
Generalizing ‘‘Search’’ in Generalized Search Trees
(extended abstract)

Paul M. Aoki†

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720-1776

Abstract
The generalized search tree, or GiST, defines a frame-

work of basic interfaces required to construct a hierarchi-
cal access method for database systems. As originally
specified, GiST only supports record selection. In this
paper, we show how a small number of additional inter-
faces enable GiST to support a much larger class of oper-
ations. Members of this class, which includes nearest-
neighbor and ranked search, user-defined aggregation
and index-assisted selectivity estimation, are increasingly
common in new database applications. The advantages of
implementing these operations in the GiST framework
include reduction of user development effort and the abil-
ity to use ‘‘industrial strength’’ concurrency and recovery
mechanisms provided by expert implementors.

1. Introduction
Access methods are arguably the most difficult user

extensions supported by object-relational database man-
agement systems. Dozens of database extension modules
are available today for commercial database servers.
However, none of them ship with access methods that are
of the same degree of efficiency, robustness and integra-
tion as those provided by the vendors.

The problem is not a lack of access method extension
interfaces. The iterator interface (by which the database
invokesaccess methods) existed in System R [ASTR76].
Query optimizer cost model interfaces (by which the
databasedecidesto invoke access methods) were intro-
duced in the early extensible database prototypes (e.g.,
ADT-INGRES/POSTGRES [STON86] and Starburst
[LIND87]). These well-understood interfaces still consti-
tute the commercial state of the art [INFO97].

The problem is that these interfaces relate to the func-
tions performed by access methods and do not isolate the
primitive operations required toconstruct new access
methods. Each access method implementor must write
code to pack records into pages, maintain links between

† Research supported by the National Science Foundation under
grant IRI-9400773 and the Army Research Office under grant FD-
DAAH04-94-G-0223.

pages, read pages into memory and latch them,etc. Writ-
ing this kind of structural maintenance code for an
‘‘industrial strength’’ access method requires a great deal
of familiarity with buffer management, concurrency con-
trol and recovery protocols. To make matters worse, these
protocols are different in every database server.

The generalized search tree, or GiST [HELL95],
addresses this problem — in part. Like the previous work
in this area, GiST defines a set of interfaces for imple-
menting a search index. However, the GiST interfaces are
essentially expressed in terms of the abstract data types
(ADTs) being indexed rather than in terms of pages,
records and query processing primitives. Since a GiST
implementor need not write any structural maintenance
code,e.g., for concurrency control [KORN97], they need
not understand the server-specific protocols discussed in
the previous paragraph. Given that database extension
modules tend to be produced bydomain knowledge
experts rather thandatabase serverexperts, we believe
that GiST serves the majority of database extenders much
better than the previous work.

We say that GiST solves the access method problem
‘‘in part’’ because, as originally specified in [HELL95],
GiST does not provide the functionality required by cer-
tain advanced applications. For example, database exten-
sion modules for multimedia ADTs (images, video, audio,
etc.) usually include specialized index structures. Unfor-
tunately, these applications need specialized index opera-
tions as well. GiSTs only support the relational selection
operator, such as, ‘‘Find the images containing this exact
shade of purple.’’ Howev er, a typical image database
query is a similarity or nearest-neighbor search, such as,
‘‘Find the imagesmost likethis one.’’ To get this func-
tionality, access method implementors must override one
or more of the internal GiST methods. This leaves them
with many or all of the pre-GiST implementation issues.

In this extended abstract, we show how to extend the
original GiST design to support applications requiring

1 Note that the ‘‘toolkit’’ approach (e.g., [BATO88]) helps only
marginally here, since the problem we describe is essentially that of im-
plementing new parts for the toolkit.

specialized index operations. These applications include:
• ranked and nearest neighbor search (spatial and feature

vector databases)
• index-assisted sampling
• index-assisted query selectivity estimation
• index-assisted statistical computation (e.g., aggre-

gation)
Our goal is not to create low-level interfaces that permit
as many optimizations as possible. Instead, we expose
simple, high-level interfaces. The idea is to enable (say) a
computer vision expert to produce a correct and efficient
access method with an interesting search algorithm. In
the sections that follow, we describe these interfaces and
show how they implement the desired functionality.

The remainder of the paper is organized as follows.
Section 2 reviews the original GiST design. Section 3
motivates our changes to that design by giving an
extended example of one of our test applications. In Sec-
tion 4, we discuss the interfaces and design details of our
extensions. Section 5 applies the new extensions to some
of our test applications, giving specific examples of its
use. (Further discussion of the remaining applications,
along with an extensive description of related work for all
of the applications, appears in the full paper [AOKI97].)
We conclude in Section 6 with a discussion of project sta-
tus and future directions.

2. A re view of GiST
In this section, we review the current state of general-

ized search tree research. This includes the definition of
the GiST structure and the callback architecture by which
operations are performed on GiSTs. (In what follows, we
use the term ‘‘GiST’’ to mean the software framework as
well as specific instances; the meaning will be clear from
context.) The following sections of the paper will assume
reasonable familiarity with these aspects.

2.1. Basic definitions and structure
A GiST is a height-balanced, multiway tree. Each tree

node contains a number of entries,E = <p, ptr >, where
p is a predicate that describes the subtree indicated by
ptr. The subtrees recursively partition the data records.
However, they do not necessarily partition the data space.
GiST can therefore model ordered, space-partitioning
trees (e.g., B+-trees [COME79]) as well as unordered,
non-space-partitioning trees (e.g., R-trees [GUTT84]).

