

VIRTUAL

Oleg Bartunov
Nikita Glukhov

JSON
 OR NOT
JSON

THAT IS
THE QUESTION

http://www.sai.msu.su/~megera/postgres/talks/jsonb-nizhny-2021.pdf

PGCONF.NN

http://www.sai.msu.su/~megera/postgres/talks/jsonb-nizhny-2021.pdf

Research scientist @
 Moscow University
CEO Postgres Professional
Major PostgreSQL contributor

Since Postgres95

Senior developer @Postgres Professional
PostgreSQL contributor

Major CORE contributions:
● Jsonb improvements
● SQL/JSON (Jsonpath)
● KNN SP-GiST
● Opclass parameters

Current development:
● SQL/JSON functions
● Jsonb performance

Nikita Glukhov

Why this talk ?

• My 20+ years interest and experience in extending RDBMS
• Arrays, hstore (2003), full text search, inexact search,index access methods

(GiST, GIN, SP-GiST), spatial data (astronomy), now JSONB (2014), SQL/JSON

• JSONB is better JSON, performance is more important than compatibility

• Popular — microservices, clouds, startups
• Ubiquitous format for data interchange, storing API messages (XML is too much)
• Simple database design (simple queries) , support of Agile development

• Data migration (schema evolution). Old applications can easy accept new data.

• Compact storage of metadata — one column for all

• Client app, backend, database — one format, all server side languages support
JSON, now SQL support JSON, JSON relaxed code-centric vs data-centric

• Rash use of JSONB :)

Json in
PostgreSQL
 (state of Art)

Two JSON data types !!!

JSON JSONB
BINARY BETTER JSON

2012 2014

Jsonb vs Json

SELECT j::json AS json, j::jsonb AS jsonb FROM
(SELECT '{"cc":0, "aa": 2, "aa":1,"b":1}' AS j) AS foo;
 json | jsonb
----------------------------------+----------------------------
 {"cc":0, "aa": 2, "aa":1,"b":1} | {"b": 1, "aa": 1, "cc": 0}

• json: textual storage «as is», parsed many

• jsonb: binary storage, parsed once, great performance (indexing)

• jsonb: no whitespaces, no duplicated keys (last key win)

• jsonb: keys are sorted by (length, key)

• jsonb: a rich set of functions (\df jsonb*), "arrow" operators, FTS

• JsQuery ext. - json query language with GIN indexing support

SQL/Foundation recognized JSON after the success of Postgres

SQL:2016 — 22 JSON features out of 44 new optional. December of 2016

SQL/JSON in SQL-2016

• SQL/JSON data model
• A sequence of SQL/JSON items, each item can be (recursively) any of:

• SQL/JSON scalar — non-null value of SQL types: Unicode character string, numeric, Boolean
or datetime

• SQL/JSON null, value that is distinct from any value of any SQL type (not the same as NULL)

• SQL/JSON arrays, ordered list of zero or more SQL/JSON items — SQL/JSON elements

• SQL/JSON objects — unordered collections of zero or more SQL/JSON members
(key, SQL/JSON item)

• JSON Path language
• Describes a <projection> of JSON data to be used by SQL/JSON functions

• SQL/JSON functions (9)
• Construction functions: values of SQL types to JSON values
• Query functions: JSON values to SQL types

JSON Path(JSON values) → SQL/JSON types -> converted to SQL types

RFC 1759 SQL-2016

SQL/JSON in PostgreSQL

• SQL/JSON data model

• Jsonb is the (practical) subset of SQL/JSON data model

ORDERED and UNIQUE KEYS

• JSON Path language
• Describes a <projection> of JSON data (to be used by SQL/JSON functions)
• Most important part of SQL/JSON - committed to PG12, PG13 (15/15 features) !

