
VIRTUAL

 TOAST LARGE OBJECTS

PGConf.ru, Moscow, June, 21, 2022

We would like to store file in relation database. How?
 And do not ask us why.

Customers

● huge pages
● bytea
● lo_object
● new approach

The ways

● increase page size up to 64kb
● first class citizen!
● no toast
● not so huge value …

1) huge pages

● first class citizen
● toast issue (see TOASTER topic)
● hard limit 1Gb (varlena struct, protocol)
● soft limit < 1Gb

○ serialization in text - 1/2Gb
○ serialization in tuple - Σ <= 1Gb (1/2Gb in text)
○ dump issues

2) bytea/text

● Oid lo_creat(PGconn *conn, int mode);
● file-like interface with oid as filedescriptor (very close)
● store oid in user table

Second class citizen

3) lo_object

\d pg_largeobject
Table "pg_catalog.pg_largeobject"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 loid | oid | | not null |
 pageno | integer | | not null |
 data | bytea | | not null |
Indexes:
"pg_largeobject_loid_pn_index" PRIMARY KEY, btree (loid, pageno)

3) lo_object

3) lo_object

● Limited access from SQL Level
● Creating, loading, and other operations are executed manually with lo_… functions set
● All large objects are stored in 1 (one) special system table
● Very tight system limits on objects storage

Surprise - pg_largeobject is, actually, Toast table too, with all limitations =)

● only 2^32 objects per database (infinite loop)
● only 32TB per database (max relation size, ERROR)
● 2TB per large object (2^31 * 2KB)
● only 2^15 1GB objects (~16000 films)

Restrictions do not correspond to modern realities

3) lo_object

New Approach

TOAST means “The Oversized Attribute Storage Technique”.
What if we try to use our Pluggable TOAST to deal with such bulky entity like Large
Object?Let’s imagine we have Large Object datatype, that can be added as a column to regular
tables, is fully accessible from SQL level - with INSERT, UPDATE, SELECT, functions to
play with object’s internal data, and much less limits than set by PostgreSQL large objects.

Is it possible?

Let’s set the goal.

The Goal

1. Large Object - first class citizen in PostgreSQL;
2. Eliminate limitations of LO_OBJECT functionality;
3. Introduce human readable interface instead of ‘file descriptions’ being the OID

numbers;
4. Keep the same functionality as provided by lo_* because of maximum in-memory

object size of 1 Gb, including a lot of internal limits of 1 Gb, including protocol

The Pluggable TOAST seems to give perfect opportunities to achieve these goals.

What is Pluggable TOAST?
Current TOAST

VS

How TOAST Works

● When tuple size
exceeds some
internal limit Heap
decides to TOAST
large attributes

● Attribute stored in
TOAST relation and
replaced with Toast
Pointer

● 4 strategies
depending on
storage type

● TOAST does not
know anything
about data being
TOASTed

Current TOAST Limitations

TOAST technology is trusted and reliable, and it just works, but it has limitations:
● One TOAST relation per table;
● TOAST relations is limited to 32 Tb in size as any other table
● TOASTed valued OIDs are taken from global system OID pool which is limited to 2^32

4294967295 values. When system OID pool is expended no object creations is possible
and queries hang in endless waiting for free OID;

● Same TOAST strategy for all TOASTable datatypes;
● Unpredictable performance of queries related to TOAST tables.

Almost all these limitations could be avoided with use of custom Toaster fit to data being
TOASTed

How Pluggable TOAST Works

●Attribute is replaced
with Custom Toast
Pointer created by
specific Toaster

●TOAST and storage
details are hidden from
AM behind the Toaster

●Toaster can use any
knowledge of data
structure and workflow

●Same data could be
TOASTed with different
Toasters

TOAST API

• Helper provides lookup
functions and calls
Toasters via API

• API defines entry points
for main TOAST
functions called by
Helpers/AMs

• Toasters are responsible
for storage-related
functionality - store,
fetch, compress etc.