Tw o terms will be used in this paper that require addi-
tional explanation. First, for consistency with [HELL95],
we call each datum stored inp a ‘‘predicate’’ rather than a
‘‘key’’ or ‘‘index column.’’ Second, we describe the com-
bination of an ADT and any GiST methods associated
with that ADT as adomain. We use this term in place of
‘‘ADT’’ or ‘‘type’’ because the same ADT may be used in

different ways depending on the operations and semantics
supported by the index. An intuitive (albeit non-GiST)
example is that an integer ADT may be used to implement
both B+-tree keys or hash table keys (hash values), but the
two index structures support different types of search
predicates and operations. We therefore say that predi-
cates are associated with a domain rather than a type.

2.2. Callback architecture
The original GiST architecture consists of (1) a set of

commoninternal methods provided by GiST and (2) a set
of type-specificmethods provided by the user. The inter-
nal methods correspond to the generic functional inter-
faces specified in other designs:SEARCH, INSERT and
DELETE. (An additional internal method,ADJUSTKEYS,
serves as a ‘‘helper function’’ forINSERTandDELETE.) The
basic type-specific methods, which operate on predicates,
includeCONSISTENT, UNION, PENALTY andPICKSPLIT; the full
list appears in Section 4.

The novelty of GiST lies in the manner in which the
behavior of the generic internal methods is controlled
(customized) by one or more of the type-specific methods.
We describe the customization interface for each internal
method in turn:
• SEARCH is controlled by theCONSISTENTmethod, which

returnstrue if a node entry predicateE. p matches the
query. By default,SEARCH implements a depth-first
algorithm in which the decision to follow a giv en node
entry pointer E. ptr is determined byCONSISTENT.
CONSISTENTtherefore takes the place of ‘‘key test’’ rou-
tines in conventional database systems. AsSEARCH

locatesCONSISTENT records, they are returned to the
user.

• INSERT is controlled byPENALTY andPICKSPLIT in a sim-
ilar manner.INSERTevaluates thePENALTY method over
each entry in the root node and the new entry,Enew. It
then follows the pointer corresponding to the predicate
with the lowest PENALTY relative to Enew. Since
PENALTY encapsulates the notion of index clustering,
this process directsEnew to the subtree into which it
best ‘‘fits.’’ INSERT descends recursively untilEnew is
inserted into a leaf node.INSERT then calls another
internal method,ADJUSTKEYS, to propagate any needed
predicate changes up the tree from the updated leaf. If
a node overflows upon insertion, the node entries are
divided among the new sibling nodes byPICKSPLIT.

• DELETE is controlled byCONSISTENT. The records to be
deleted are located usingCONSISTENT (as in SEARCH),
after which any changes to the bounding predicates of
the updated nodes must be propagated upward using
ADJUSTKEYS (as inINSERT).
GiST defines some additional type-specific methods

which are used in the construction of new predicates.

UNION is used to form new predicates out of collections of
subpredicates. For example, whenADJUSTKEYS identifies
the need to ‘‘expand’’ or ‘‘tighten’’ the predicate of an
updated node, it invokesUNION over the entries in the
updated node to form the new parent predicate. Finally,
two optional type-specific methods,COMPRESSandDECOM-

PRESS, optimize the use of space within a node.

3. Motivating the GiST extensions
This section presents a concrete example of one of our

test applications, similarity search. The similarity search
example will enable us to determine a comprehensive list
of features lacking in the original GiST. The first subsec-
tion explains these deficiencies in the specific context of
similarity search. The second subsection explores the
underlying issues and principles.

3.1. A similarity search tree
Similarity search means retrieval of the record(s) clos-

est to a query according to some similarity function. Sim-
ilarity search occurs frequently in feature vector (e.g.,
multimedia and text) databases as well as spatial
databases. When retrieving multiple items, users gener-
ally want the results ranked (ordered) by similarity. Simi-
larity search, ranked search and the well-known nearest-
neighbor problem are very closely related.

For concreteness, our example will use a specific data
structure, the SS-tree [WHIT96]. We choose the SS-tree
because it is a feature vector access method that cannot be
modelled using the original GiST design.

The SS-tree organizes records into (potentially over-
lapping) hierarchical clusters, each of which is repre-
sented by two predicates: a centroid point (weighted cen-

ter of mass) and a bounding sphere radius.2 Each tree

datum
(record)

(b) (a) (b) (c) (d) (e)

(A) (B)

centroid

(a)
(A) 12

3

query

(c) (B)
(d)

(e)

(a) (b)
Figure 1. Similarity search using an SS-tree.

(a) Spatial coverage diagram.
(b) Tree structure diagram.

2 Even though the SS-tree does center its bounding sphere on the
centroid, the bounding sphere need not be the (unique)minimumbound-
ing sphere and may be updated independently of the centroid. Also, the
centroid is used separately during insertion. (For additional details, see
[WHIT96].) Since the SS-tree centroid and radius are often accessed

node corresponds to one cluster, and the centroid and
bounding radius of each cluster are stored in an entry in
the cluster’s parent node. The SS-tree insertion algorithm
locates the best cluster for a new record by recursively
finding the cluster with the closest centroid.

Similarity search in an SS-tree is quite simple.3 The
algorithm traverses the tree top-down, following the
pointer whose corresponding bounding sphere is closest
to the query. Note that the spatial distance from the query
to a node entry’s bounding sphere represents the smallest
possible distance to any record contained by the subtree
represented by that node entry. Therefore, we can stop
searching when we find a record that is closer than any
unvisited node.

We demonstrate the algorithm using the tree depicted
in Figure 1. Our query point is indicated by the× in Fig-
ure 1(a). The search begins with the root node, which (as
Figure 1(b) shows) contains two bounding spheres, one
for node (A) and another for node (B). The bounding
sphere of node (B) is closest to the×, so we follow the
pointer (tree edge) marked1. Examining node (B) gives
us the bounding spheres for nodes (d) and (e). Node (A)
is closer than either (d) or (e), so we visit node (A) next
by following pointer2. This, in turn, gives us the bound-
ing spheres for nodes (a), (b) and (c). Node (c) is the
closest out of the five unvisited nodes, so we visit node (c)
via pointer3. Now we hav e three records. One of the
records is closer than any of the four unvisited nodes (as
well as its sibling records); the algorithm returns this
record.