• SQL/JSON functions - waiting for review (v55, v48)
• Constructor functions: json[b] construction functions

• Query functions: functions/operators with jsonpath support

• Indexes
• Use already existing indexes (built-in, jsquery)

Added jsonpath support

RFC 1759 PG 12

 Postgres breathed a second life into relational databases

db-engines.com/en/ranking

JSONB

• Postgres innovation - the first relational database with NoSQL support
• NoSQL Postgres attracts the NoSQL users
• JSON became a part of SQL Standard 2016

JSONB Popularity - CREATE TABLE qq (js JSONB)

State of PostgreSQL 2021 (Survey) Pgsql telegram (6170) — 26.02.2021
https://t.me/pgsql

• SELECT 8061/312083
• SQL 4473/144789
• JSON[B] 3116/88234
• TABLE 2997/129936
• JOIN 2345/108860

• INDEX 1519/74327

• BACKUP 1484/42618
• VACUUM 1470/53919
• REPLICA 707/31036

https://www.timescale.com/state-of-postgres-results/#experiences
https://t.me/pgsql

Popular mistake: CREATE TABLE qq (jsonb)

(id, {…}::jsonb) vs ({id,…}::jsonb)

Large jsonb is TOASTed !

JSONB Projects: What we were working on

● SQL/JSON functions (SQL-2016) and JSON_TRANSFORM
● Generic JSON API (GSON). Jsonb as a SQL Standard JSON data type.

• Better jsonb indexing (Jsquery GIN opclasses)

• Parameters for jsonb operators (planner support functions for Jsonb)

• JSONB selective indexing (Jsonpath as parameter for jsonb opclasses)

• Jsonpath syntax extension

• Simple Dot-Notation Access to JSON Data

Current TOP-priority project

● SQL/JSON functions (SQL-2016) and JSON_TRANSFORM
● Generic JSON API. Jsonb as a SQL Standard JSON data type.

• Better jsonb indexing (Jsquery GIN opclasses)

• Parameters for jsonb operators (planner support functions for Jsonb)

• JSONB selective indexing (Jsonpath as parameter for jsonb opclasses)

• Jsonpath syntax extension

• Simple Dot-Notation Access to JSON Data

•JSONB - 1st-class citizen in Postgres
● Efficient storage,select, update, API

Top-priority: JSONB - 1st-class citizen in Postgres

• Popularity of JSONB — it’s mature data type, rich functionality

• Startups use Postgres and don’t care about compatibilty to Oracle/MS SQL
• Jsonpath is important and committed
• There is rich user API to Jsonb, so SQL/JSON functions are not in top-priority list

• Not enough resources in community (developers, reviewers, committers)
• SQL/JSON — 4 years, 59 versions
• JSON/Table — 4 years, 52 versions

• Waiting for PG15

• We concentrate on efficient storage, select, update (OLTP+OLAP)
• Extendability of JSONB format
• Extendability of TOAST — data type aware TOAST, TOAST for non-atomic attributes

The Curse of TOAST. Unpredictable performance
CREATE TABLE test (jb jsonb);
ALTER TABLE test ALTER COLUMN jb SET STORAGE EXTERNAL;
INSERT INTO test
SELECT
 jsonb_build_object(
 'id', i,
 'foo', (select jsonb_agg(0) from generate_series(1, 1960/12)) -- [0,0,0, ...]
) jb
FROM
 generate_series(1, 10000) i;

=# EXPLAIN(ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN
--
 Seq Scan on test (cost=0.00..2625.00 rows=10000 width=32) (actual time=0.014..6.128 rows=10000 loops=1)
 Buffers: shared hit=2500
 Planning:
 Buffers: shared hit=5
 Planning Time: 0.087 ms
 Execution Time: 6.583 ms
(6 rows)

=# UPDATE test SET jb = jb || '{"bar": "baz"}';
=# VACUUM FULL test; -- remove old versions

=# EXPLAIN (ANALYZE, BUFFERS) SELECT jb->'id' FROM test;
 QUERY PLAN

 Seq Scan on test (cost=0.00..2675.40 rows=10192 width=32) (actual time=0.067..65.511 rows=10000 loops=1)
 Buffers: shared hit=30064
 Planning Time: 0.044 ms
 Execution Time: 66.889 ms
(4 rows)

Small update cause 10 times slowdown !

