0.5):

SELECT ip,bounds FROM mowboxes WHERE bounds @> POINT::point

ol PROFESSIONAL

Pos{gres Covering GiST

am

— gist (bounds)

= gist (bounds) include (ip)
gist (bounds) include (all)

o
E
G

£

2000 3000 4000 5000 6000 7000 8000 9000 10000 2000 3000 4000 5000 6000 7000 8000 9000 10000 =10000
row count row count

ol PROFESSIONAL

Pos{gres Covering GiST

am
. gist (bounds)
. gist (bounds) include (ip)

gist (bounds) include (all)

4000
blocks

Pogggi?sé% Covering GiST (randomize)

-
(4]

am
= gist (bounds)
— gist (bounds) include (ip)

o
<
5

£

iy
o

2000 3000 4000 5000 6000 7000 8000 9000 10000 =100 2000 3000 4000 5000 6000 7000 8000 9000 10000:=>10000
row count row count

Randomize table:

CREATE TABLE mowboxes rnd AS SELECT * FROM mowboxes ORDER BY random();

Pogggf%eog Covering GiST (randomize)

am

. gist (bounds)

. gist (bounds) include (ip)

. 15 10000
time, ms blocks

Randomize table;

CREATE TABLE mowboxes rnd AS SELECT * FROM mowboxes ORDER BY random();

Covering GIST improves utility and performance
of index-only scan

Poyim Generate less WAL during GiST, GIN
9 and SP-GIST index build

Instead of WAL-logging every modification during the build separately,
first build the index without any WAL-logging, and make a separate pass
through the index at the end, to write all pages to the WAL. This
significantly reduces the amount of WAL generated, and is usually also
faster, despite the extra I/O needed for the extra scan through the index.
WAL generated this way Is also faster to replay.

IMDB database in json format: 4189128 rows, 2938 MB
CREATE INDEX ON imdb USING gin(jb jsonb_path_ops);

BEFORE:
TIME: 205115.236 ms, WAL: 3201 MB

AFTER:
TIME: 133554.225 ms, WAL: 406 MB

Useful functions:
pg_current_wal _Isn(), pg_size pretty(pg_wal Isn_diff());

OOOOOOOOOOOO

Posigres REINDEX CONCURRENTLY

REINDEX [(VERBOSE)] { INDEX | TABLE | SCHEMA | DATABASE | SYSTEM }

[CONCURRENTLY | name

* Not the SYSTEM tables
* Longer build and more resources, but no lock for
Insert, update, delete operations

* Falled REINDEX may leave invalid indexes
(manual drop)

 Temporal name for indexes: <name>_cchew,
<name>_ccold

Poslaraa Report progress of
J CREATE INDEX/REINDEX operations

* |nfrastructure of progress reporting:

pg_stat_progress_cluster
pg_stat progress_vacuum

pg_stat_progress_create_index

select relid::regclass, phase,

format('lockers: %s/%s (%s)', lockers done, lockers total, current locker pid) as lockers,
format('blocks: %s/%s', blocks done, blocks total) as blocks,

format('tuples: %s/%s', tuples done, tuples total) as tuples,

format('partitions: %s/%s', partitions done, partitions total) as partitions

from pg stat progress create index

\watch 0,1

waiting for reader snapshots lockers: (23097) blocks: 314490/314491 : partitions:
building index lockers: (0) blocks: 171478/175168 : partitions:

waiting for reader snapshots | lockers: (23097) blocks: 314490/314491 : partitions:
building index lockers: (0) blocks: 173329/175168 : partitions:

waiting for reader snapshots | lockers: (23097) blocks: 314490/314491 : partitions:
building index lockers: (0) blocks: 174894/175168 : partitions:

waiting for reader snapshots | lockers: (23097) blocks: 314490/314491 : partitions:
building index lockers: (0) blocks: 175097/175168 : partitions:

Pogzgres Stonebraker «Navigating database Universe»

#2: Get the Implementation Right

Leverage a few simple ideas: Early relational implementations
— System R storage system dropped links
— Views (protection, schema modification, performance)
— Cost-based optimizer

Leverage a few simple ideas: Postgres
— User-defined data types and functions (adopted by most everybody) -
— Rules/triggers
— No-overwrite storage

Leverage a few simple ideas: Vertica
— Store data by column

— Compressed up the ging gong
— Parallel load without compromising ACID

SI9UUIA\ |E21I0)SIH

Pogza’?sé% Pluggable storage

* Better Postgres extensibility
Storage is about tables/mat.views
Replace hardcoded heap by Table Access Manager
Several Table AMs coexists, could be added online
Examples: columnar, append-only, ZHeap, in-memory..

