

VIRTUAL

Oleg Bartunov
Nikita Glukhov

JSONB
 изнутри

Research scientist @
 Moscow University
CEO Postgres Professional
Major PostgreSQL contributor

Since Postgres95

Senior developer @Postgres Professional
 PostgreSQL contributor

Major CORE contributions:
 Jsonb improvements
 SQL/JSON (Jsonpath)
 KNN SP-GiST
 Opclass parameters
Current development:
 SQL/JSON functions
 Jsonb performance

Nikita Glukhov

 Postgres revolution: embracing relational databases

db-engines

JSONB

• NoSQL users attracted by the NoSQL Postgres features

 Dec 18, 2014

The goal:
JSONB - 1st-class citizen in Postgres

● Efficient storage,select, update, API

Reality: Unpredictable performance of jsonb
CREATE TABLE test (jb jsonb);
ALTER TABLE test ALTER COLUMN jb SET STORAGE EXTERNAL;
INSERT INTO test
SELECT
 jsonb_build_object(
 'id', i,
 'foo', (select jsonb_agg(0) from generate_series(1, 1960/12)) -- [0,0,0, ...]
) jb
FROM
 generate_series(1, 10000) i;

=# EXPLAIN(ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN
--
 Seq Scan on test (cost=0.00..2625.00 rows=10000 width=32) (actual time=0.014..6.128 rows=10000 loops=1)
 Buffers: shared hit=2500
 Planning:
 Buffers: shared hit=5
 Planning Time: 0.087 ms
 Execution Time: 6.583 ms
(6 rows)

=# EXPLAIN (ANALYZE, BUFFERS) UPDATE test SET jb = jb || '{"bar": "baz"}';

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

 Seq Scan on test (cost=0.00..2675.40 rows=10192 width=32) (actual time=0.067..65.511 rows=10000 loops=1)
 Buffers: shared hit=32548
 Planning Time: 0.044 ms
 Execution Time: 66.889 ms
(4 rows)

Small update cause 10 times slowdown !

Motivational example (synthetic test)

• A table with 100 jsonbs of different sizes (130B-13MB, compressed to 130B-247KB):
CREATE TABLE test_toast AS
SELECT
 i id,
 jsonb_build_object(
 'key1', i,
 'key2', (select jsonb_agg(0) from
 generate_series(1, pow(10, 1 + 5.0 * i / 100.0)::int)),-- 10-100k elems
 'key3', i,
 'key4', (select jsonb_agg(0) from
 generate_series(1, pow(10, 0 + 5.0 * i / 100.0)::int)) -- 1-10k elems

) jb
FROM generate_series(1, 100) i;

• Each jsonb looks like: key1, loooong key2, key3, long key4.

• We measure execution time of operator ->(jsonb, text) for each row by
repeating it 1000 times in the query:

SELECT jb -> 'keyN', jb -> 'keyN', … jb -> 'keyN' FROM test_toast WHERE id = ?;

Motivational example (synthetic test)

Key access time for TOASTed jsonbs linearly increase with jsonb size,
regardless of key size and position.

TOAST performance problems (synthetic test)

Key access time for TOASTed jsonbs linearly increase with jsonb size,
regardless of key size and position.

Motivational example (IMDB test)

• Real-world JSON data extracted from IMDB database (imdb-22-04-2018-json.dump.gz)

• Typical IMDB «name» document looks like:
{
 "id": "Connors, Steve (V)",
 "roles": [
 {
 "role": "actor",
 "title": "Copperhead Creek (????)"
 },
 {
 "role": "actor",
 "title": "Ride the Wanted Trail (????)"+
 }
],
 "imdb_id": 1234567
 }

• There are many other infrequent fields, but only id, imdb_id are mandatory,
and roles array is the biggest and most frequent (see next slide).

http://www.sai.msu.su/~megera/postgres/files/imdb-22-04-2018-json.dump.gz

IMDB data set field statistics

Motivational example (IMDB test)

Motivation

• Decompression is the biggest problem. Big overhead of decompression
of the whole jsonb limits the applicability of jsonb as document storage
with partial access.
• Need partial decompression

• Toast introduces additional overhead - read too many block
• Read only needed blocks — partial detoast

TOAST Explained
The Oversized-Attribute Storage Technique

• TOASTed value is pglz compressed

• Compressed value is splitted into the fixed-size TOAST chunks (1996B for 8KB page)

• TOAST chunks (along with
generated Oid chunk_id and
sequnce number chunk_seq)
stored in special TOAST
relation
pg_toast.pg_toast_XXX, created
for each table containing
TOASTable attributes

• Attribute in the original heap
tuple is replaced with TOAST
pointer (18 bytes) containing
chunk_id, toast_relid,
raw_size, compressed_size

https://www.postgresql.org/docs/current/storage-toast.html

TOAST access

• TOAST pointers does not refer to heap tuples with chunks directly. Instead they
contains Oid chunk_id and we need to descent by index (chunk_id, chunk_seq).