 Row gets TOASTed ! See TOAST explained slides

The Curse of TOAST

• Original JSONBs stored inline in heap tuples (2500 pages with 4 tuples per page):
CREATE EXTENSION pageinspect;
SELECT lp_len FROM heap_page_items(get_raw_page('test', 0));
 lp_len

 2022
 2022
 2022
 2022
(4 rows)

• JSONBs after update became larger than 2K and postgres replaced them by pointer
to special TOAST relation (see TOAST explained slides), so the tuple length is greatly
decreased (64 pages with 157 tuples per page):

SELECT lp_len FROM heap_page_items(get_raw_page('test', 0));
 lp_len

 42
 42
 ...
 42
(156 rows)

The Curse of TOAST

• JSONB data has moved into TOAST relation:
SELECT reltoastrelid::regclass toast_rel FROM pg_class
WHERE oid = 'test'::regclass;
 toast_rel

 pg_toast.pg_toast_16460
(1 row)

• Each JSONB is splitted into two TOAST chunks, that implicitly joined by index to
attribute, when its value is fetched. Chunks belonging to the one attribute has the
same chunk_id, which stored in TOAST pointer:

SELECT chunk_id, chunk_seq, length(chunk_data) FROM pg_toast.pg_toast_16460;
 chunk_id | chunk_seq | length
----------+-----------+--------
 16466 | 0 | 1996
 16466 | 1 | 10
 16467 | 0 | 1996
 16467 | 1 | 10
 ...
 (20000 rows)

The Curse of TOAST

• Access to TOASTed JSONB requires reading at least 3 additional buffers:

• 2 TOAST index buffers (B-tree height is 2)

• 1 TOAST heap buffer

• 2 chunks read from the same page, if JSONB size > Page size (8Kb), then
more TOAST heap buffers

EXPLAIN (ANALYZE, BUFFERS, COSTS OFF, TIMING OFF)
SELECT jb->'id' FROM test;

 QUERY PLAN
--
 Seq Scan on test (actual rows=100 loops=1)
 Buffers: shared hit=30064
 Buffers: shared hit=301
 Planning Time: 0.186 ms
 Execution Time: 56 ms
(6 rows)

Table TOAST
64 buffers + 3 buffers*10000

TOAST Explained
The Oversized-Attribute Storage Technique

• TOASTed (large field) values are compressed, then splitted into the fixed-size TOAST chunks
(1996B for 8KB page)

• TOAST chunks (along with
generated Oid chunk_id and
sequnce number chunk_seq)
stored in special TOAST
relation
pg_toast.pg_toast_XXX, created
for each table containing
TOASTable attributes

• Attribute in the original heap
tuple is replaced with TOAST
pointer (18 bytes) containing
chunk_id, toast_relid,
raw_size, compressed_size

https://www.postgresql.org/docs/current/storage-toast.html

TOAST access

• TOAST pointers does not refer to heap tuples with chunks directly. Instead they
contains Oid chunk_id, so one need to descent by index (chunk_id, chunk_seq).

Overhead to read only a few
bytes from the first chunk is
3,4 or even 5 additional index
blocks.

TOAST passes

• Tuple is TOASTed if its size is more than 2KB (1/4 of page size).

• There are 4 TOAST passes.

• At the each pass considered only attributes of the specific storage type
(extended/external or main) starting from the largest one.

• Plain attributes are not TOASTed and not compressed at all.

• The process can stop at every step, if the resulting tuple size becomes
less than 2KB.

• If the attributes were copied from the other table, they can already be
compressed or TOASTed.

• TOASTed attributes are replaced with TOAST pointers.

TOAST pass #1

• Only "extended" and "external" attributes are considered, "extended"
attributes are compressed. If their size is more than 2KB, they are TOASTed.

TOAST pass #2

• Only "extended" and "external" attributes (that were not TOASTed in the
previous pass) are considered.

• Each attribute is TOASTed, until the resulting tuple size < 2KB.

TOAST pass #3

• Only "main" attributes are considered.

• Each attribute is compresed, until the resulting tuple size < 2KB.

TOAST pass #4

• Only "main" attributes are considered.

• Each attribute is TOASTed, until the resulting tuple size < 2KB.

Motivational example (synthetic test)

• A table with 100 jsonbs of different sizes (130B-13MB, compressed to 130B-247KB):
CREATE TABLE test_toast AS
SELECT
 i id,
 jsonb_build_object(
 'key1', i,
 'key2', (select jsonb_agg(0) from
 generate_series(1, pow(10, 1 + 5.0 * i / 100.0)::int)),-- 10-100k elems
 'key3', i,
 'key4', (select jsonb_agg(0) from
 generate_series(1, pow(10, 0 + 5.0 * i / 100.0)::int)) -- 1-10k elems

) jb
FROM generate_series(1, 100) i;

• Each jsonb looks like: key1, loooong key2, key3, long key4.

