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Abstract 
In order to handle spatial data efficiently, as required in computer aided design and 

geo-data applications, a database system needs an mdex mechanism that ti help it 
retrieve data items quickly accordmg to their spatial locations However, traditional 
mdexmg methods are not well suited to data oblects of non-zero size located m multi- 
dimensional spaces In this paper we describe a dynarmc mdex structure called an R-tree 
winch meets this need, and give algorithms for searching and updatmg it. We present the 
results of a series of tests which indicate that the structure performs well, and conclude 
that it is useful for current database systems m spatial applications 

1. Intxoduction 
Spatial data oblects often cover areas 

m multi-dimensional spaces and are not 
well represented by pomt locations For 
example, map objects like counties, census 
tracts etc occupy regions of non-zero size 
m two dnnenslons A common operation on 
spatial data 1s a search for all oblects m an 
area, for example to find all counties that 
have land mthm 20 nnles of a particular 
pomt Tl~s kmd of spatial search occurs 
frequently m computer tided design (CAD) 
and geo-data applications, and therefore it 
1s unportant to be able to retneve oblects 
efficiently according to their spatial loca- 
tion 
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An mdex based on obJects’ spatial loca- 
tions 1s desirable, but classical one- 
dunenaonal database mdexmg structures 
are not appropriate to multi-dimensional 
spatial searchmg Structures based on 
exact matchmg of values, such as hash 
tables, are not useful because a range 
search 1s requed Structures usmg one- 
dnnenslonal ordermg of key values, such as 
B-trees and ISAM mdexes, do not work 
because the search space is multl- 
dnnenslonal 

A number of structures have been pro- 
posed for handling muhi-dimensional point 
data, and a survey of methods can be 
found m [5] Cell methods [4,8,16] are not 
good for dynamic structures because the 
cell boundmes must be decided m 
advance Quad trees [i’) and k-d trees [3] 
do not take pagmg of secondary memory 
into account. K-D-B trees [13] are 
designed for paged memory but are useful 
only for pomt data The use of mdex mter- 
vals has been suggested m [15], but tlus 
method cannot be used m multiple dnnen- 
sions Corner stitchmg [ 121 is an example 
of a structure for two-dimensional spatial 
searchmg smtable for data objects of non- 
zero size, but it assumes homogeneous pr~ 
mary memory and 1s not e-lent for ran- 
dom searches m very large collections of 
data. Grid files [lo] handle non-pomt data 
by mapping each object to a point in a 
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higher-cllmenslonal space In this paper we 
descnbe an alternative structure called an 
R-tree wmch represents data objects by 
mtervals in several dnnenslons 

Section 2 outhnes the structure of an 
R-tree and Section 3 gives algornhms for 
searchmg, msertmg, deletmg, and updat- 
mg Results of R-tree mdex performance 
tests are presented m Section 4 Section 5 
contams a summary of our conclusions 

2. R-Tree Index Structure 
An R-tree 1s a height-balanced tree 

slrmlar to a B-tree [Z, 61 Pnth mdex records 
in its leaf nodes contammg pomters to 
data objects Nodes correspond to disk 
pages If the mdex 1s &Sk-resident, and the 
structure 1s designed so that a spatial 
search requnes visltmg only a small 
number of nodes The mdex 1s completely 
dynannc; inserts and deletes can be mter- 
rmxed pnth searches and no penodlc reor- 
gamzatlon 1s requn-ed. 

A spatial database consists of a collec- 
tion of tuples representmg spatial objects, 
and each tuple has a umque ldenttier 
wluch can be used to retneve it Leaf 
nodes m an R-tree contam mdex record 
entnes of the form 

(I, tupte -w!enCtfier) 

where tu#e -cdentijier refers to a tuple m 
the database and I 1s an n-dunenaonal 
rectangle wlvch 1s the boundmg box of the 
spatial object mdexed 

Here n 1s the number of dnnenaons and JT, 
is a closed bounded mterval [a ,b ] descnb- 
mg the extent of the object along dnnen- 
sion i. Alternatively 4 may have one or 
both endpoints equal to mfhuty, mdlcatmg 
that the object extends outward 
mdefimtely Non-leaf nodes contam 
entnes of the form 