We can make this algorithm more space-efficient by
incrementally pruning branches. As we visit nodes, the
bounding spheres of its entries give usupper bounds as
well as lower bounds on the distance to the nearest neigh-
bor. For example, the bounding sphere of node (d) tells us
that we need never visit nodes (a) and (b). This allows us
to remember fewer node entries during our search.

3.2. Issues raised by the SS-tree
The SS-tree search algorithm has three properties that

cannot be modelled using GiST. First, its search algo-
rithm is not depth-first. Instead, it ‘‘jumps around’’ in the
tree based on the current minimum node distance. Sec-
ond, unlike GiST’s depth-first search, it has search state
beyond a simple stack of unvisited nodes. This algorithm-

and updated separately, it is more natural to treat them as separate predi-
cates.

3 The SS-tree search algorithm originally presented in [WHIT96]
is based on that of [ROUS95]. We present the algorithm of [HJAL95]
here because (1) it is more clear and (2) it has been shown to be I/O-op-
timal [BERC97].

specific state includes the closest record found and the
tightest bounding distance seen. Third, it uses algorithm-
specific state to eliminate nodes from consideration.
GiST only prunes subtrees usingCONSISTENT.

The SS-tree itself has three structural properties that
GiST does not support cleanly. First, the SS-tree has two
predicates, a centroid and a bounding sphere radius. The
original GiST can handle only single-predicate node
entries. Second, the SS-tree containsnon-restrictivepred-
icates. GiST only uses predicates to restrict, or prune,
searches; centroids, on the other hand, can only be used as
search hints and are not used to restrict search. Third, SS-
trees use batched updates. Specifically, each node accu-
mulates five changes of arbitrary magnitude before apply-
ing any of them. This is because the insertion of a new
record will, in general, change the centroid and radius of
ev ery cluster containing it; if predicates are not allowed to
diverge from their true values, we must update every node
on a leaf-to-root path for every insertion. GiST does not
support batched updates.

3.3. Generalizing the issues raised by the
SS-tree

The discussion of the previous subsection reveals sev-
eral issues that must be addressed to support SS-trees in
GiSTs. These issues are shared with other applications
(as we will show in Section 5). For similarity search, as
well as our other sample applications, it turns out that:
• Both the search criteria and stateful computation may

be based on what we called ‘‘non-restrictive predi-
cates’’ in Section 3.2 (i.e., metadata, such as cardinal-
ity counts and cluster centroids) stored in the index.
Metadata cannot currently be stored in GiSTs.

• Search (i.e., tree traversal) may bedirected by user-
specific criteria. GiST provides only depth-first search
(the user must rewrite all ofSEARCH if an alternative is
required).

• The value returned by an index probe may be the
result of astateful computation(i.e., one with item-by-
item state, such as an aggregate function) over some of
the entries stored in the index. GiST can only return
leaf index records.

• The stateful computation may be based on approxi-
mate values or may be themselves be approximate.
There are no mechanisms in GiST to compensate for
‘‘sloppy’’ predicates that can diverge from their
expected value, perhaps due to a mechanism like
batched updates; however, without this, some access
methods become hopelessly inefficient. In order to
perform this compensation, we need to be able tocon-
trol divergencebetween the predicate value and its
expected value.

[HELL95] proposed discussed
interface interface in section

CONSISTENT CONSISTENT

UNION UNION

PENALTY PENALTY

PICKSPLIT PICKSPLIT

Basic tree
operations

Optional
tree
operations

4.1

COMPRESS

DECOMPRESS

COMPRESS

DECOMPRESS

Specialized
traversal
operations

PRIORITY 4.2
FINDMIN

NEXT

STATEINIT

STATECONSISTENT

STATEITER

STATEFINAL

4.3
Stateful
computation

Divergence
control

ACCURATE 4.4

Table 1. Summar y of GiST methods.

As we will see in the next section, combinations of the
following mechanisms allow the user to construct access
methods with the characteristics described above.
• multiple predicate support
• user-directed traversal control
• user-defined computation state
• user-specified predicate divergence control

4. New GiST interfaces
In this section, we extend the basic GiST mechanisms.

First, we show how the mechanisms extend to support
entries that contain multiple predicates. Second, we
explain how the user can specify traversals other than
depth-first search using a simple priority interface. Third,
we illustrate how an aggregation-like iterator interface can
support additional traversals as well as index-assisted
computations that generalize record retrieval. Finally, we
(more thoroughly) justify the need for divergence control
and demonstrate its uses.

For convenience of reference, we summarize our inter-
face changes in Table 1. The table classifies the old and
new operations according to their functionality. In addi-
tion, the table clearly shows which of the operations of
[HELL95] have been modified. The basic and optional
operations, described in Section 2.2, remain largely
unchanged. Additional specialized operations having to
do with specific tree traversal algorithms have been gener-
alized. Finally, the stateful computation and divergence
control operations are entirely new.

4.1. Multiple predicate support
This subsection describes a mechanism for indexing

multiple distinct predicates, which the original GiST can-
not support. This capability is useful because index

metadata items are often distinct from the predicates that
organize the tree. For example, if we store the number of
records contained in each subtree of a B+-tree, this quan-
tity is clearly not ‘‘part of’’ the B+-tree key.

Multiple predicates can be combined in semantically
and physically different ways. Semantically, we can
assign each predicate a degree of precedence/significance
(multikey indexing) or not (multidimensional indexing).
Physically, we can either force the user to combine the
various predicates into a single ADT or not. Historically,
database systems have supported multidimensional index-
ing using combined ADTs and multikey indexing using

separate ADTs. We follow that convention here.4 There-
fore, this subsection will be concerned with the analogue
of multikey indexing.