• We measure execution time of operator ->(jsonb, text) for each row by
repeating it 1000 times in the query:

SELECT jb -> 'keyN', jb -> 'keyN', … jb -> 'keyN' FROM test_toast WHERE id = ?;

Motivational example (synthetic test)

Key access time for TOASTed jsonbs linearly increase with jsonb size,
regardless of key size and position.

Inline

Compressed
 Inline

Inline

Toasted

Inline+

Toasted

Large jsonb is TOASTed !

TOAST performance problems (synthetic test)

Key access time for TOASTed jsonbs linearly increase with jsonb size,
regardless of key size and position.

Large jsonb is TOASTed !

Inline

Compressed
Inline

Toasted

Inline+

Toasted

Motivational example (IMDB test)

• Real-world JSON data extracted from IMDB database (imdb-22-04-2018-json.dump.gz)

• Typical IMDB «name» document looks like:
{
 "id": "Connors, Steve (V)",
 "roles": [
 {
 "role": "actor",
 "title": "Copperhead Creek (????)"
 },
 {
 "role": "actor",
 "title": "Ride the Wanted Trail (????)"+
 }
],
 "imdb_id": 1234567
 }

• There are many other infrequent fields, but only id, imdb_id are mandatory,
and roles array is the biggest and most frequent (see next slide).

http://www.sai.msu.su/~megera/postgres/files/imdb-22-04-2018-json.dump.gz

IMDB data set field statistics

Motivational example (IMDB test)

Inline

Compressed
Inline

Toasted

Motivation

• Decompression is the biggest problem. Big overhead of decompression
of the whole jsonb limits the applicability of jsonb as document storage
with partial access.

• Need partial decompression

• Toast introduces additional overhead - read too many block
• Read only needed blocks — partial detoast

Jsonb deTOAST improvements

• Partial (prefix) decompression

• Sort jsonb object key by their length – good for short metadata

• Partial deTOASTing using TOAST iterators – decompress chunk by chunk

• Inline TOAST – store in heap tuple data from the first chunk

• Shared TOAST – store in heap tuple uncompresed short keys, compress
chunks separately, share common chunks

• Access
• Update - share
• In-place update – don’t copy shared chunks if length is not changed, store new

value inline if possible

Step-by-step results (access key,synthetic)

Step-by-step results (access key, IMDB)

Popular mistake: CREATE TABLE qq (jsonb)

(id, {…}::jsonb) vs ({id,…}::jsonb)

Large jsonb is TOASTed !

JSONB partial update

TOAST was originally designed for atomic data types, it knows nothing
about internal structure of composite data types like jsonb, hstore, and
even ordinary arrays.

TOAST works only with binary BLOBs, it does not try to find differencies
between old and new values of updated attributes. So, when the
TOASTed attribute is being updated (does not matter at the beginning or
at the end and how much data is changed), its chunks are simply fully
copied. The consequences are:

• TOAST storage is duplicated
• WAL traffic is increased in comparison with updates of non-TOASTED

attributes, because the whole TOASTed values is logged
• Performance is too low

JSONB partial update: The problem

Example: table with 10K jsonb objects with 1000 keys { "1": 1, "2": 2, ... }.
CREATE TABLE t AS
SELECT i AS id, (SELECT jsonb_object_agg(j, j) FROM generate_series(1, 1000) j) js
FROM generate_series(1, 10000) i;

SELECT oid::regclass AS heap_rel,
 pg_size_pretty(pg_relation_size(oid)) AS heap_rel_size,
 reltoastrelid::regclass AS toast_rel,
 pg_size_pretty(pg_relation_size(reltoastrelid)) AS toast_rel_size
FROM pg_class WHERE relname = 't';

 heap_rel | heap_rel_size | toast_rel | toast_rel_size
----------+---------------+-------------------------+----------------
 t | 512 kB | pg_toast.pg_toast_27227 | 78 MB

Each 19 KB jsonb is compressed into 6 KB and stored in 4 TOAST chunks.