Overhead to read only a few
bytes from the first chunk is
3,4 or even 5 additional index
blocks.

TOAST passes

• Tuple is TOASTed if its size is more than 2KB (1/4 of page size).

• There are 4 TOAST passes.

• At the each pass considered only attributes of the specific storage type
(extended/external or main) starting from the largest one.

• Plain attributes are not TOASTed and not compressed at all.

• The process can stop at every step, if the resulting tuple size becomes
less than 2KB.

• If the attributes were copied from the other table, they can already be
compressed or TOASTed.

• TOASTed attributes are replaced with TOAST pointers.

TOAST pass #1

• Only "extended" and "external" attributes are considered, "extended"
attributes are compressed. If their size is more than 2KB, they are TOASTed.

TOAST pass #2

• Only "extended" and "external" attributes (that were not TOASTed in the
previous pass) are considered.

• Each attribute is TOASTed, until the resulting tuple size < 2KB.

TOAST pass #3

• Only "main" attributes are considered.

• Each attribute is compresed, until the resulting tuple size < 2KB.

TOAST pass #4

• Only "main" attributes are considered.

• Each attribute is TOASTed, until the resulting tuple size < 2KB.

Jsonb deTOAST improvements

• Partial pglz decompression

• Sort jsonb object key by their length

• Partial deTOASTing using TOAST iterators

• Inline TOAST

• Shared TOAST

Jsonb partial decompression

• Partial decompression eliminates overhead of pglz decompression of the whole jsonb.

• Jsonb is decompressed step by step: header, KV entries array, key name and key value.
 Only prefix of jsonb has to be decompressed to acccess a given key !

full decompression partial decompression

Jsonb partial decompression results (synthetic)

Access to key1 (red) in the prefix of jsonb was significantly improved:
• For inline compressed jsonb access time becomes constant

• For jsonb > 1MB acceleration is of order(s) of magnitude.

Jsonb partial decompression results (IMDB)

• Access to the first key «id» and rare key «height» was significantly improved.

• Access time to big key «roles» and short «imdb_id» remains mostly unchanged

Sorting jsonb keys by length

In the original jsonb format object keys are sorted by (length,name), so the short keys with
longer or alphabetically greater names are placed at the end and cannot benefit from the
partial decompression. Sorting by length allows fast decompressions of the shortest keys
(metadata).

original: keys names and values sorted by key names new: keys values sorted by their length

JSONB Binary Format (src/include/utils/jsonb.h)

ORIGINAL: VALUES SORTED BY KEYS VALUES SORTED BY THEIR LENGTH

Sorting jsonb keys by length results (synthetic)

Access time to the all short keys and medium-length key4 (excluding long key2,
placed now at the end of jsonb) was significantly speed up:

Sorting jsonb keys by length results (IMDB)

• Access to the last short key «imdb_id» now also was speed up.

• There is a big difference in access time (~5x) between inline and TOASTed values.

Partial deTOASTing

• We used patch «de-TOAST'ing using a iterator» from the CommitFest. It was originally
developed by Binguo Bao at GSOC 2019.

• This patch gives ability to deTOAST and decompress chunk by chunk. So if we need
only the jsonb header and first keys from the first chunk, only that first chunk will be
read (actually, some index blocks also will be read).

• We modified patch adding ability do decompress only the needed prefix of TOAST
chunks.

Partial deTOASTing results (synthetic)

Partial deTOASTing speeds up only access to the short keys of long jsonbs, making
access time almost independent of jsonb size.

Partial deTOASTing results (IMDB)

• Results are the same, but not so noticeable because the are not many big (> 100KB) jsonbs.

• A big gap in access time (~5x) between inline and TOASTed values is still there.

Partial deTOASTing results (IMDB)

• Effect of partial deTOASTing : Arrow operator (→) for short keys always read only 4 blocks (3
index and 1 heap).

Iniline TOAST

• Store first TOAST chunk containing jsonb header and possibly some short keys inline in the
heap tuple.