(I, child -powder) 

where chdd -poznter 1s the address of a 
lower node in the R-tree and I covers all 
rectangles m the lower node’s entnes 

Let Y be the maxmum number of 
entn3 that snll At m one node and let 
ml- 2 be a parameter speclfymg the 

nnnnnum number of entnes m a node An 
R-tree satisfies the followmg properties 

Cl1 

(2) 

(3) 

(4) 

(5) 

(6) 

Every leaf node contalns ‘between m 
and Y mdex records unless it 1s the 
root 
For each mdex record 
(I, tuple -zdent@er) m a leaf node, I 1s 
the smallest rectangle that spatially 
contams the n-dnnenslonal data obJect 
represented by the mdlcated tuple 
Every non-leaf node has between m 
and M chndren unless it 1s the root 
For each entry (I, child -poznter) ur a 
non-leaf node, I 1s the smallest rectan- 
gle that spatially contams the rectan- 
gles m the child node 
The root node has at least two cmdren 
unless it is a leaf 
All leaves appear on the same level 
Figure 2 la and 2 lb show the structure 

of an R-tree and illustrate the contamment 
and overlappmg relatlonshps that can 
exist between its rectangles 

The height of an R-tree co tamm N 
index records is at most ? pg, 

4 
-1, 

because the branchmg factor of each node 
is at least. rn. *The .maximum number of 

nodes 1s + 1 Worst-case 

space ut&at;on for’all nodes except the 
root is m M Nodes pvlll tend to have more 

than m entnes, and ths will decrease tree 
height and nnprove space utfizatlon If 
nodes have more than 3 or 4 entnes the 
tree 1s very mde, and almost all the space 
1s used for leaf nodes con&rung mdex 
records The parameter m can be vaned 
as part of performance tumng, and 
dflerent values are tested expenmentally 
m Section 4 

3. Searchmg and Updating 

3.1. Searching 
The search algorithm descends the tree 

from the root m a manner snnrlar to a B- 
tree However, more than one subtree 
under a node vlslted may need to be 
searched, hence It 1s not possible to 
guarantee good worst-case performance 
Nevertheless w&h most kmds of data the 
update algonthms ti mamtam the tree m 
a form that allows the search algonthm to 
ehmmate irrelevant regions of the indexed 
space, and examme only data near the 
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search area S2 [Search Ieaf node ] If T 1s a leaf, check 
In the followmg we denote the rectan- all entnes E to determme whether EI 

gle part of an index entry E by EI, and the overlaps S If so, E is a quahfymg 
buple -zdenh.er or chdd -pomter part by record 

EP 3 2. Insertion 

Algorithm Search. Given an R-tree whose 
root node 1s T, find all index records whose 
rectangles overlap a search rectangle S 
Sl [Search subtrees] If T 1s not a leaf, 

check each entrv E to deterrmne 

Insertmg mdex records for new data 
tuples 1s zmmlar to msertlon III a B-tree m 
that new mdex records are added to the 
leaves, nodes that overflow are spht, and 
sphts propagate up the tree 

whether EI overla& S For all overlap- 
pmg entries, mvoke Search on the tree Algorithm Insert Insert a new mdex entry 

whose root node 1s pomted to by Ep 
E mto an R-tree 
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11 [Fmd posltlon for new record ] 
Invoke ChooseLeaf to select a leaf 
node L m whch to place E 

12 [Add record to leaf node ] If L has 
room for another entry, mstaI.l E 
Othemse mvoke SplitNode to obtam 
L and U contammg E and all the 
old entrees of L 

13 [Propagate changes upward] Invoke 
AdjustTree on L, also passmg U If a 
spht was performed 

14. [Grow tree taller ] If node spht pro- 
pagation caused the root to spht, 
create a new root whose cmdren are 
the two resultmg nodes 

Algorithm ChooseLeaf Select a leaf node 
111 which to place a new mdex entry E 
CL1 

CL2 
CL3. 