SELECT pg_column_size(js) compressed_size, pg_column_size(js::text::jsonb) orig_size from t limit 1;
 compressed_size | original_size
-----------------+---------------
 6043 | 18904

SELECT chunk_id, count(chunk_seq) FROM pg_toast.pg_toast_47235 GROUP BY chunk_id LIMIT 1;
 chunk_id | count
----------+-------
 57241 | 4

JSONB partial update: The problem

First, let's try to update of non-TOASTED int column id:

SELECT pg_current_wal_lsn(); --> 0/157717F0

UPDATE t SET id = id + 1; -- 42 ms

SELECT pg_current_wal_lsn(); --> 0/158E5B48

SELECT pg_size_pretty(pg_wal_lsn_diff('0/158E5B48','0/157717F0')) AS wal_size;
 wal_size

 1489 kB (150 bytes per row)

SELECT oid::regclass AS heap_rel,
 pg_size_pretty(pg_relation_size(oid)) AS heap_rel_size,
 reltoastrelid::regclass AS toast_rel,
 pg_size_pretty(pg_relation_size(reltoastrelid)) AS toast_rel_size
FROM pg_class
WHERE relname = 't';
 heap_rel | heap_rel_size | toast_rel | toast_rel_size
----------+---------------+-------------------------+---------------
 t | 1024 kB | pg_toast.pg_toast_47235 | 78 MB
 (was 512 kB) (not changed)

JSONB partial update: The problem

Next, let's try to update of TOASTED jsonb column js:

SELECT pg_current_wal_lsn(); --> 0/158E5B48

UPDATE t SET js = js — '1'; -- 12316 ms (was 42 ms, ~300x slower)

SELECT pg_current_wal_lsn(); --> 0/1DB10000

SELECT pg_size_pretty(pg_wal_lsn_diff('0/1DB10000','0/158E5B48')) AS wal_size;
 wal_size

 130 MB (13 KB per row; was 1.5 MB, ~87x more)

SELECT oid::regclass AS heap_rel,
 pg_size_pretty(pg_relation_size(oid)) AS heap_rel_size,
 reltoastrelid::regclass AS toast_rel,
 pg_size_pretty(pg_relation_size(reltoastrelid)) AS toast_rel_size
FROM pg_class
WHERE relname = 't';
 heap_rel | heap_rel_size | toast_rel | toast_rel_size
----------+---------------+-------------------------+---------------
 t | 1528 kB | pg_toast.pg_toast_47235 | 156 MB
 (was 1024 kB) (was 78 MB, 2x more)

Partial update using Shared TOAST

• The previous optimizations are great for SELECT, but don’t help with UPDATE, since TOAST
consider jsonb as an atomic binary blob – change part, copy the whole.

• Idea: Keep INLINE short fields (uncompressed) and TOAST pointers to long fields to let update
short fields without modification of TOAST chunks, which will be shared between versions.

• Currently, this works only for root objects fields, so the longest fields of jsonb object are
TOASTed until the whole tuple fits into the page (typically, remaining size of jsonb becomes <
~2000 bytes).

• But this technique can also be applied to array elements or element ranges. We plan to try to
implement it later, it needs more invasive jsonb API changes.

• Currently, jsonb hook is hardcoded into TOAST pass #1, but in the future it will become custom
datatype TOASTer using pg_type.typtoast.

Shared TOAST – tuple structure

• In this example two
largest fields of jsonb are
TOASTed separately

• TOASTed jsonb contains
two TOAST pointers

• Operators like -> can
simply return TOAST
pointer as external
datum, accessing only the
inline part of jsonb

Shared TOAST – update

• When the short inline
field is updated, only the
new version of inline data
is created.

• When some part of the
long field is updated, the
whole container is copied,
updated and then
TOASTed back with new
oid (in the future oids can
be shared).

• Unchanged TOASTed
fields are always shared.

Shared TOAST – in-place updates

• Copying of shared TOASTs can
be avoided when the size and
type of updated part is not
changed – there is no need to
rewrite JEntries, only the value
needs to be replaced

• jsonb_set() checks this special
case accessing only the
minimal header part needed
for fetching offset, length and
type of the old value

• If the length is not changed,
created “diff” TOAST pointer
with offset and new value

Shared TOAST – in-place update results (synthetic)

Update time of array elements depends on their position:
• first elements updated very fast (like inline fields)

• last elements updated slower (need to read the whole JEntry array)

Shared TOAST – in-place update results (synthetic)

Number of blocks read depends on element position:
• first elements do not require reading of additional blocks

• last elements require reading the whole JEntry array (4В * array size)

Shared TOAST – in-place update results (synthetic)

• WAL size of in-place updates is almost independent on element position

• Only inline data with TOAST pointer diff are logged

JSONB vs Relational: access whole document

JSONB table – 25600 uncompressed arrays of various sizes (1 - 1000) with random
string elements of various length (1-1000 bytes):
[{"id": 123, "val": "random string"}, ...]

