
 VIRTUAL

Oleg Bartunov, Nikita Glukhov
Postgres Professional

K-Nearest
Neighbors
Search
in PostgreSQL

http://www.sai.msu.su/~megera/postgres/talks/knn-pgconf-2021.pdf

http://www.sai.msu.su/~megera/postgres/talks/knn-pgconf-2021.pdf

Research scientist @
 Moscow University
CEO Postgres Professional
Major PostgreSQL contributor

Since Postgres95

Senior developer @Postgres Professional
PostgreSQL contributor

Major CORE contributions:
● Jsonb improvements
● SQL/JSON (Jsonpath)
● KNN SP-GiST
● Opclass parameters

Current development:
● SQL/JSON functions
● Jsonb performance

Nikita Glukhov

• What are interesting points near Royal Oak pub in Ottawa ?

• What are the closest events to the May 20, 2009 in Ottawa ?

• Similar images – feature extraction, Hamming distance

• Classification problem (major voting)

•

• GIS, Science (high-dimensional data)

Knn-search: The problem

K-nearest neighbour search

• 10 closest events to the launch of Sputnik ?

• Before 9.1: Slow: Index is useless (no WHERE!), full heap scan, sort, limit

SELECT id, date, event FROM events ORDER BY date <-> '1957-10-04'::date ASC LIMIT 10;
 id | date | event
--------+------------+---
 58136 | 1957-10-04 | "Leave It to Beaver," debuts on CBS
 58137 | 1957-10-04 | U.S.S.R. launches Sputnik I, 1st artificial Earth satellite
 117062 | 1957-10-04 | Gregory T Linteris, Demarest, New Jersey, astronaut, sk: STS 83
 117061 | 1957-10-04 | Christina Smith, born in Miami, Florida, playmate, Mar, 1978
 102671 | 1957-10-05 | Lee "Kix" Thompson, saxophonist, Madness-Baggy Trousers
 102670 | 1957-10-05 | Larry Saumell, jockey
 58292 | 1957-10-05 | Yugoslav dissident Milovan Djilos sentenced to 7 years
 58290 | 1957-10-05 | 11th NHL All-Star Game: All-Stars beat Montreal 5-3 at Montreal
 31456 | 1957-10-03 | Willy Brandt elected mayor of West Berlin
 58291 | 1957-10-05 | 12th Ryder Cup: Britain-Ireland, 7 -4 at Lindrick GC, England
(10 rows)

Limit (actual time=54.481..54.485 rows=10 loops=1)
 Buffers: shared hit=1824
 -> Sort (actual time=54.479..54.481 rows=10 loops=1)
 Sort Key: (abs((date - '1957-10-04'::date)))
 Sort Method: top-N heapsort Memory: 26kB
 Buffers: shared hit=1824
 -> Seq Scan on events (actual time=0.020..25.896 rows=151643 loops=1)
 Buffers: shared hit=1824
 Planning Time: 0.091 ms
 Execution Time: 54.513 ms
(10 rows)

K-nearest neighbour search

• 10 closest events to the launch of Sputnik

• Before 9.1: Slow: Index is useless, full heap scan, sort, limit

• After 9.1: Amazingly FAST using index !

Limit (actual time=54.481..54.485 rows=10 loops=1)
 Buffers: shared hit=1824
 -> Sort (actual time=54.479..54.481 rows=10 loops=1)
 Sort Key: (abs((date - '1957-10-04'::date)))
 Sort Method: top-N heapsort Memory: 26kB
 Buffers: shared hit=1824
 -> Seq Scan on events (actual time=0.020..25.896 rows=151643 loops=1)
 Buffers: shared hit=1824
 Planning Time: 0.091 ms
 Execution Time: 54.513 ms
(10 rows)

Limit (actual time=0.123..0.143 rows=10 loops=1)
 Buffers: shared hit=9
 -> Index Scan using event_date_idx on events (actual time=0.122..0.138 rows=10 loops=1)
 Order By: (date <-> '1957-10-04'::date)
 Buffers: shared hit=9
 Planning Time: 0.105 ms

 Execution Time: 0.172 ms ~ 300 times faster !
(7 rows)

Index can be used for

• Filtering - WHERE expr opr value

• Ordering - ORDER BY expr [ASC|DESC]

• K-NN - ORDER BY expr opr value [ASC]

Knn-search: Existing solutions

Traditional way to speedup such query

• Use indexes - very inefficient (no search query !)
• Scan full index

• Full table scan, but in random order !

• Sort full table

• Better not to use index at all !