CLA 

[h-&u&e ] Set N to be the root 
node 
[Leaf check ] If N 1s a leaf, return N. 
[Choose subtree ] If N 1s not a leaf, 
let F be the entry m N whose rec- 
tangle FI needs least enlargement to 
mclude EI Resolve ties by choosmg 
the entry vnth the rectangIe of smal- 
lest area 
[Descend until a leaf 1s reached.] Set 
N to be the cMd node pomted to by 
Fp and repeat from CL2 

Algolrthm AdjustRee Ascend from a leaf 
node L to the root, adjustmg covermg rec- 
tangles and propagatmg node sphts as 
necessary 
AT1 [Imtlahze.] Set N=L If L was spht 

previously, set NN to be the resultmg 
second node 

AT2 [Check If done ] If N 1s the root, stop 
AT3 [AdJust covermg rectangle m parent 

entry ] Let P be the parent node of 
N, and let EN be N’s entry m P 
Adjust EN I so that it tightly encloses 
all entry rectangles m N. 

AT4 [Propagate node spht upward] If N 
has a partner NN resultmg from an 
earher spht, create a new entry Em 
mth ENNp pointmg to NN and Em I 

enclosmg all rectangles m NN Add 
Em to P If there 1s room Othemse, 
mvoke SplitNode to produce P and 
PP contmg Em and all P’s old 
entrees 

AT5 [Move up to next level.] Set N=P and 
set NN=PP If a spht occurred, 
Repeat from AT2. 

AlgoMhm SplitNode 1s described m 
Sectlon 3.5. 

3.3. Deletion 
Algorithm Delete. Remove mdex record E 
from an R-tree 
Dl 

D2 
D3 

D4 

[Fmd node contammg record ] 
Invoke F’indLeaf to Iocate the leaf 
node L contammg E Stop d the 
record was not found. 
[Delete record.] Remove E from L 
[Propagate changes ] 
denseTree, passmg L. 
[Shorten tree.] If the 
only one clvld after 
been adjusted, make 
new root 

Invoke Con- 

root node has 
the tree has 
the cMd the 

Algollthm F’mdLeaf. Given an R-tree whose 
root node 1s T, find the leaf node contam- 
mg the mdex entry E. 
FLl. 

FL2. 

[Search subtrees ] If T 1s not a leaf, 
check each entry F m T to deter- 
mme d FI overlaps E I For each 
such entry myoke FindLeaf on the 
tree whose root 1s pomted to by Fp 
until E 1s found or all entnes have 
been checked 
[Search leaf node for record ] If T 1s 
a leaf, check each entry to see ff it 
matches E If E 1s found return T 

Algorithm CondenseTree Given a leaf 
node L from whch an entry has been 
deleted, ehnnnate the node If it has too few 
entnes and relocate its entnes Propagate 
node ehmmatron upward as necessary. 
AdJust all covermg rectangles on the path 
to the root, makmg them smaller If possi- 
ble 
CT1 

CT2 

[Imtlahze ] Set N=L Set Q, the set 
of elmnnated nodes, to be empty 
[Fmd parent entry.] If N 1s the root, 
go to CT& Othemse let P be the 
parent of N, and let EN be N’s entry 
IIlP 
[Ehnnnate under-full node.] If N has 
fewer than m entmes, delete EN from 
P and add N to set Q. 

CT3, 
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CT4 [Adjust covering rectangle ] If N has 
not been elunmated, adJust EN I to 
tightly contam all entnes m N 

CT5 [Move up one level m tree ] Set N=P 
and repeat from CT2. 