CREATE TABLE test_jsonb_arrays (id int, array_size int, elem_size int, jb jsonb);
ALTER TABLE test_jsonb_arrays ALTER jb SET STORAGE external;

INSERT INTO test_jsonb_arrays
SELECT
 id + (array_size * 16 + elem_size) * 100 AS id,
 array_size,
 elem_size,
 obj AS jb
FROM
 generate_series(0, 15) array_size,
 generate_series(0, 15) elem_size,
 lateral (select jsonb_agg(
 jsonb_build_object('id', idx,
 'val', random_string(pow(10, elem_size / 5.0)::int)))

 from generate_series(1, pow(10, array_size / 5.0)::int) idx
) o(obj),
 generate_series(0, 99) id;

CREATE INDEX ON test_jsonb_arrays (array_size, elem_size);
CREATE INDEX ON test_jsonb_arrays (id);

JSONB vs Relational: access whole document

Two relational tables – the first for arrays, the second for their elements:

CREATE TABLE test_jsonb_arrays_rel (id int, array_size int, elem_size int);
CREATE TABLE test_jsonb_arrays_rel_elems (id int, idx int, val text);

INSERT INTO test_jsonb_arrays_rel
SELECT
 id + (array_size * 16 + elem_size) * 100 AS id,
 array_size,
 elem_size
FROM
 generate_series(0, 15) array_size,
 generate_series(0, 15) elem_size,
 generate_series(0, 99) id;

INSERT INTO test_jsonb_arrays_rel_elems
SELECT
 id + (array_size * 16 + elem_size) * 100 AS id,
 idx,
 val
FROM
 generate_series(0, 15) array_size,
 generate_series(0, 15) elem_size,
 generate_series(0, pow(10, array_size / 5.0)::int - 1) idx,
 random_string(pow(10, elem_size / 5.0)::int) val,
 generate_series(0, 99) id;

CREATE INDEX ON test_jsonb_arrays_rel (array_size, elem_size);
CREATE INDEX ON test_jsonb_arrays_rel (id);
CREATE INDEX ON test_jsonb_arrays_rel_elems (id, idx);

JSONB vs Relational: access whole document

• JSONB document extraction in 3 variants:

SELECT jb FROM test_jsonb_arrays WHERE array_size = $1 AND elem_size = $2;

SELECT textsend(jb::text) ... -- plain text format

SELECT ubjson_send(jb::ubjson) ... -- binary ubjson format

• Relational join with aggregation to array in 3 variants:

SELECT (SELECT array_agg(e.val)
 FROM test_jsonb_arrays_rel_elems e
 WHERE e.id = a.id)
FROM test_jsonb_arrays_rel a
WHERE array_size = $1 AND elem_size = $2;

SELECT textsend(SELECT array_agg(e.val) ...) ... -- plain text format

SELECT array_send(SELECT array_agg(e.val) ...) ... -- binary format

JSONB vs Relational: access whole document

JSONB vs Relational: access key, update

JSONB table – uncompressed objects of various sizes (up to 1.4MB) with 10
random string keys of various length (up to 1MB):
 key 1 length: 100 B - 1 MB
 key 2 length: 30 B - 300 KB
 key 3 length: 10 B - 100 KB
 ...

CREATE TABLE test_jsonb_object (id int, size int, level int, jb jsonb);
ALTER TABLE test_jsonb_object ALTER jb SET STORAGE external;

INSERT INTO test_jsonb_object
SELECT id + size * 100 AS id, size, obj AS jb
FROM
 generate_series(20, 60) size,
 LATERAL (
 SELECT jsonb_object_agg('key' || k,
 jsonb_build_array(random_string(pow(10, size / 10.0 - (k - 1) / 2.0)::int)))::text

FROM generate_series(1, 10) k
) o(obj),
 generate_series(0, 99) id;

CREATE INDEX ON test_jsonb_object (size);
CREATE INDEX ON test_jsonb_object (id);