Client Client

Postgres
Postgres

Kemel —‘—’i Ew

POSTGRES Kernel POSTGRES

Andres Freund, http://anarazel.de/talks/2018-10-25-pgconfeu-pluggable-storage/pluggable.pdf

Pogggfsseo% Pluggable storage

* Better Postgres extensibility

* Table access method
CREATE ACCESS METHOD ... TYPE TABLE

List of access methods
Handler Description

brinhandler block range index (BRIN) access method
bthandler b-tree index access method

ginhandler GIN index access method

gisthandler GiST index access method

hashhandler hash index access method

spgist | Index | spghandler | SP-GiST index access method
(7 rows)

ol PROFESSIONAL

Pos{gres Pluggable storage

* Better Postgres extensibility
* CREATE EXTENSION my_storage;
* CREATE TABLE ... USING my_storage;
- SET default_table access method ='my_storage’

=# CREATE TABLE bar() USING HEAP;
CREATE TABLE
=# show default table access method;
default table access method

OOOOOOOOOOOO

Pos}gres Pluggable storage (in-progress)

e Support for INSERT/UPDATE/DELETE, triggers
etc.

e Support for custom maintenance (own vacuum).
e Support for table rewrite.

e Support for custom tuple format.

* Support for custom tuple storage.

* Index-heap relationship must be the same. Only
HOT-like update OR insertion to EVERY index.

* Row must be identified by 6-byte TID.
e System catalog must be heap.

Pogggf%eog ZHeap (in-progress)

* MVCC implementation:
* Oracle, MySQL, SQL Server: old versions are In
other place
* MVCC In Postgres: all row versions are in table
* Table bloat, write amplification

index 1 index 2 iIndex 3

OOOOOOOOOOOO

Pos}gres ZHeap (in-progress)

* ZHeap — new storage for PostgreSQL with UNDO
(No Vacuum storage)
* The old versions of rows are in undo log
* Reverse all changes made by aborted
transactions

index 1 index 2 index 3

—————————————————————

Eundo

OOOOOOOOOOOO

Pos}gres ZHeap (in-progress)

* ZHeap — new storage for PostgreSQL with UNDO

* In-place updates (when possible) — less bloat
* But, In-place update don“t need an extra space for new
tuple on page as HOT, only if new tuple is wider.
* In-place update like a HOT update (can“t modify any
Indexed columns)

* Reclame space after transaction (committed or
aborted)
* Avoid non-modification data writes, like hint-bits

* Shorter tuple header (no xmin,xmax, cmin,cmax)
* UNDO log contains most of data for MVCC
* Zheap Is smaller on disk

PogggF%ég Partitioning improvements

e Generalized expression syntax for
partition bounds

The expression is evaluated once at the table creation time so it
can involve even volatile expressions such as CURRENT_TIMESTAMP.

CREATE TABLE part (ts timestamp)PARTITION BYRANGE(ts);

CREATE TABLE partl PARTITION OF part FOR VALUES
FROM ('2018-01-01') TO (current timestamp + '1 day');

Partitioned table "public.part"

Column | Type | Collation | Nullable | Default | Storage
| Stats target | Description

-------- R Lk e e R
e - Fom - -

ts | timestamp without time zone | | | | plain

| |
Partition key: RANGE (ts)

Partitions: partl FOR VALUES FROM ('2018-01-01 00:00:00') TO ('2019-04-05
16:07:12.253855")

ol PROFESSIONAL

Pos{gres Partitioning improvements

e Run-time partition pruning for MergeAppend

EXPLAIN ANALYZE SELECT * FROM news

WHERE category = (SELECT category FROM hot_ category)
ORDER BY ts LIMIT 10;

Limit (cost=36.79..37.26 rows=10 width=12) (actual time=0.035..0.044 rows=10
loops=1)
InitPlan 1 (returns $0)
-> Seq Scan on hot _category (cost=0.00..35.50 rows=2550 width=4)
(actual time=0.011..0.012 rows=1 loops=1)
-> Merge Append (cost=1.29..46833.10 rows=1000000 width=12)
(actual time=0.033..0.040 rows=10 loops=1)
Sort Key: news _catl.ts
-> Index Scan using news_catl ts idx on news catl
(cost=0.42..11302.75 rows=333333 width=12)
(actual time=0.016..0.021 rows=10 loops=1)
Filter: (category = $0)
-> Index Scan using news cat2 ts idx on news cat2
(cost=0.42..11302.77 rows=333334 width=12)
(never executed)
Filter: (category = $0)
-> Index Scan using news_cat3 ts idx on news cat3
(cost=0.42..11302.75 rows=333333 width=12)
(never executed)
Filter: (category = $0)

ol PROFESSIONAL

Pos{gres Partitioning improvements

* Reduce partition tuple routing overheads

* Inserts into 10k partitions table:

PG11l PG12 Single Table
96 17729 19121

Speed up planning when partitions can be pruned at plan time

* «For queries that can be proven at plan time to access

only a small number of partitions, this patch improves the
practical maximum number of partitions from under 100 to
perhaps a few thousand.»