CT6 [Re-msert orphaned entnes ] Re- 
msert all entnes of nodes m set Q 
Entnes from ehmmated leaf nodes 
are re-mserted m tree leaves as 
described m Algorithm Insert., but 
entrees from higher-level nodes must 
be placed hgher 111 the tree, so that 
leaves of therr dependent subtrees 
wdl be on the same level as leaves of 
the mam tree 

The procedure outhned above for 
dlsposmg of under-full nodes dflers from 
the correspondmg operation on a B-tree, 
m which two or more adlacent nodes are 
merged A B-tree-l&e approach 1s possible 
for R-trees, although there 1s no adlacency 
m the B-tree sense: an under-full node 
can be merged mth whchever slblmg will 
have its area mcreased least, or the 
orphaned entnes can be dlstnbuted among 
slblmg nodes Either method can cause 
nodes to be spht. We chose re-msertlon 
mstead for two reasons first., it accom 
phshes the same t* and 1s easier to 
rmplement because the Insert routme can 
be used Efficiency should be comparable 
because pages needed durmg re-msertlon 
usually wdl be the same ones vlslted durmg 
the preceding search and ~I.U already be m 
memory. The second reason 1s that re- 
msertlon incrementally reties the spatial 
structure of the tree, and prevents gradual 
deterloratlon that nnght occur If each 
entry were located permanently under the 
same parent node 

3.4. Updates and Other Operations 
lf a data tuple 1s updated so that its 

covermg rectangle 1s changed, its mdex 
record must be deleted, updated, and then 
re-mserted, so that it Hnll find its way to 
the light place m the tree 

Other kmds of searches besides the one 
described above may be useful, for example 
to find all data objects completely con- 
tamed III a search area, or all obJects that 
contam a search area These operations 
can be nnplemented by strwhtforward 
vmatlons on the algonthmglven A search 
for a specific entry whose identity 1s known 

beforehand 1s requed by the deletion 
algolrthm and 1s unplemented by Algonthm 
F’indLeaf Vmants of range deletion, m 
wluch mdex entnes for all data obJects m a 
particular area are removed, are also well 
supported by R-trees 

3.5. Node Splitting 
Tn order to add a new entry to a full 

node contammg M entlres, it 1s necessary 
to dlvlde the collection of M+l entnes 
between two nodes The dlvlslon should be 
done m a way that makes it as unhkely as 
possible that both new nodes mll need to 
be exammed on subsequent searches 
Smce the decision whether to mslt a node 
depends on whether its covenng rectangle 
overlaps the search area, the total area of 
the two covermg rectangles after a spht 
should be mzed. Figure 3 1 dustrates 
tlvs pomt The area of the covermg rec- 
tangles m the “bad spht” case 1s much 
larger than m the “good spht” case 

The same crltelron was used m pro- 
cedure ChooseLeaf to decide where to 
msert a new mdex entry at each level m 
the tree, the subtree chosen was the one 
whose covermg rectangle would have to be 
enlarged least 

We now turn to algollthms for partl- 
tlomng the set of M+ 1 entnes mto two 
groups, one for each new node 

3.5.1. Exhaustive Algorithm 
The most strrughtforward way to find 

the mmunurn area node spht 1s to generate 
all possible groupmgs and choose the best 
However, the number of posslbtitles 1s 
approxnnately Z”-’ and a reasonable value 

-----. 

1 
I 
L----- 

-- ,- - - --- 

1 
I 
L- 

--, 
---c----i 
___----I 

lr --- 
Bad spht Good spht 

Figure 3 1 
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of M 1s 50*, so the number of possible sphts 
1s very large We implemented a modified 
form of the exhaustive algorithm to use as 
a standard for compartson mth other algo- 
zrthms, but It was too slow to use mth large 
node sizes 

3 5 2 A Quadratic-Cost Algorithm 
Tl~s algor?thm attempts to find a 

small-area spht, but IS not guaranteed to 
find one w-&h the smallest area possible 
The cost 1s quadratic m M and hnear m the 
number of dnnenslons The algorithm 
picks two of the M+l entnes to be the first 
elements of the two new groups by choos- 
mg the pm that would waste the most 
area If both were put m the same group, 
1 e the area of a rectangle covermg both 
eptnes, mmus the areas of the entries 
themselves, would be greatest The 
remammg entrres are then assigned to 
groups one at a tune At each step the 
area expansion requred to add each 
remammg entry to each group 1s calcu- 
lated, and the entry assigned 1s the one 
show-mg the greatest dflerence between 
the two groups 