• Constrain data space (range search) - "Костыль"
• Incremental search → to many queries

• Need to know in advance size of neighbourhood, how ?
1Km is ok for Paris, but too small for Siberia

• Maintain 'density map' ?

Difficult choice for initial radius

Regular Index traverse

• Index is a search tree
Depth First Search
(stack, LIFO)

Both strategies require WHERE clause, for K-NN it means full index scan

Breadth First Search
(queue, FIFO)

K-NN Index traverse — Best First Search

● Best First Search (PQ, priority queue). Maintain order of items in PQ according their
distance from given point

– Distance to MBR (rectangle for Rtree) for internal pages – minimum distance of all items in
that MBR

– Distance = 0 for MBR with given point
– Distance to point for leaf pages

● Each time we extract point from PQ we output it – it is the next closest point ! If we
extract rectangle, we expand it by pushing their children (rectangles and points) into the
queue.

● We traverse index by visiting only interesting nodes !

K-NN Index traverse — Best First Search

● Simple example – non-overlapped partitioning

K-NN Index traverse — Best First Search

● Simple example – non-overlapped partitioning

● Priority Queue
● 1: {1,2,3,4,5,6,7,8,9}

● 2: {2,5,6,7,9}, {1,3,4,8}

● 3: {5,6,7,9}, {1,3,4,8}, {2}

● 4: {5,9}, {1,3,4,8}, {2}, {6,7}

● 5: {1,3,4,8}, 5, {2}, {6,7}, 9

● 6: {1,3,4}, {8}, 5, {2}, {6,7}, 9

● 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9

we can output 4 without visit
other rectangles !

● 8: 5, {2}, {6,7}, 3, 8, 1, 9

● 9: {6,7}, 3, 2, 8, 1, 9

● 10: 3, 2, 8, 1, 9, 6, 7

K-NN Index traverse — Best First Search

● Simple example – non-overlapped partitioning

• Priority Queue
• 1: {1,2,3,4,5,6,7,8,9}

• 2: {2,5,6,7,9}, {1,3,4,8}

• 3: {5,6,7,9}, {1,3,4,8}, {2}

• 4: {5,9}, {1,3,4,8}, {2}, {6,7}

• 5: {1,3,4,8}, 5, {2}, {6,7}, 9

• 6: {1,3,4}, {8}, 5, {2}, {6,7}, 9

• 7: 4, {8}, 5, {2}, {6,7}, 3, 1, 9

We can output 4 without visit other rectangles !

• 8: 5, {2}, {6,7}, 3, 8, 1, 9

• 9: {6,7}, 3, 2, 8, 1, 9

• 10: 3, 2, 8, 1, 9, 6, 7

Knn-search: What we did !

● + We want to avoid full table scan – read only <right> tuples

– So, we need index

● + We want to avoid sorting – read <right> tuples in <right> order

– So, we need special strategy to traverse index

● + We want to support tuples visibility

– So, we should be able to resume index traverse

● + We want to support many data types

– So, we need to modify GiST

GiST Modification

Depth First Search

push Stack, Root;
While Stack {
 If p is heap {
 output p;
 else {
 children =
get_children(p);
 push Stack, children;
 }
}

Best First Search

push PQ, Root;
While PQ {
 If p is heap {
 output p;
 else {
 Children = get_children(p);
 push PQ, children;
 }
}

• For non-knn search all distances are zero, so PQ => Stack
and BFS => DFS

• We can use only one strategy for both – normal search
and knn-search !

Knn-search: Performance

● SEQ (no index) – base performance

– Sequentually read full table + Sort full table (can be very bad, sort_mem !)

● DFS — very bas !

– Full index scan + Random read full table + Sort full table

● BFS – the best for small k !

– Partial index scan + Random read k-records

– T(index scan) ~ Height of Search tree ~ log(n)

– Performance win BFS/SEQ ~ Nrelpages/k, for small k.
The more rows, the more benefit !

– Can still win even for k=n (for large tables) - no sort !

 VIRTUAL

Example: GiST R-Tree for Greece

• Create two tables with a subset of geo_all data belonging to Greece:
• CREATE TABLE geo_greece AS SELECT * FROM geo_all WHERE country_code = 'GR';
• CREATE TABLE geo_greece_rnd AS SELECT * FROM geo_greece ORDER BY random();

• Create three GiST indexes:
• Z-order sorted which is default for PG14 (WITH (buffering = off) is by default)

CREATE INDEX geo_greece_zorder_idx ON geo_greece USING gist (location);

• Buffered on unsorted data

CREATE INDEX geo_greece_unsorted_idx ON geo_greece USING gist(location) WITH (buffering=on);