Extend The Extensible

• TOAST API already
includes interface for
user-defined custom
functions

void * get_vtable()

A void pointer can be
casted to any type – object,
function or container

Yo dawg we heard you like APIs
so we put an API in our API so
you can extend Postgres while
you extend Postgres

TOAST API SQL Syntax

How superfile_toaster looks from SQL level:

create extension superfile_toaster;

create table t1 (id int, data superfile storage external toaster
superfile_toaster);

create table t2 (id int, data superfile);

alter table t3 alter column data set storage external;
alter table t3 alter column data set toaster superfile_toaster;

Tools Ready To Use

What do we already have -
● TOAST API (TOAST Helper, SQL syntax support, core changes)
● Default (generic) Toaster implemented via TOAST API
● bytea appendable Toaster for bytea datatype with custom ‘append’ operation
● JSONB updatable Toaster for JSONB datatype with lots of optimizations

Large Objects look a lot like bytea data, but there are slight differences: they could be much,
much bigger, have some special means of identification, i.e. by name.

PS: TOAST API does not have any noticeable overhead in comparison with original TOAST

Power of Custom Toasters
JSONB Toaster bytea appendable Toaster

Yes, they are. With high-speed and large volume of modern storage systems - you can have very
reliable data storage, because -

● Databases have large set of interfaces allowing safe access to data from almost any type of
remote systems

● Stored large objects are replicated, dumped, restored by DBMS along with all your other
data

From user level -
● Full-scale SQL access, not restricted with very limited set of no-sql functions
● New approach allows a lot of different customizations - extension of data type, new user

functions and, new strategies and storage optimizations in Toaster
● Total objects size is limited only by Storage
● No impact on DBMS functionality and existing data, full backwards compatibility
● New datatype, Toaster and user functions are provided as an Extension

What? Large Objects in Database?!

Large Objects With Benefits

● user data type ‘superfile’ to use as regular datatype
● user functions set to play with large data internals - store, fetch, search, etc.
● superfile_toaster to provide special storage support for superfile user type

Full access from SQL Level with:

Let’s TOAST ‘Em!

● New user type stored
in original table
contains only
information necessary
to retrieve contents

● Large object contents
stored in Toast tables
with custom Toaster to
hide all storage-
related internal
operations

● Custom large object
Toaster could
implement
compression and
other optimizations

SuperFile Prototype - User Type

CREATE FUNCTION sft_in(cstring)
RETURNS superfile
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE RETURNS NULL ON NULL INPUT;

CREATE FUNCTION sft_out(superfile)
RETURNS cstring
AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE RETURNS NULL ON NULL INPUT;

CREATE TYPE superfile (
 INTERNALLENGTH = -1,
 INPUT = sft_in,
 OUTPUT = sft_out,
 STORAGE = external
);

SuperFile Prototype - Toaster And Interface

CREATE FUNCTION superfile_toaster_handler(internal)
RETURNS toaster_handler
AS 'MODULE_PATHNAME'
LANGUAGE C;
CREATE TOASTER superfile_toaster HANDLER superfile_toaster_handler;

CREATE FUNCTION sf_put(superfile, bytea, integer) RETURNS superfile
AS 'MODULE_PATHNAME'
LANGUAGE C;

CREATE FUNCTION sf_get(superfile, integer, integer) RETURNS cstring
AS 'MODULE_PATHNAME'
LANGUAGE C;

SuperFile Prototype - Internals

C internal representation:

typedef struct {
int32 varlena;
int64 valid;
int64 size;
int32 last_chunk;
Oid relation;
Oid toastrelation;
Oid toasterid;
charname[FLEXIBLE_ARRAY_MEMBER];

} SuperFileType;

Due to internal restriction of PostgreSQL values could not exceed size of 1 Gb.
The solution is set of user functions writing buffers less then 1 Gb (actually, less then 1 Gb) in
size

Superfile In Action

create table t1 (id int, data superfile storage external toaster
superfile_toaster);
CREATE TABLE
Time: 11.430 ms
insert into t1 values (1, '(0, 0, 0, 0, 0, 0, /etc/passwd)'::superfile)
returning data;
 data

 (0, 0, 0, 0, 0, 0, /etc/passwd)
(1 row)