For most of the type-specific methods, multikey-style
extensions are easy. Each index record contains an entry
E = <

→
P, ptr > that contains a compound predicate

→
P and

a tree pointerptr.
→
P contains |P| simple predicates,

<p1,..., p|P|>. Similarly, a query
→
Q contains simple predi-

cates <q1,..., q|P|>.
• We apply theUNION, COMPRESSandDECOMPRESSmeth-

ods of each domain to the individual predicates and
concatenate the results. For example, we combinen

compound predicates
→
P

1
,...,

→
P

n
into a new compound

predicate using the rule UNION({
→
P

1
,...,

→
P

n
}) =

<UNION({ p1
1,..., pn

1}) ,...,UNION({ p1
|P|,..., p

n
|P|})>.

• CONSISTENT(
→
P,

→
Q) = true iff CONSISTENT(pi , qi) = true

for all 1 ≤ i ≤ |P|. Put another way, multikey predi-
cates are conjuncts.

• Recall thatPENALTY may be thought of as a way of
‘‘scoring’’ the relative similarity of two predicates. In
a multikey context, successivePENALTY methods
become ‘‘tie-breakers’’ when previousPENALTY meth-

ods return equal results. For three predicates
→

P0,
→

P1

and
→

P2, we sayPENALTY(
→

P1,
→

P0) < PENALTY(
→

P2,
→

P0) iff
there exists some 1≤ i ≤ |P| such that
PENALTY(p1

j , p0
j) = PENALTY(p2

j , p0
j) for all

1 ≤ j < i andPENALTY(p1
i , p0

i) < PENALTY(p2
i , p0

i).

4 Of course, this convention is largely due to the fact that multikey
indexing is a useful practice when using B+-trees with traditional SQL
types, which all systems support, whereas multidimensional indexing is
much less useful. In general, it is unreasonable to expect the user to de-
fine new ADTs for each combination of keys that could be stored in an
index. A common complaint fromPOSTGRES[STON91] users was the
need to define combined ADTs in order to achieve the functionality of
standard multikey B+-trees. For example, to build a multikey B+-tree
over columns of typeint and text , the user had to write C functions
implementing a newint_text ADT and then create a functional
B+-tree [LYNC88].

• PICKSPLIT, which divides the entries of a split node
among the new nodes, must now maintain the correct-
ness of multiple predicates. LikePENALTY, PICKSPLIT

uses successive domains to break ties. That is, the set
of node entries that are duplicates according to the first
i domains (a set whose size is strictly non-increasing
in i), i < |P|, may be redistributed between the new
sibling nodes in accordance withPICKSPLIT results for
the remaining domains. We discuss additional issues
and difficulties related to splitting and duplicate values
in the full paper.

4.2. Traversal control
Most search algorithms require some degree of control

over the order in which nodes are visited. As we have
seen in Section 3, standard stack-based traversal algo-
rithms do not provide adequate control for some common
applications. In this subsection, we describe a mechanism
for specifying user-defined search strategies; we also dis-
cuss some of the implementation issues involved in pro-
viding a general traversal control interface.

To ‘‘open up’’ traversal control to the user, we define a
new SEARCH method based on a priority queue rather than
a stack. The access method implementor provides an

ordered set ofPRIORITY methods5 computed from node
entries and the current scan state. WhenSEARCH visits a
node, it adds each entryE = <

→
P, ptr > to the priority

queue, together with a traversal priority vector,
→
T.

→
T con-

tains one priority value for each of thePRIORITY methods.
SEARCH chooses the next node to visit by removing the
item with the highest traversal priority from the priority
queue (where ‘‘highest’’ priority is determined in a man-
ner analogous to that of finding the lowestPENALTY in
Section 4.1).

The priority queue can contain entries corresponding to
leaf records as well as internal nodes. There are many
cases where we need delivery of records to be delayed
until some invariant can be satisfied over all entries visited
thus far (similarity search is one such case). It is therefore
useful to have a unified mechanism for controlling the
delivery of both kinds of node entries.

The priority queue approach subsumes all techniques
in which visit order is computed from local information
(i.e., information that can be determined solely by looking
at one node entry and the current state). For example,
many spatial search algorithms visit nodes in some dis-
tance-based order. A statistical access method might

5 For example, one can associate separatePRIORITY methods for
each predicate if desired. This is cleaner than forcing the user to define a
completely newPRIORITY method for every combination of predicates that
have been indexed.

choose to visit nodes that provide the greatest increase in
precision. Finally, we can easily simulate stacks.

The generality of priority queues comes at a price.
Tw o problems are immediately evident. First, stack-based
SEARCH implementations need not store full entries or

priorities.6 Therefore, stacks consume less memory than
an unoptimized priority queue implementation. Second,
stacks haveO(1) insertion/deletion cost fork entries,
whereas priority queues haveO(log k) insertion/deletion

cost.7

These problems can be addressed to varying degrees.
We can solve the first problem, larger entries, using com-
pression (e.g., supportingNULL predicates and priorities).
We can ameliorate the second problem, asymptotic effi-
ciency, with some engineering. Optimizing for the com-
mon case, we can implement the priority queue as a
‘‘staque’’ (i.e., by placing a stack on top of the priority
queue which contains all objects with the current maxi-
mum priority).

4.3. Stateful computation
In addition to the ability to direct our tree traversal, we

also need control over the current state of our traversal (or
computation). In this subsection, we describe our inter-
face for maintaining this incremental state. We then give
an illustrative example of an application of this interface.

It may be helpful to think of stateful computations as
aggregate functions. However, our stateful computations
may have side effects as well as having ongoing state that
persists between invocations. For example, one stateful
computation is the standard aggregate function,COUNT.
Other computations actually influence the tree traversal
(we briefly described in Section 3.1 how node entries can
be pruned from the search queue).