• We added new typstorage «tapas»,
which is similar to «extended»,
except that it tries to fill the tuple
to 2KB (if other attrubutes occupy
less than 2KB) with the chunk cutted
from the begining of the compressed
data.

Inline TOAST results (synthetic)

Partial inline TOAST completely removes gap in access time to short keys between
long and mid-size jsonbs.

Inline TOAST results (IMDB)

• Results are the same as in synthetic test.

• There is some access time gap between compressed and non-compressed jsonbs.

Inline TOAST results (IMDB)

• Effect of inline TOAST : Arrow operator (→) for short keys read no additional blocks.

JSONB partial update

TOAST was originally designed for atomic data types, it knows nothing
about internal structure of composite data types like jsonb, hstore, and
even ordinary arrays.

TOAST works only with binary BLOBs, it does not try to find differencies
between old and new values of updated attributes. So, when the
TOASTed attribute is being updated (does not matter at the beginning or
at the end and how much data is changed), its chunks are simply fully
copied. The consequences are:
• TOAST storage is duplicated
• WAL traffic is increased in comparison with updates of non-TOASTED

attributes, because the whole TOASTed values is logged
• Performance is too low

JSONB partial update: The problem

Example: table with 10K jsonb objects with 1000 keys { "1": 1, "2": 2, ... }.
CREATE TABLE t AS
SELECT i AS id, (SELECT jsonb_object_agg(j, j) FROM generate_series(1, 1000) j) js
FROM generate_series(1, 10000) i;

SELECT oid::regclass AS heap_rel,
 pg_size_pretty(pg_relation_size(oid)) AS heap_rel_size,
 reltoastrelid::regclass AS toast_rel,
 pg_size_pretty(pg_relation_size(reltoastrelid)) AS toast_rel_size
FROM pg_class WHERE relname = 't';

 heap_rel | heap_rel_size | toast_rel | toast_rel_size
----------+---------------+-------------------------+----------------
 t | 512 kB | pg_toast.pg_toast_27227 | 78 MB

Each 19 KB jsonb is compressed into 6 KB and stored in 4 TOAST chunks.

SELECT pg_column_size(js) compressed_size, pg_column_size(js::text::jsonb) orig_size from t limit 1;
 compressed_size | original_size
-----------------+---------------
 6043 | 18904

SELECT chunk_id, count(chunk_seq) FROM pg_toast.pg_toast_47235 GROUP BY chunk_id LIMIT 1;
 chunk_id | count
----------+-------
 57241 | 4

JSONB partial update: The problem

First, let's try to update of non-TOASTED int column id:

SELECT pg_current_wal_lsn(); --> 0/157717F0

UPDATE t SET id = id + 1; -- 42 ms

SELECT pg_current_wal_lsn(); --> 0/158E5B48

SELECT pg_size_pretty(pg_wal_lsn_diff('0/158E5B48','0/157717F0')) AS wal_size;
 wal_size

 1489 kB (150 bytes per row)

SELECT oid::regclass AS heap_rel,
 pg_size_pretty(pg_relation_size(oid)) AS heap_rel_size,
 reltoastrelid::regclass AS toast_rel,
 pg_size_pretty(pg_relation_size(reltoastrelid)) AS toast_rel_size
FROM pg_class
WHERE relname = 't';
 heap_rel | heap_rel_size | toast_rel | toast_rel_size
----------+---------------+-------------------------+---------------
 t | 1024 kB | pg_toast.pg_toast_47235 | 78 MB
 (was 512 kB) (not changed)

JSONB partial update: The problem

Next, let's try to update of TOASTED jsonb column js:

SELECT pg_current_wal_lsn(); --> 0/158E5B48

UPDATE t SET js = js — '1'; -- 12316 ms (was 42 ms, ~300x slower)

SELECT pg_current_wal_lsn(); --> 0/1DB10000

SELECT pg_size_pretty(pg_wal_lsn_diff('0/1DB10000','0/158E5B48')) AS wal_size;
 wal_size

 130 MB (13 KB per row; was 1.5 MB, ~87x more)

SELECT oid::regclass AS heap_rel,
 pg_size_pretty(pg_relation_size(oid)) AS heap_rel_size,
 reltoastrelid::regclass AS toast_rel,
 pg_size_pretty(pg_relation_size(reltoastrelid)) AS toast_rel_size
FROM pg_class
WHERE relname = 't';
 heap_rel | heap_rel_size | toast_rel | toast_rel_size
----------+---------------+-------------------------+---------------
 t | 1528 kB | pg_toast.pg_toast_47235 | 156 MB
 (was 1024 kB) (was 78 MB, 2x more)

Partial update using Shared TOAST

• The previsous optimizations are great for SELECT, but don’t help with UPDATE, since TOAST
consider jsonb as an atomic binary blob – change part, copy the whole.