Algorithm Quadratic Spht Dlvlde a set of 
A?+1 : index entnes mtotwo groups 
Qsl 

Q= 

QS3 

[Pick Arst entry for each group ] 
Apply Algorithm PickSeeds to choose 
two entries to be the first elements 
of the groups Assign each to a 
group 
[Check If done ] If all entnes have 
been assigned, stop If one group has 
so few entries that all the rest must 
be assigned to it m order for it to 
have the muumum number m, assign 
them and stop 
[Select entry to assign ] Invoke Algo- 
rithm PickNext to choose the next 
entry to assign Add it to the group 
whose covermg rectangle pvlll have to 
be enlarged least to accommodate it 
Resolve ties by addmg the entry to 
the group mth smaller area, then to 
the one mth fewer entries, then to 
either Repeat from QS2 

*A two dunenslonal rectangle can be 
represented by four numbers of four bytes 
each If a pomter also takes four bytes, 
each entry requu-es 20 bytes A page of 
1024 bytes ~I.U hold about 50 entnes 

Algorithm PickSeeds Select two entrees to 
be the first elements of the groups 
PSl [Calculate mefficiency of groupmg 

entnes together] For each pm of 
entl-les El and E2, compose a rectan- 
gle J mcludmg El I and E2 I Calcu- 
late d = area(J) - area(El I) - 
area(E2 I) 

PS2 [Choose the most wasteful pm ] 
Choose the pau- mth the largest d 

Algorithm PlckNext Select one remanung 
entry for clasticatlon m a group. 
PNl 

PN2 

[Determme cost of puttmg each 
entry m each group ] For each entry 
E not yet m a group, calculate d,= 
the area mcrease requu-ed m the 
covermg rectangle of Group 1 to 
include EI Calculate d2 slrmlarly 
for Group 2 
[Fmd entry mth greatest preference 
for one group ] Choose any entry 
vvlth the maximum dflerence 
between d 1 and d2 

3.5.3. A Linear-Cost Algollthm 
Tlus algorithm 1s lmear m M and m the 

number of dunenslons Linear Spht 1s 
ldentlcal to Quadratic Split but uses a 
different version of PickSeeds PickNext 
sunply chooses any of the remammg 
entries 

Algorithm LmearPlckSeeds Select two 
entries to be the first elements of the 
groups 
LPSl 

LPS2 

LIPS3 

[Fmd extreme rectangles along all 
dunenslons ] Along each dunenslon, 
find the entry whose rectangle has 
the hghest low side, and the one 
mth the lowest high side Record the 
separation 
[AdJust for shape of the rectangle 
cluster ] Normahze the separations 
by dlvldlng by the mdth of the entire 
set along the correspondmg dnnen- 
sion 
[Select the most extreme pm ] 
Choose the pm vvlth the greatest 
normalized separation along any 
dunenslon 
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4 Performance Tests 
We implemented R-trees m C under 

Umx on a Vax 11/780 computer, and used 
our implementation 112 a series of perfor- 
mance tests whose purpose was to verify 
the practicality of the structure, to choose 
values for M and m, and to evaluate 
different node-splitting algorithms This 
section presents the results 

cc )r I- 
Five tested, 
respond!&gfo ii&g& vz:t of M 
Bytes per Page Max Entnes per Page (M) 

128 
256 
512 

1024 
2048 

6 

E 
50 

102 

Values tested for m, the mmnnum number 
of entries m a node, were M/ 2, M/3, and 
2 The three node split algonthms 
described earlier were implemented m 
different versions of the program. All our 
tests used two-dimensional data, although 
the structure and algorithms work for any 
number of dimensions 

During the first part of each test run 
the program read geometry data from files 
and constructed an index tree, begmnmg 
with an empty tree and calling kwert mth 
each new mdex record Insert perfor- 
mance was measured for the last 10% of 
the records, when the tree was nearly its 
final size During the second phase the 
program called the function Search wnh 
search rectangles made up using random 
numbers 100 searches were performed 
per test run, each retrievmg about 5% of 
the data Finally the program read the 
mput files a second tune and called the 
function Ddete to remove the index record 
for every tenth data item, so that measure- 
ments were taken for scattered deletion of 
10% of the index records The tests were 
done using Very Large Scale Integrated cir- 
crut (VLSI) layout data from the RISC-II 
computer chip [ll] The circuit cell CEN- 
TRAL, contammg 1057 rectangles, was used 
m the tests and is shown m Figure 4 1 