• Buffered on randomized data

CREATE INDEX geo_greece_rnd_idx ON geo_greece_rnd USING gist(location) WITH (buffering=on);

 VIRTUAL

Example: GiST R-Tree for Greece

• Index statistics:
 index | size | build time
----------------------------+----------+------------
 geo_greece_rnd_idx | 2632 kB | 220 ms
 geo_greece_unsorted_idx | 2736 kB | 240 ms
 geo_greece_zorder_idx | 1768 kB | 37 ms

• R-Tree levels statistics (Gevel extension):
SELECT relname, level, count(*)
FROM pg_class, gist_print(relname) AS t(level int, valid bool, a box)
WHERE relname LIKE 'geo_greece_%_idx'
GROUP BY 1, 2 ORDER BY 1, 2;

 relname | level | count
-------------------------+-------+-------
 geo_greece_rnd_idx | 1 | 3
 geo_greece_rnd_idx | 2 | 324
 geo_greece_rnd_idx | 3 | 36124
 geo_greece_unsorted_idx | 1 | 3
 geo_greece_unsorted_idx | 2 | 335
 geo_greece_unsorted_idx | 3 | 36124
 geo_greece_zorder_idx | 1 | 2
 geo_greece_zorder_idx | 2 | 218 1.5x more leaves per internal node
 geo_greece_zorder_idx | 3 | 36124

 VIRTUAL

Example: GiST R-Tree for Greece

Z-order index boxes overlaps more strongly

Example: GiST R-Tree for Greece – search
performance

Search speed depending on location and search area.
SELECT count(*) FROM geo_greece WHERE location <@ circle(point(lng, lat), radius);

Example: GiST R-Tree for Greece – search
performance

Amount of blocks read depending on location and search area.
SELECT count(*) FROM geo_greece WHERE location <@ circle(point(lng, lat), radius);

Example: GiST R-Tree for Greece – search
performance

Search speed for small areas is determined by node overlapping (radius = 0.01):

Example: GiST R-Tree for Greece – kNN
performance

kNN search time is not much tied to tree partitioning, but kNN still suffers from overlapping.
SELECT count(*) FROM geo_greece ORDER BY location <-> point(lng, lat) LIMIT n;

Example: GiST R-Tree for Greece – kNN
performance

Number of index blocks read by lower-limit kNN is grealy increased by tree overlapping.
SELECT count(*) FROM geo_greece ORDER BY location <-> point(lng, lat) LIMIT n;

Whole world kNN – Geonames dataset

• Geonames dataset
contains
coordinates of
422523 cities

How indexes see the Earth - Distances to the nearest city (1° step)

McMurdo Station, Antarctic research center — the farthest settlement in geonames db
 geonameid | | earth_location | dist (postgis)
-----------+---+-----------------------
 6696480 | McMurdo Station| (166.676,-77.846) | 2159.347354917357

KNN whole world – DIY kNN

• KNN can be emulated by searching and sorting points inside the circles with
exponentially increasing radius. Its performance is quite sensitive to the choice
of initial radius, which can be estimated by point density and search limit.

SELECT points.*
FROM
 (VALUES (point($2, $1))) p(pt),
 generate_series(0.0, 20.0, 1.0) i,
 pow(2.0, i + $4) r, -- increasing circle radius, starting from 2^$4
 LATERAL (
 SELECT * FROM (
 SELECT geonameid, name, location, location <-> pt dist
 FROM cities
 WHERE location <@ circle(pt, r) -- search point inside circle
) tmp
 WHERE i = 0 OR dist > r * 0.5 -- skip points inside previous circle
 ORDER BY dist
) points
LIMIT $3;

KNN whole world – Europe vs Siberia

• GiST kNN is faster than SP-GiST kNN in lower-density areas
• Seq scan is a bit faster than kNN by index only when all rows are read
• DIY kNN scan speed is very sensitive to initial radius for low limits

KNN whole world – Europe vs Siberia

• The same applies to the number of index blocks read.

Whole world kNN – geonames dataset

• Geonames dataset
contains
coordinates of
422523 cities

Whole world kNN – distance functions

• Built-in opclass GiST and SP-GiST
opclasses for points use simple
Euclid 2D distance:
sqrt((lat1 — lat2)2 + (lng1 - lng2)2)

• PostGIS uses correct spherical
distance function like
contrib/earthdistance.

• The difference between them is
absent for near points on equator ,
but it grows up with distance and
latitude growth.

Whole world kNN – GiST Z-order sorted index

Z-order sorting
index produces a
lot of overlapping.