Our new methods are modelled on Illustra’s user-
defined aggregate interface [ILLU95]. Eachiterator con-
sists of four methods.STATEINIT andSTATEFINAL perform
initialization and finalization, respectively, whereasSTATE-

CONSISTENT and STATEITER implement the computation
over the node entries. They can be summarized as fol-
lows:
• STATEINIT allocates and initializes any internal state. It

is called bySEARCH when the GiST traversal is opened
and returns a pointer to the internal state.

6 The storage of
→
P is as yet unmotivated. We will see that storing

the predicates in the priority queue will allow us to perform several use-
ful tasks, such as pruning node entries as they are removed from the pri-
ority queue.

7 Some priority queue implementations achieve better amortized
costs. However, these amortized costs are not guaranteed for all work-
loads and are often not achieved in practice [CORM90].

• STATECONSISTENT returns a list of node entries to be
inserted into the priority queue. For example, it may
be used to prune the current node’s list ofCONSISTENT

entries using the internal state.SEARCH passes all of

theCONSISTENTentries in a node8 throughSTATECONSIS-

TENT before inserting them into the priority queue; in
addition,SEARCH passes each entry taken from the pri-
ority queue throughSTATECONSISTENTbefore passing it
to STATEITER.

• STATEITER computes the next stage of the iterative
computation, updating the internal state as required.
STATEITER may halt traversal,i.e., indicate that no fur-
ther node pointers should be followed. As previously
mentioned,SEARCH invokes STATEITER on each entry
removed from the priority queue that isSTATECONSIS-

TENT.
• STATEFINAL computes the final (scalar) result of the

iterative computation from the internal state.SEARCH

callsSTATEFINAL when there are no more entries in the
priority queue.
We store each iterator’s state in a master state descrip-

tor. This descriptor contains several other generic pieces
of state. These include the traversal priority queue and
several flags (e.g., whether traversal has been halted,
whether entries will be inserted or have been removed
from the priority queue,etc.).

In the full paper, we show how the combination of pri-
ority queues and stateful computation eliminates the need
for the special ordered traversal methods (FINDMIN and
NEXT) described in [HELL95]. We also show that such
ordered ‘‘leaf scans’’ can only work correctly for multiple
predicates over ordinal domains,i.e., for multikey
B+-trees.

4.4. Divergence control
In our new framework, a parent node entry predicate

and theUNION of its child subtree predicates may diverge.
That is, we permit the predicate contained by a parent
node entry to be an inaccurate description of the subtree
to which it points, whereas the original GiST assumes that
they are exact replicas. Divergence control is the mecha-
nism by which we enforce the following constraint: the
replicated data items may only differ in ways that permit
us to reason about one item given the other. (To avoid
creating new jargon, we have modelled our terminology

8 The reason for doing all entries at once (rather than individually)
has to do with B+-tree ordered traversal. For example, when descending
the left edge of a subtree defined by a range predicate, only one entry
pointer from a given node (that corresponding to the lower bound of the
predicate range) will be traversed rather than all of them. Checking the
consistency of all of a node’s entries at once allows us to do this.

after that of theepsilon serializabilityliterature [PU91].)
It is not immediately clear why div ergence between

parent and child node predicates should be allowed. For
example, too-large bounding predicates increase the num-
ber of ‘‘false positive’’ predicates, thereby increasing the
number of nodes visited duringSEARCH. Here, we justify
the need for divergence control in new applications. We
then provide a simple interface for controlling divergence.

In general, incremental predicate updates are expen-
sive. (Recall that we alluded to this in Section 2.) To see
this, consider the fact that GiST supports predicates which
are theUNION of child predicates. Such predicates always
represent a kind of aggregate function, one which often
(but not always) resembles an SQL aggregate. Examples
include traditional bounding predicates(MIN/MAX), cardi-
nality/ranking(COUNT), frequency moments(SUM), and
cluster centroids(AVG). The key difference between the
latter three and bounding predicates is that the latter three
are far more likely (or even certain, in the case ofCOUNT)
to be perturbed by any insertion or deletion in a subtree —
these predicates are representatives of the underlying data
rather than generalizations. Hence, all access methods
proposed for them are always subject to high update cost;
ADJUSTKEYS will modify each node in a leaf-to-root path.
This is clearly unacceptable in an online environment, and
this cost is the problem addressed by our divergence con-

trol mechanism.9

We control divergence using a new GiST method,
ACCURATE. ACCURATE assesses two entries according to
some criterion specified by the user.ADJUSTKEYS calls
ACCURATE when an entry update occurs to a node. If
ACCURATE = false for the newUNION of the updated node
and the parent predicate that formerly described it,
ADJUSTKEYS installs the newUNION in place of the old
predicate. In short,ACCURATE specifies what is ‘‘accurate
enough’’ for the application.

Acceptable divergence between the parent predicate
and child nodeUNION predicate may be based on arbitrary
criteria. These criteria may be either value-based or struc-
tural. Some relevant value-based criteria include simple
difference for cardinality counts, Euclidean distance for
vector-space centroids and partial area difference for spa-
tial bounding boxes. Relevant structural criteria include
the node’s height in the tree.

9 It should be noted that the cost of bounding predicate updates
can be very high for conventional data structures as well. Many access
methods in the literature have acceptable update cost only because up-
dates do not ‘‘usually’’ change their parent predicates. For example, one
can construct an R-tree workload that causes leaf-to-root updates for
ev ery new entry (but such is not the common case).

We do not expect this facility, though simple, to be
easy to use in general. Fortunately, it adds no work in the
common case, since the defaultACCURATE is simply the

EQUALITY method defined for each ADT.10 That is, a par-
ent entry predicate must be equal to theUNION of the pred-
icates in the child node. The alternative, batched updates
[SRIV88, WHIT96], is of questionable value in almost
any domain because it provides no bounds on the impreci-
sion of the answers provided to the end-user.