• Idea: keep container header together with short fields and long fields replaced by TOAST
pointers INLINE, so the container headers and short fields can be updated without copying of
TOASTed fields, which will be shared.

• Currently, this works only for root objects fields, so the longest fields of jsonb object are
TOASTed until the whole tuple fits into the page (typically, remaining size of jsonb becomes <
~2000 bytes).

• But this technique can also be applied to array elements or element ranges. We plan to try to
implement it later, it needs more invasive jsonb API changes.

• Now jsonb hook is hardcoded into TOAST pass #1, but in the future it will become custom
datatype TOASTer using pg_type.typtoast.

Shared TOAST – jsonb format extensions

• Added special “TOASTed
container” JEntry type.
JsonbContainer header is
left inline, but the body is
replaced with a pointer.

• Added “TOASTed object”
JsonbContainer type to
mark object with TOAST
pointers.

• TOASTed subcontainers
are stored as plain jsonb
datums (varlena header
added).

Shared TOAST – tuple structure

• In this example two
longest fields of jsonb are
TOASTed separately

• TOASTed jsonb contains
two TOAST pointers

• Operators like -> can
simply return TOAST
pointer as external
datum, accessing only the
inline part of jsonb

Shared TOAST – update

• When the short inline
field is updated, only the
new version of inline data
is created.

• When some part of long
the long field is updated,
the whole container is
copied, updated and then
TOASTed back with new
oid (in the future oids can
be shared).

• Unchanged TOASTed
fields are always shared.

Shared TOAST – access results (synthetic)

Gap in access time to short keys is completely removed. Access to mid-size fields is
slow down, because they are TOASTed instead of stored inline (we need to fix this).

Shared TOAST – access results (IMDB)

• Results are the same as in synthetic test.

• All short keys is speed up as much as possible.

Step-by-step results (synthetic)

Step-by-step results (IMDB)

Shared TOAST – update results (synthetic)

• Update time of short keys does not depend on total jsonb size

• Update time of TOASTed fields depends only on their own size

Shared TOAST – update results (synthetic)

• WAL traffic due to update of short and mid-size keys is greatly decreased

Non-scientific comparison PG vs Mongo

• Seqscan, PG - in-memory, Mongo (4.4.4): 16Gb (in-memory), 4GB (1/2)

Quick Summary and references

• We demonstrated step-by-step performance improvements (with
backward compatibility), which lead to significant (10X) speedup for
SELECTs and much cheaper UPDATEs (OLTP Jsonb?)
• Github: https://github.com/postgrespro/postgres/tree/jsonb_shared_toast
• Slides of this talk (PDF, Video)
• It’s not PG14 ready

• The same technique can be applied to any data types with random
access to parts of data (arrays, hstore, movie, pdf …)

• Jsonb is ubiquitous and is constantly developing
• JSON[B] Roadmap V2, Postgres Professional Webinar, Sep 17, 2020
• JSON[B] Roadmap V3, Postgres Build 2020, Dec 8, 2020

• Contact obartunov@postgrespro.ru, n.gluhov@postgrespro.ru for collaboration.

https://github.com/postgrespro/postgres/tree/jsonb_shared_toast
http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgconfonline-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgconfonline-2021.mp4
http://www.sai.msu.su/~megera/postgres/talks/json-webinar-2020.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-build-2020.pdf
mailto:obartunov@postgrespro.ru

TODO (OLTP JSONB, OLAP JSONB)

• Optimization of GSON code to eliminate overhead

• More benchmarks (YCSB, use cases), PG vs Mongo

• Extend shared TOAST to support arrays, strings

• How to integrate this new stuff into the CORE ?

• WiredElephant – storage (non-TOASTED) for tree-like structures with big
attributes ?

• TOAST cache - to avoid duplication of deTOASTing, if the query contains
two or more jsonb operators and function on the the same jsonb
attribute.

• DeTOAST deferring in the chain of accessors (js→'roles'→5), not
needed for jsonpath.

 Нам нужны Ваши кейсы (тестовые данные и запросы) !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 56