Whole world kNN – GiST on randomly sorted
data

Buffered GiST
building with
randomly sorted
data produces a
much better tree
partitioning.

Whole world kNN – SP-GiST Quad-Tree index

SP-GiST Quad-Tree
contains up to 19
levels in higher-
density areas.

Whole world kNN – SP-GiST KD-Tree index

SP-GiST KD-Tree
has even more
levels: up to 32
levels.

Whole world kNN – 4 indexes, Europe only

GiST randomized
GiST Z-order
SP-GiST Quad
SP-GiST KD

KNN whole world – execution time map

• The same applies to the number of index blocks read.

KNN whole world – index blocks map

• The same applies to the number of index blocks read.

KNN whole world – total blocks map

• The same applies to the number of index blocks read.

KNN whole world – Z-order sorted vs randomized

• Z-order performance
is more unstable

KNN whole world – 4 indexes

• GiST rnd has
the best
predictable
performance

KNN on trigrams

• contrib/pg_trgm

• GiST and GIN indexes

• Supports kNN only on GiST

• Distance operators:

• Similarity: text <-> text

• Word similarity: text <->> text, text <<-> text

word1 <-> word2 =
1 — Ncommmon trigrams / (Lenword1 + Lenword2 - Ncommmon trigrams)

KNN on trigrams

pg_gtrm GiST index contains:

• Unmodified arrays of trigrams in the leaves.

• Fixed-length signatures in the inner nodes. Each trigram is mapped to
the one bit in signature using simple hash function. So trigrams can
collide and signature lengths equal to power of 2 are not effective,
because hash function will be not sensitive to all chars.

Hash(trg) = (char0 + char1 << 8 + char2 << 16) % Lensignature

Signature(word) = ORi=1..Ntrg(1 << Hash(trgi))

Signature(leaf page) = ORi=1..Nwords (Signature(wordi))

Signature(inner page) = ORi=1..Nitems (Signaturei)

• kNN uses the following minimal distance estimation for signatures:

word <-> signature = 1 - Ncommon bits / Nword trigrams

KNN on trigrams

Sample GiST tree with 8 words and query:
SELECT * FROM words ORDER BY word <-> 'georges' LIMIT 3;

KNN on trigrams

Step 1: calculate distance to root items

KNN on trigrams

Step 2: descent to children of nearest root item, other items are queued

KNN on trigrams

Step 3: descent to 2nd leaf page of the nearest inner item

KNN on trigrams

Step 4: emit first leaf item because it is the nearest in the queue

KNN on trigrams

Step 5: emit second leaf item, it is also the nearest in the queue

KNN on trigrams

Step 6: descent to the remaining inner node

KNN on trigrams

Step 7: descent to the 3rd leaf page

KNN on trigrams

Step 8: emit the second leaf item of 3rd leaf page

1: {R1,R2}
2:{I2,R2,I1}
3:{L3,L4,R2,I1}
4:L3,{L4,R2,I1}
5:L4,{R2,I1}
6:{I3,I4,I1}
7:{L6,I4,L5,I1}
8:L6,{I4,L5,I1}

KNN on trigrams

Results (average time, 100 random sample words)

Search Similar images - OK

Search Similar images - OK

Search Similar images — NOT OK

Similar images: Preprocessing

CREATE TABLE pat AS (
SELECT

id,
shuffle_pattern(pattern) AS pattern,
pattern2signature(pattern) AS signature

FROM (
SELECT

id,
jpeg2pattern(data) AS pattern

FROM
image

) x
);
CREATE INDEX pat_signature_idx ON pat USING gist (signature);
CREATE INDEX pat_id_idx ON pat(id);

Similar images: The Query

SELECT
id,
smlr

FROM
(

SELECT
id,
pattern <-> (SELECT pattern FROM pat WHERE id = :id) AS smlr

FROM pat
WHERE id <> :id
ORDER BY

signature <-> (SELECT signature FROM pat WHERE id = :id)
LIMIT 100

) x
ORDER BY x.smlr ASC
LIMIT 10

Search similar: Inside

B&W and resize
Haar wavelet p

att
er n

2
sign

atu
reshuffle_pattern

jpeg2pattern

K-NN Corner Case

● Corner case for Best First Strategy - all data are on the
same distance from point Q !