JSONB vs Relational: access key, update

Relation table with 10 key columns:

CREATE TABLE test_jsonb_object_rel AS
SELECT
 id + size * 100 id,
 size,
 arr[1] key1,
 arr[2] key2,
 arr[3] key3,
 arr[4] key4,
 arr[5] key5,
 arr[6] key6,
 arr[7] key7,
 arr[8] key8,
 arr[9] key9,
 arr[10] key10
FROM
 generate_series(20, 60) size,
 LATERAL (SELECT array_agg(random_string(pow(10, size / 10.0 - (k - 1) * 0.5)::int))
 FROM generate_series(1, 10) k) a(arr),
 generate_series(0, 99) id;

CREATE INDEX ON test_jsonb_object_rel (size, level);
CREATE INDEX ON test_jsonb_object_rel (id);

JSONB vs Relational: access key, update

• Select single key:

SELECT textsend(jb #>> '{key$1,0}') FROM test_jsonb_object WHERE size = $2;
SELECT textsend(key$1) FROM test_jsonb_object_rel WHERE size = $2;

$1 = 1-10 (key)
$2 = 20-60 (size)

• Update single key and commit, repeat 100 times, key length not changed:

UPDATE test_jsonb_object
SET jb = jsonb_set(jb, '{key$1,0}', to_jsonb($2))
WHERE id = $3;

UPDATE test_jsonb_object_rel
SET key$1 = $2
WHERE id = $3;

$1 = 1-10 (key)
$2 = random_string(pow(10, size / 10.0 - (key - 1) / 2.0)::int))
$3 = size * 1000

JSONB vs Relational: access key, update

JSONB vs Relational: access key slowdown

JSONB vs Relational: update key slowdown

JSONB vs Relational: update key WAL

JSONB vs Relational: access array member

• JSONB:

SELECT textsend(jb #>> ARRAY[$1::text, 'val'])
FROM test_jsonb_arrays
WHERE array_size = $2 AND elem_size = $3;

• Relational:
SELECT textsend(val)
FROM test_jsonb_arrays_rel_elems
WHERE idx = $1 AND array_size = $2 AND elem_size = $3;

• $1 =
first => 0
middle => array_length / 2
last => array_length - 1

JSONB vs Relational: access array member

JSONB vs Relational: update array member

• JSONB:

UPDATE test_jsonb_arrays
SET jb = jsonb_set(jb, ARRAY[$1::text, 'val'], $3)
WHERE id = $2;

• Relational:
UPDATE test_jsonb_arrays_rel_elems
SET val = $3
WHERE id = $2 AND idx = $1;

• $1 =
first => 0
middle => array_length / 2
last => array_length - 1

JSONB vs Relational: update array member

JSONB vs Relational: WAL update array member

Conclusions

• JSONB is good
• Full object access (microservices) — faster than relational way (joins,

aggregate,difficult tuning)
• Storing short metadata as a separate jsonb field
• Ubiquitous format for data interchange, storing API messages (XML is too much)
• Simple database design (simple queries) , support of Agile development
• Data migration (schema evolution). Old applications can easy accept new data.
• Client app, backend, database — one format, all server side languages support

JSON, now SQL support JSON, JSON relaxed code-centric vs data-centric

• Currently not optimized for
• TOASTed jsonb (updates)
• Access to array members

• There are promising results !

TODO

• Data type aware TOAST

• JSONB Access Method — graph-like access of k-v level ?

• Better indexing

References

● A sequence of rather simple and straightforward algorithms and storage
optimizations based on GSON API, without any major changes to the JSONB API,
have lead to significant performance improvements (10X speedup for SELECT and
much cheaper UPDATEs):

• Details - http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgvision-2021.pdf
• Slides of this talk (PDF)

• Jsonb is ubiquitous and is continuously developing
• JSON[B] Roadmap V2, Postgres Professional Webinar, Sep 17, 2020
• JSON[B] Roadmap V3, Postgres Build 2020, Dec 8, 2020

http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgvision-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/jsonb-nizhny-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-webinar-2020.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-build-2020.pdf

Non-scientific comparison PG vs Mongo

• Seqscan, PG - in-memory, Mongo (4.4.4): 16Gb (in-memory), 4GB (1/2)

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 92
	Slide 93
	Slide 94