* Support foreign keys that reference partitioned tables
* «Previously, while primary keys could be made on partitioned
tables, it was not possible to define foreign keys that reference
those primary keys. Now it is possible to do that.»

Use Append rather than MergeAppend for scanning ordered parts.
\dP — display info about partition tables, indexes

Pogz support for partial TOAST

gres

decompression

«When asked for a slice of a TOAST entry, decompress enough to return the

slice instead of decompressing the entire object.»

-I_he Oversized Attribute Storage -l:chnique

id PSegment

compressed atir | 7|P

id SSegment

compressed atir

1. Compress and slice
by segments
2. Store in separate table

1. Retrieve all segments
and decompress

Now: decompress only
first needed segments

Py support for partial TOAST
g decompression

«When asked for a slice of a TOAST entry, decompress enough to return the
slice instead of decompressing the entire object.»

CREATE TABLE slicingtest (id serial primary key, a text);

INSERT INTO slicingtest (a) SELECT repeat('xyz123', 10000) AS a
FROM generate_series(1,10000);

SELECT sum(length(substr(a, 0, 20))) FROM slicingtest;

PG11: 400 ms, PG12: 10 ms

Polis support for partial TOAST
J decompression (jsonb)

* Quick experiment

CREATE TABLE t(jb jsonb);
--{"key1": 2210 "a", ... "keyl0": 219 "a" }
INSERT INTO t SELECT (
SELECT jsonb_object_agg('key' || i, repeat(‘a’, pow(2, i + 9)::int)
) FROM generate_series(1,10) i) FROM generate_series(1,1000);

SELECT jb->'keyl’
FROM t;

decompression

== full

0
E
&
£

~+- partial

ol PROFESSIONAL

Posggres multivariate MCV lists

Add support for multivariate MCV lists

Introduce a third extended statistic type, supported by the CREATE
STATISTICS command - MCV lists, a generalization of the statistic
already built and used for individual columns.

Compared to the already supported types (n-distinct coefficients and
functional dependencies), MCV lists are more complex, include column
values and allow estimation of much wider range of common clauses
(equality and inequality conditions, IS NULL, IS NOT NULL etc.).
Similarly to the other types, a new pseudo-type (pg_mcv_list) is used.

CREATE STATISTICS <name> (mcv) ON <coll1>,<col2>... FROM <table>;

pg_catalog.pg_statistic_ext

Pogggi%eog multivariate MCV lists

CREATE TABLE test (a INT, b INT, ¢ INT);

INSERT INTO test SELECT i/10000, i/10000, i/10000
FROM generate_series(1,1000000) s(i);

ANALYZE test;

SELECT * FROM test WHERE (a = 0) AND (b = 0) AND (c = 0);

Seq Scan on test (cost=0.00..22906.00 rows=1 width=12)
Filter: ((a = 0) AND (b = 0) AND (c = 0))

(2 rows)

WRONG, should be 10 000 !

CREATE STATISTICS mcv_lists_stats (mcv) ON a, b, c FROM test;
ANALYZE test;
SELECT * FROM test WHERE (a = 0) AND (b = 0) AND (c = 0);
Seq Scan on test (cost=0.00..22906.00 rows=10100 width=12)
Filter: ((a = 0) AND (b =0) AND (c =0))
(2 rows)

ol PROFESSIONAL

Pos{gres Figures in Documentation

GIN Indexes

Figure 65.1. GIN Internals

‘

= | e
P T~
== == ==

65.4.1. GIN Fast Update Technique

Updating a GIN index tends to be slow because of the intrinsic nature of inverted indexes: inserting
or updating one heap row can cause many inserts into the index (one for each key extracted from the
indexed item). As of PostereSQL 8 4, GIN is capable of postponing much of this work by inserting new
tuples into a temporary, unsorted list of pending entries. When the table is vacuumed or autoanalyzed,
otwhengin clean pending list functionis called, or if the pending list becomes larger than
gin_pending_list_limit, the entries are moved to the main GIN data structure using the same bulk insert
techniques used during initial index creation. This greatly improves GIN index update speed, even
counting the additional vacunm overhead. Moreover the overhead work can be done by a background
process instead of in foreground query processing.