5. Applications
In this section, we show how to support several com-

mon traversal and computation operations in the frame-
work just presented. We describe the implementation of
two test applications, similarity search and selectivity esti-
mation, in turn. These concrete examples illustrate the
needs of each application and their solution in our frame-
work. For each application, we also describe how div er-
gence control can be applied to improve update costs.
The other two applications mentioned previously, sam-
pling and statistics access methods, are discussed in the
full paper.

5.1. Similarity search
We hav e already given an example of similarity search

in Section 2. In the full paper, we giv e a more complete
description of the different kinds of similarity search pro-
posed in the literature and suggest how they can be mod-
elled using our GiST extensions. Here, we show how to
implement the basic traversal algorithm, pruning opti-
mizations, and tree divergence.

Modelling similarity search: The basic traversal algo-
rithm requires only aPRIORITY method that computes a
lower bound on the distance to an index entry. Leaf index
records are also inserted into the traversal priority queue.
By prioritizing record entries ahead of internal node
entries, we can deliver records to the user when they
appear at the top of the priority queue.

As mentioned in Sections 3.1 and 4.3, pruning opti-
mizations are possible forkth nearest neighbor search
(where k is known a priori). These optimizations are
based on the principle that we need never visit a node, or
ev en insert its entry into the priority queue, if it is more
distant than theupper bound distance to thekth closest
entry that we have seen. (It can be shown that upper
bound distances reduce the memory required but give no
advantage in terms of bounding the actual search

10 Extensible systems such as Informix Universal Server typically
require the definition ofEQUALITY for all ADTs (defaulting to bit-equali-
ty).

[BERC97].) These techniques are easily implemented
using aSTATECONSISTENT method that maintains a sepa-
rate, additional priority queue, specifically for pruning, of
sizek.

Application of divergence control: Some kinds of
similarity search use cluster centroids rather than bound-
ing predicates. That is, the prioritized search is driven by
the distance from the query to the centroid (rather than the
minimal distance to the bounding predicate). This kind of
heuristic traversal is common in non-Euclidean similarity
search. If updates are performed online, we may choose
to allow the centroids to diverge from their true values
usingACCURATE.

5.2. Selectivity estimation
In spite of recent advances in selectivity estimation,

‘‘asking the database’’ by probing an index can still be the
only cost-effective way to compute the result size of a
restriction query. There are two main reasons for this.
First, analytic selectivity estimation techniques may sim-
ply not exist for novel user-defined types and functions,
and the techniques used for ordinal domains may not
extend straightforwardly. Extensible database systems do
provide selectivity function interfaces (e.g., the
am_scancost interface in Informix Universal Server
[INFO97]) but can only provide general guidance for their
use. Second, the non-parametric statistics used by com-
mercial query optimizers necessarily have vulnerabilities
related to their fixed resolution. Practitioners have recog-
nized the latter problem and have shown that index-
assisted approaches can be a cost-effective solution; Digi-
tal Rdb/VMS [ANTO93] (now Oracle Rdb) and IBM
SQL/400 [ANDE88] (now IBM DB2/400) have long sup-
plemented the standard selectivity estimation techniques
by performing index probes.

In this section, we explore the notion of partial tree
traversal as a means of estimating how much of the tree
matches the query. (Index-assisted sampling is another
possibility; we review this technique in the full paper.)
The basic idea is that, given both the predicate and the
cardinality (number of leaf records) of a subtree, we can
estimate the number of records matching the query by
computing the overlap between the predicate and the
query. This process can be applied recursively, so it giv es
us statistics of arbitrary resolution.

To be cost-effective, index-assisted selectivity estima-
tion should perform significantly less work than actually
answering the query. If our goal is fast convergence using
the fewest I/Os, three heuristics immediately suggest
themselves. First, we should generally visit nodes at
higher levels before nodes at lower levels because of their
larger subtree cardinalities. Second, we should descend

Node visited by traversal algorithm.

���
���
���
��� Record believed to be in result set.

Rdb/VMS assumes uniform fill

SQL/400 assumes a uniform leaf fill factor

Rdb/VMS assumes 50% match on partial matches

range predicate coverage

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���

��
��
��
��
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
���
���
���
���

��
��
��
��
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

(a)

(b)

(c)
Figure 2. B +-tree descent strategies:

(a) The actual query predicate coverage .
(b) Descent to level above leaves in SQL/400.
(c) Descent to ‘‘split level’’ in Rdb/VMS.

subtrees with higher imprecision (e.g., those with partial
predicate matches) before those with lower imprecision
(complete predicate matches). Finally, adding auxiliary
information to each node may produce better estimates.
For example, guessing the number of records in a subtree
(e.g., using fanout estimates) will be much less accurate
than using the actual subtree cardinality (if we can afford
to maintain it).

For historical reasons, trees that maintain subtree car-
dinality counts are generally known asranked trees.
Trees with approximate counts are described aspseudo-
ranked, and conventional trees that do not maintain extra
information are calledunranked. In the latter case, the
cardinality of a subtree is usually estimated by
max_ fanoutheight or mean_ fanoutheight.

Modelling selectivity estimation trees: We now
describe how to emulate the techniques used by
Rdb/VMS and SQL/400. Both systems implement selec-
tivity estimation using unranked trees, which requires
very little beyond the ability to traverse the index using
CONSISTENT. They descend the tree part-way, using simple
uniformity models and fanout estimates to ‘‘guess’’ the
tree structure below that point. Figure 2 gives an example

of how these approaches work in a B+-tree.11

Emulation of the SQL/400 approach turns out to be
very simple.STATECONSISTENTstops returning entries for a
given subtree when the scan is one level above the leaves
(Figure 2(b)). When there are no more non-leaf entries to
be visited, the scan halts andSTATEITER multiplies the
number of leaf node entries accumulated in the priority
queue by the mean leaf fanout (leaf occupancy).