Figure 4 2 shows the cost m CPU tune 
for msertmg the last 10% of the records as 
a function of page size The exhaustive 
algorithm, whose cost increases exponen- 
tially vnth page size, is seen to be very slow 
for larger page sizes The linear algorithm 
is fastest, as expected With this algorithm 

Figure 4.1 
Clrctut cell CENTRAL (1057 rectangles) 

CPU tune hardly increased pvlth page size 
at all, which suggests that node sphttmg 
was responsible for only a small part of the 
cost of msertmg records The decreased 
cost of msertlon w-Ah a stricter node bal- 
ance reqturement reflects the fact that 
when one group becomes too full, all spht 
algorithms simply put the remammg ele- 
ments m the other group mthout further 
comparisons 

The cost of deletmg an item from the 
index, shown m Figure 4 3, is strongly 
affected by the muumum node fill reqture- 
ment When nodes become under-full, 
their entries must be re-inserted, and re- 
insertion sometimes causes nodes to spht 
Stricter fill requnements cause nodes to 
become under-full more often, and mth 
more entries Furthermore, splits are more 
frequent because nodes tend to be fuller 
The curves are rough because node elunr- 
nations occur randomly and mfrequently; 
there were too few m our tests to smooth 
out the variations 

Figures 4 4 and 4.5 show that the 
search performance of the mdex is very 
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E = Ekhaustwe algont 
Q = Quadra& algorkhm 
L = Linear algorithm 

-----__ - Lm=2 
,-------Lm=M/2 

5L 128 256 512 1024 2048 J 
Bytes per page 

Frgure 4 2 
CPU cost of msertmg records 

100 I 
k tiu;rtl;re 4&&k!& 

E m=M/2 Q = Quadratic algorithm 

CPU 50- / 
L = knear algorithm 

msec 
p=r i 
delete / 

20. / 

128 258 512 1024 2048 
Bytes per page 

Figure 4 3 
CPU cost of deletmg records 

inselisltive to the use of different node 
spht algolrthms and fill requrrements The 
exhaustive algonthm produces a shghtly 
better mdex structure, resultmg m fewer 
pages touched and less CPU cost, but most 
combmatrons of algornhm and fill requu-e- 
ment come v&hm 10% of the best All algo- 
rrthms provide reasonable performance 

Figure 4 6 shows the storage space 
occupied by the mdex tree as a fun&on of 
algorithm,, fill criterron and page size Gen- 
erally the results bear out our expectation 
that strrcter node fill clrtena produce 
smaller mdexes The least dense mdex 
consumes about 50% more space than the 
most dense, but ah results for l/2-full and 
l&full (not shown) are mthm 15% of each 
other 

A second semes of tests measured R- 
tree performance as a function of the 
amount of data m the mdex The same 
sequence of test operations as before was 

. I111.111, 

E =’ Exhaukve algorithm 
Q = QuadratIc algorithm 
L = Lmear algorithm 

128 258 512 1024 2048 
Bytes per page 

Figure 4 4 
Search performance Pages touched 

100 
128 258 512 1024 2048 

Bytes per page 

Frgure 4 5 
Search performance CPU cost 

E = Exhaustwe algorithm 

Em=M/2 --.--._ Lm=2 

30k. 