The main disadvantage of this approach is that searches must scan the list of pending entries in addition
to searching the regular index, and so a large list of pending entries will slow searches significantly.
Another disadvantage 1s that, while most updates are fast, an update that causes the pending list to
become “too large™ will incur an immediate cleanup cycle and thus be much slower than other updates.
Proper use of autovacuum can minimize both of these problems.

If consistent response time is more important than update speed, use of pending entries can be disabled
by turning off the fastupdate storage parameter for a GIN index. See CREATE INDEX for details.

65.4.2. Partial Match Algorithm

Pogggi%eog Generated columns

This is an SQL-standard feature that allows creating columns that are

computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on

write). Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

CREATE TABLE ... (..., b int GENERATED ALWAYS AS (expr) STORED);

Expression should be IMMUTABLE

CREATE TABLE ...(..., b int GENERATED ALWAYS AS IDENTITY(...));
CREATE TABLE ...(..., b int GENERATED BY DEFAULT AS IDENTITY(...));

INT, BIGINT, SMALLINT

5 ngres Add SETTINGS option to EXPLAIN, to
9 print modified settings.

explain (SETTINGS ON) select count(*) from imdb;
QUERY PLAN
Aggregate (cost=366855.10..366855.11 rows=1 width=8)
-> Seg Scan on imdb (cost=0.00..356382.28 rows=4189128 width=0)
Settings: max_parallel workers_per_gather ='0', parallel_tuple_cost ='0'
(3 rows)

PostgreSQL version in log
(committed)

Pos{gres

2019-02-02 09:23:11.711 MSK [59708] LOG:

starting

PostgreSQL 12devel on x86_64-apple-darwinl?7.7.0, compiled
by Apple LLVM version 10.0.0 (clang-1000.11.45.5), 64-bit

2019-02-02 ©09:23:11.715 MSK [59708]
IPv6 address "::1", port 5434

2019-02-02 09:23:11.715 MSK [59708]

LOG:

LOG:

IPv6 address "fe80::1%100", port 5434

2019-02-02 ©09:23:11.715 MSK [59708]
IPv4 address "127.0.0.1", port 5434

2019-02-02 09:23:11.716 MSK [59708
Unix socket "/tmp/.s.PGSQL.5434"

LOG:

LOG:

listening
listening
listening

listening

on

on

on

on

)0 LOCKING B-tree leafs immediately in

Pos)qgres : :
9 exclusive mode (committed)
test original, TPS patched, TPS
unordered inserts 409 591 412 765
ordered inserts 252 796 314 541

duplicate inserts 44 811 202 325

Poyim Function to promote standby servers
9 (committed)

How to promote a standby?
* Trigger file
* pg_ctl promote
« SELECT pg_promote();

Step towards managing cluster in pure SQL!

gres

chz Speedup of relation deletes

during recovery (committed)

Relation delete or truncate:

* Causes sequential scan of shared_buffers
* Slow with large shared_buffers

Especially bad for standby, because of single-process recovery

Now, instead of
DELETE tabl; DELETE tab2; .. DELETE tabN;

It's better to do

BEGIN;
DELETE tabl; DELETE tab2; .. DELETE tabN;
COMMIT;

Single pass over shared_buffers instead of N.
Less replication lag!

Poyim Add log_statement_sample_rate
9 parameter (committed)

* Logging all the statements consumes much of
resources

* Logging only long statements may distort your
picture

 Sample logging is the solution!

log statement_sample rate =
log statement _sample rate =
log statement _sample rate

1 ; log every statement

© ; log no statements

0.5 ; log half of statement
0.1

; log one tenth of
; Statement

log statement _sample rate

ol PROFESSIONAL

Posf{gres Enableldisable (offline) checksums

pg_checksums --help
pPg_checksums enables, disables or verifies data checksums in a PostgreSQL database cluster.

Usage:
pg_checksums [OPTION]... [DATADIR]

Options:
[-D, --pgdata=]DATADIR data directory
-c, --check check data checksums (default)
-d, --disable disable data checksums
-e, --enable enable data checksums
-N, --no-sync do not wait for changes to be written safely to disk
-P, --progress show progress information
-v, --verbose output verbose messages
-r RELFILENODE check only relation with specified relfilenode
-V, --version output version information, then exit
-?, --help show this help, then exit

If no data directory (DATADIR) is specified, the environment variable PGDATA
IS used.

CIIACHUBO SA BHUMAHHUE |