Emulation of Rdb/VMS uses a similar approach.
STATECONSISTENT stops descent the first time more than
one entry in the current node isCONSISTENT (Figure 2(c)).
The level of this terminal node is called the ‘‘split level.’’
STATEITER combines the current tree level, the mean fanout
and the number ofCONSISTENTentries in the terminal node
(with partially matching entries counting as1⁄2) to calcu-
late the estimate.

Obviously, more sophisticated estimation and traversal
algorithms are possible. For example, one can use unifor-
mity models [SELI79] in any domain in which we can
sensibly measure degree of overlap. This is straightfor-
ward in multidimensional domains [WHAN94]. Again,
this simply requires replacingSTATEITER.

Application of divergence control:Ranked trees are a
good application for divergence control. Figure 2 hap-
pens to show an example where the unranked tree
schemes work relatively well (i.e., the actual number of
records is 15, and both schemes give an estimate of 18).
However, large fanout variance (resulting,e.g., from vari-
able-length keys) is not unusual. This variance greatly
reduces the estimation accuracy of unranked trees. Using
ranked trees to estimate subtree cardinality reduces the
severity of this problem, and the standard GiST
UNION/ADJUSTKEYS logic can maintain subtree cardinality
counts automatically. Howev er, cardinality counts have
the leaf-to-root update problem described in Section 4.4,
so allowing sloppy counts makes sense. Each count
stored in the tree becomes an interval rather than a single
value (as is normally the case with ranked trees), and the
ACCURATE method and theSTATEITER (estimation) method
must account for this. Divergence does lead to some esti-
mation inaccuracy, but at least the inaccuracy has tight
bounds.

Oracle has implemented pseudo-ranked B+-trees in
Rdb 7.0 [SMIT96]. In essence, theirADJUSTKEYS algo-
rithm makes the parent predicate slightly larger than the
Union of the predicates in the child node. This use of
sloppy counts significantly reduces the rate of non-leaf-
node updates [ANTO92]. Oracle Rdb uses the same

11 SQL/400 actually uses AS/400 radix trees, which are not
height-balanced. The discussion here therefore takes some liberties with
the ideas of [ANDE88]. For example, we ignore SQL/400’s pilot
probes, which only serve to estimate the radix tree height.

traversal and partial-match logic as Rdb/VMS, so only
STATEITER changes (to add the counts for eachCONSISTENT

entry instead of using fanout statistics). The traversal pic-
ture looks the same as Figure 2(c).

6. Conclusions, status and future work
In this paper, we hav e shown how two mechanisms,

traversal priority callbacks and aggregation-like iterators,
enable users to emulate many of the special-purpose index
traversal algorithms proposed in the literature. These
traversal mechanisms, combined with multiple predicate
support, significantly enhance the ability of GiSTs to sup-
port new database applications. A final mechanism,
divergence control, enables us to implement these special-
ized structures as efficient, dynamic indices. We hav e
given details of how these (largely orthogonal) mecha-
nisms support several important applications. We hav e a
limited implementation of our framework inPOSTGRESQL
6.1 and are presently implementing our test applications
in this framework.

We are actively investigating improved techniques for
selectivity estimation using GiSTs. Salient issues include:
• Many researchers have pointed out that multidimen-

sional selectivity estimation can benefit from special-
ized main memory data structures that resemble con-
densed search trees (e.g., [MURA88]). Such struc-
tures could easily be constructed using GiST concepts;
the costs and benefits of this approach relative to that
of augmenting secondary memory structures (as dis-
cussed here) are not well-understood.

• Balancing I/O cost and estimation accuracy in traver-
sal strategies. The previously proposed descent strate-
gies have many obvious vulnerabilities. Tw o more
attractive options are: descent to a predetermined
degree of relative imprecision and descent to a dynam-
ically determined ‘‘tailoff’’ in the reduction of impre-
cision. Tailoff detection is particularly natural if we
perform a priority queue traversal in which the priority
is computed from the imprecision.

• Effects of improved accuracy on optimization (i.e.,
when is the cost of tree descent warranted?). For
example, a query optimizer might only invoke index
estimation when the uncertainty of its histogram-based
estimate is high. The estimated impact on the rest of
the query plan might also be considered.

There are many other possible directions, which we dis-
cuss in the full paper [AOKI97].

Acknowledgements
Joe Hellerstein, Marcel Kornacker and Allison

Woodruff hav e provided many comments that have
improved the presentation and generality of the concepts
in this paper. In particular, Marcel’s skepticism about

non-priority-based traversals influenced the design of the
traversal control interface. The feedback of Dr. Sunita
Sarawagi and the anonymous referees is gratefully
acknowledged.

References
[ANDE88] M.J. Anderson, R.L. Cole, W.S. Davidson, W.D.

Lee, P.B. Passe, G.R. Ricard and L.W. Youngren,
“Index Key Range Estimator,” U.S. Patent
4,774,657, IBM Corp., Armonk, NY, Sep. 1988.
Filed June 6, 1986.

[ANTO92] G. Antoshenkov, “Random Sampling from Pseudo-
Ranked B+ Trees,” Proc. 18th Int’l Conf. on Very
Large Data Bases, Vancouver, BC, Canada, Aug.
1992, 375-382.

[ANTO93] G. Antoshenkov, “Dynamic Query Optimization in
Rdb/VMS,” Proc. 9th IEEE Int’l Conf. on Data
Eng., Vienna, Austria, Apr. 1993, 538-547.

[AOKI97] P.M. Aoki, “Generalizing ‘‘Search’’ in Generalized
Search Trees,” Tech. Rep. UCB//CSD-97-950, Univ.
of California, Berkeley, CA, June 1997.