- 
128 256 512 1024 2048 

Bytes per page 

Figure 4 6 
Space efficiency 

run on samples contammg 1057, 2236, 
3295, and 4559 rectangles. The first sam- 
ple contamed layout data from the crrcurt 
cell CENTRAL used earher, and the second 
consisted of layout from a slrmlar but 
larger cell contauung 2238 rectangles The 
thud sample was made by usmg both 
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CENTRAL and the larger cell, Pnth the two 
cells effectively placed on top of each 
other. Three cells were combmed to make 
up the last sample Because the samples 
were composed m dlff’erent ways usmg 
varymg data, performance results do not 
scale perfectly and some unevenness was 
to be expected 

Two combmatlons of spht algonthm and 
node fill requtrement were chosen for the 
tests the hnear algolrthm wrth m=Z, and 
the quadratic algorithm with m=M/ 3, 
both Pnth a page aze of 1024 bytes (M=50) 

Fqure 4 ‘7 shows the results of tests to 
determme how msert and delete perfor- 
mance 1s affected by tree size. Both test 
configurations produced trees Pnth two lev- 
els for 1057 records and three levels for 
the other sample azes The figure shows 
that the cost of mserts mth the quadratic 
algorithm 1s nearly constant except where 
the tree mcreases m height There the 
curve shows a defimte lump because of the 
mcrease m the number of levels where a 
spht can occur The lmear algorithm shows 
no lump, mdlcatmg agam that lmear node 
sphts account for only a small part of the 
cost of mserts. 

No node sphts occurred durmg the 
deletion tests vJlth the lmear configuration, 
because of the relaxed node fill requn-e- 
ment and the small nurnber of data items. 
As a result the curve shows only a small 
hump where the number of tree levels 
mcreases Deletion mth the quadratic 

. 
Q = Quadratic algorithm,, m=M/3 
L = Lmear algolrtb m=2 

1000 2ooo 3000 4000 5000 
Number of records 

Figure 4 7 
CPU cost of mserts and deletes 

vs amount of data 

configuration produced only 1 to 6 node 
sphts, and the resultmg curve 1s very 
rough When allowance 1s made for vma- 
tlons due to the small sample size, the 
tests show that msert and delete cost 1s 
mdependent of tree mdth but 1s afTected 
by tree height, wluch grows slowly pnth the 
nur&er of data items 

Figures 4 8 and 4.9 confirm that the 
two configurations have nearly the same 
search performance Each search 
retneved between 3% and 6% of the data 
The downward trend of the curves 1s to be 
expected, because the cost of processmg 
lgher tree nodes becomes less significant 
as the amount of data retlreved m each 
search mcreases The mcrease m the 
number of tree levels kept the cost from 
droppmg between the first and second 
data pomts. The low CPU cost per quahfy- 
mg record, less than 150 nncroseconds for 
larger amounts of data, shows that the 
mdex 1s quite effective m narrowmg 
searches to small subtrees 

The straght lures m Figure 4 10 reflect 
the fact that almost all the space m an R- 
tree mdex 1s used for leaf nodes, whose 
number vmes lmearly mth the amount of 
data For the Lmear-2 test configuration 
the total space occupied by the R-tree was 
about 40 bytes per data item, compared to 
20 bytes per item for the mdex records 
alone The correspondmg figure for the 
Quadratic-l /3 configuration was 33 Bytes 
per item 
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L = Lmear algorithm m=2 

1000 2000 3000 4000 50 

Number of records 

Figure 4 8 
Search performance vs amount of data* 
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Figure 4 9 
Search performance vs amount of data 
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Figure 4 10 
Space requned for R-tree 

vs amount of data 
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5. Conclusions 

I 

The R-tree structure has been shown to 
be useful for mdexmg spatial data oblects 
that have non-zero size Nodes 
correspondmg to disk pages of reasonable 
slse (e g 1024 bytes) have values of A4 that 
produce good performance With smaller 
nodes the structure should also be 
effective as a mam-memory mdex, CPU per- 
formance would be comparable but there 
would be no I/O cost 

The hnear node-spht algornhm proved 
to be as good as more expensive tech- 
mques It was fast, and the shghtly worse 
quahty of the sphts did not affect search 
performance noticeably 

Prehnnnary mvestxatlon Indicates that 
R-trees would be easy to add to any rela- 
tional database system that supported 
conventional access methods, (e g INGRES 
[9], SystemR [l]) Moreover, the new 
structure would work especially weII m 
conJunction wnh abstract data types and 
abstract mdexes [14] to streambne the 
handbng of spatial data 
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