CREATE table circle (id serial, p point, s int4);
INSEART INTO circle (p,s)
 SELECT point(p.x, p.y), (random()*1000)::int
 FROM (select t.x, sqrt(1- t.x*t.x) AS y
 FROM (select random() as x, generate_series(1,1000000)) as t
) AS p;
CREATE index circle_p_idx ON circle USING gist(p);
ANALYZING circle;

Number of levels: 3
Number of pages: 8266
Number of leaf pages: 8201

K-NN Corner Case

● Corner case for Best First Strategy - all data are on the
same distance from point Q !
explain (analyze on, buffers, costs off) select * from circle order by (p <-> '(0,0)') asc limit 10;
 QUERY PLAN
--
 Limit (actual time=252.242..252.244 rows=10 loops=1)
 Buffers: shared hit=7353
 -> Sort (actual time=252.240..252.241 rows=10 loops=1)
 Sort Key: ((p <-> '(0,0)'::point))
 Sort Method: top-N heapsort Memory: 26kB
 Buffers: shared hit=7353
 -> Seq Scan on circle (actual time=0.015..140.504 rows=1000000 loops=1)
 Buffers: shared hit=7353
 Planning Time: 0.103 ms
 Execution Time: 252.272 ms
(10 rows)

K-NN Corner Case

● Corner case for Best First Strategy - all data are on the
same distance from point Q !
explain (analyze on, buffers, costs off) select * from circle order by (p <-> '(0,0)') asc limit 10;
 QUERY PLAN
--
 Limit (actual time=96.037..96.057 rows=10 loops=1)
 Buffers: shared hit=6073
 -> Index Scan using circle_p_idx on circle (actual time=96.035..96.054 rows=10 loops=1)
 Order By: (p <-> '(0,0)'::point)
 Buffers: shared hit=6073
 Planning Time: 0.065 ms
 Execution Time: 125.737 ms VS 252.272 ms (seq scan)
(7 rows)

K-NN Corner Case

● Corner case for Best First Strategy - all data are on the
same distance from point Q !
 Limit (actual time=97.266..99.453 rows=10 loops=1)
 Buffers: shared hit=7431
 -> Gather Merge (actual time=97.265..99.449 rows=10 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 Buffers: shared hit=7431
 -> Sort (actual time=92.849..92.850 rows=10 loops=3)
 Sort Key: ((p <-> '(0,0)'::point))
 Sort Method: top-N heapsort Memory: 26kB
 Buffers: shared hit=7431
 Worker 0: Sort Method: top-N heapsort Memory: 26kB
 Worker 1: Sort Method: top-N heapsort Memory: 25kB
 -> Parallel Seq Scan on circle (actual time=0.013..53.711 rows=333333 loops=3)
 Buffers: shared hit=7353
 Planning Time: 0.076 ms
 Execution Time: 99.477 ms (seq scan parallel) < 125.737 (knn) ms VS 252.272 ms (seq scan)
(16 rows)

TODO

• Modify opclass API to support different distance operators independently,
without need to rewrite support function shared between them

• Support for reverse distance ordering, NULLS FIRST:
ORDER BY distance DESC [NULLS FIRST]
ORDER BY distance ASC NULLS FIRST

• Replace sortsupport opclass function with opclass parameter:
CREATE INDEX … USING (col1 opclass1 (sort=zorder_point_cmp), …)

• Investigate hot spots on kNN map

• Try Z-order sorting for Quad-Tree SP-GiST indexes building

TODO – multiple distance operators support

• Currently, GiST needs support function to opclass, that will handle all possible
kNN strategies. So, you can’t easily add new ordering operator to opclass.
CREATE OPERATOR CLASS foo_ops …
 OPERATOR 1 <-> FOR ORDER BY bar_pos,
 OPERATOR 2 <@> FOR ORDER BY baz_ops,
 FUNCTION 8 gist_foo_distance … -- should handle both operators

• The possible solution is support functions for strategies:
 FUNCTION 8 gist_foo_bar_distance FOR STRATEGY 1,
 FUNCTION 8 gist_foo_baz_distance FOR STRATEGY 2,

• The same applies to consistent function, used for search operators.

• In SP-GiST it is even worse: kNN support is hardcoded into consistent support
function. At fist, we need to extract distance support function.

References

● Original K-NN post in hackers, we introduced >< operator, now it is <->
● https://www.postgresql.org/message-id/4B0AC9E1.5050509@sigaev.ru

● Original K-NN talk at PGCON-2010
● https://www.pgcon.org/2010/schedule/events/227.en.html

• Slides of this talk (PDF)

• Geonames database dump
• http://download.geonames.org/export/dump/

• Events database dump
• http://www.sai.msu.su/~megera/postgres/files/events.dump.gz

• Gevel extension – a tool for inspecting indexes
• git://sigaev.ru/gevel

http://www.sai.msu.su/~megera/postgres/talks/knn-pgconf-2021.pdf
http://download.geonames.org/export/dump/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 41
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