[ASTR76] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin,
K. P. Eswaran, J.N. Gray, P.P. Griffiths, W.F. King,
R. A. Lorie, P.R. McJones, J.W. Mehl, G.R.
Putzolu, I.L. Traiger, B.W. Wade and V. Watson,
“System R: Relational Approach to Database
Management,”ACM Trans. Database Sys. 1, 2
(June 1976), 97-137.

[BAT O88] D. Batory, J.R. Barnett, J.F. Garza, K.P. Smith, K.
Tsukuda, B.C. Twichell and T.E. Wise, “GENESIS:
An Extensible Database Management System,”
IEEE Trans. Software Eng. 14, 11 (Nov. 1988),
1711-1730.

[BERC97] S. Berchtold, C. Böhm, D.A. Keim and
H.-P. Kriegel, “A Cost Model for Nearest Neighbor
Search,” Proc. 16th ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Sys.,
Tucson, AZ, May 1997, 78-86.

[COME79] D. Comer, “The Ubiquitous B-tree,”Computing
Surveys 11, 2 (1979), 122-137.

[CORM90] T.H. Cormen, C.E. Leiserson and R.L. Rivest,
Introduction to Algorithms, McGraw-Hill, New
York, 1990.

[GUTT84] A. Guttman, “R-trees: A Dynamic Index Structure
for Spatial Searching,”Proc. 1984 ACM SIGMOD
Int’l Conf. on Mgmt. of Data, Boston, MA, June
1984, 47-57.

[HELL95] J.M. Hellerstein, J.F. Naughton and A. Pfeffer,
“Generalized Search Trees for Database Systems,”
Proc. 21st Int’l Conf. on Very Large Data Bases,
Zürich, Switzerland, Sep. 1995, 562-573.

[HJAL95] G.R. Hjaltason and H. Samet, “Ranking in Spatial
Databases,” inAdvances in Spatial Databases
(Proc. 4th Int’l Symp. on Spatial Databases,
Portland, ME, Aug. 1995), M.J. Egenhofer and J.R.
Herring (eds.), Springer Verlag, LNCS Vol. 951,
Berlin, 1995, 83-95.

[ILLU95] “Illustra User’s Guide, Server Release 3.2,” Part
Number DBMS-00-42-UG, Illustra Information
Technologies, Inc., Oakland, CA, Oct. 1995.

[INFO97] “Guide to the Virtual-Table Interface, Version 9.01,”
Part Number 000-3692, Informix Corp., Menlo
Park, CA, Jan. 1997.

[KORN97] M. Kornacker, C. Mohan and J.M. Hellerstein,
“Concurrency and Recovery in Generalized Search
Trees,” Proc. 1997 ACM SIGMOD Int’l Conf. on
Mgmt. of Data, Tucson, AZ, May 1997, 62-72.

[LIND87] B. Lindsay, J. McPherson and H. Pirahesh, “A Data
Management Extension Architecture,”Proc. 1987
ACM SIGMOD Int’l Conf. on Mgmt. of Data, San
Francisco, CA, May 1987, 220-226.

[LYNC88] C.A. Lynch and M. Stonebraker, “Extended User-
Defined Indexing with Application to Textual
Databases,”Proc. 14th Int’l Conf. on Very Large
Data Bases, Los Angeles, CA, Aug. 1988, 306-317.

[MURA88] M. Muralikrishna and D.J. DeWitt, “Equi-depth
Histograms for Estimating Selectivity Factors for
Multi-Dimensional Queries,” Proc. 1988 ACM
SIGMOD Int’l Conf. on Mgmt. of Data, Chicago,
IL, June 1988, 28-36.

[PU91] C. Pu and A. Leff, “Replica Control in Distributed
Systems: An Asynchronous Approach,”Proc. 1991
ACM SIGMOD Int’l Conf. on Mgmt. of Data,
Denver, CO, May 1991, 377-386.

[ROUS95] N. Roussopoulos, S. Kelley and F. Vincent,
“Nearest Neighbor Queries,”Proc. 1995 ACM
SIGMOD Int’l Conf. on Mgmt. of Data, San Jose,
CA, May 1995, 71-79.

[SELI79] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin,
R. A. Lorie and T.G. Price, “Access Path Selection
in a Relational Database Management System,”
Proc. 1979 ACM SIGMOD Int’l Conf. on Mgmt. of
Data, Boston, MA, June 1979, 23-34.

[SMIT96] I. Smith, “Oracle Rdb: What’s New,” inDECUS
Spring ’96(St. Louis, MO), DECUS, Littleton, MA,
June 1996, IM-016.

[SRIV88] J. Srivastava and V.Y. Lum, “A Tree Based Access
Method (TBSAM) for Fast Processing of Aggregate
Queries,”Proc. 4th IEEE Int’l Conf. on Data Eng.,
Los Angeles, CA, Feb. 1988, 504-510.

[STON86] M.R. Stonebraker, “Inclusion of New Types in
Relational Data Base Systems,”Proc. 2nd IEEE
Int’l Conf. on Data Eng., Los Angeles, CA, Feb.
1986, 262-269.

[STON91] M. Stonebraker and G. Kemnitz, “The POSTGRES
Next-Generation Database Management System,”
Comm. ACM 34, 10 (Oct. 1991), 78-92.

[WHAN94] K.-Y. Whang, S.-W. Kim and G. Wiederhold,
“Dynamic Maintenance of Data Distribution for
Selectivity Estimation,”VLDB J. 3, 1 (Jan. 1994),
29-51.

[WHIT96] D.A. White and R. Jain, “Similarity Indexing with
the SS-tree,”Proc. 12th IEEE Int’l Conf. on Data
Eng., New Orleans, LA, Feb. 1996, 516-523.