INSERT 0 1
Time: 4.617 ms

Data buffer insert used for testing:

select sf_put('(1, <value_size>, <last_chunk_number>, 0, 32867, 16386,
/etc/passwd)'::superfile, b, 0);

Superfile Compared to Disk and LO
Raw (direct) disk write 20 Gb file - 542 Mb/s:
sudo dd if=/dev/zero of=output.dat bs=500M count=40
40+0 records in
40+0 records out
20971520000 bytes (21 GB, 20 GiB) copied, 38.6741 s, 542 MB/s

Loading 20 Gb file into lo_object - 136 Mb/s
select lo_import('/usr/local/pgsql/bin/output.dat');
 lo_import

 49221
(1 row)
Time: 147553.673 ms (02:27.554)

Loading 20 Gb by Superfile interface - 133 Mb/s:
select avg(500000000/timing) from t_log_wr_res where v_size <= 20000000000;
 avg

 135598.44814301998
(1 row)
Time: 1.247 ms

Prototype Results - Insert Large Object

Issues

Some issues encountered during prototype development:
● Writing large buffers. Insert time increases with value size because of heavy WAL traffic.

Unlogged tables are not safe due to data loss because of unexpected server failures, but
provide almost constant write speed;

● Reading large buffers - user must carefully control reading buffer size and buffers ranges.
Could be implemented with iterators;

● Current TOAST functionality does not allow forced TOASTing - there is a tricky strategy to
decide Toast or not data. Forced TOAST must be implemented in core;

● TOASTed valued OIDs are taken from global system OID pool which is limited to
4294967295 values. When system OID pool is depleted no object creations is possible and
queries hang in endless waiting for free OID;

TODO

● Research different storage scenarios;
● Research transactional behavior;
● Currently prototype does not allow update due to mostly used append operation for large

files, it allows only insert and append, select (get) and delete functionality. Update operation
for large objects could be very tricky;

● Modify core to enable forced TOAST (could be done by introducing toaster options);
● Implement iterators for more convenient access to stored data;
● Develop benchmarks
● Currently, Pluggable TOAST is not committed into Pg15, but we hope to commit it in Pg16

Conclusions

● New approach is very promising, but there are many decisions to be made and a lot of work
to do;

● Pluggable TOAST allows to introduce very powerful solutions to existing problems and
bottlenecks of PostgreSQL;

● We’ll be glad to introduce this extension in Pg16;
● We welcome developers to participate in development and testing of this cool new feature

References

Our experiments:
New TOAST in TOWN. One Toast Fits All
http://www.sai.msu.su/~megera/postgres/talks/toast-pgcon-2022.pdf
Understanding Jsonb performance
http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgconfnyc-2021.pdf
JSON and JSONB Unification (GSON)
http://www.sai.msu.su/~megera/postgres/talks/json-unification-database-meetup-2020.pdf
Scaling JSONB - http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgvision-2021.pdf
Slides of this talk http://www.sai.msu.su/~megera/postgres/talks/toast-pgcon-2022.pdf
Appendable Bytea TOAST
http://www.sai.msu.su/~megera/postgres/talks/bytea-pgconfonline-2021.pdf
Pluggable TOAST at Commitfest https://commitfest.postgresql.org/38/3490/
Jsonb_toaster @Github (check License.txt) :
https://github.com/postgrespro/postgres/tree/jsonb_toaster
Jsonb is ubiquitous and is continuously developing
JSON[B] Roadmap V2, Postgres Professional Webinar, Sep 17, 2020
JSON[B] Roadmap V3, Postgres Build 2020, Dec 8, 2020

http://www.sai.msu.su/~megera/postgres/talks/toast-pgcon-2022.pdf
http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgconfnyc-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-unification-database-meetup-2020.pdf
http://www.sai.msu.su/~megera/postgres/talks/jsonb-pgvision-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/toast-pgcon-2022.pdf
http://www.sai.msu.su/~megera/postgres/talks/bytea-pgconfonline-2021.pdf
https://commitfest.postgresql.org/38/3490/
https://github.com/postgrespro/postgres/tree/jsonb_toaster

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

