
Generalizing \Search" in Generalized Search Trees

Paul M. Aoki

Report No. UCB//CSD-97-950

June 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720





Generalizing ‘‘Search’’ in Generalized Search Trees

Paul M. Aoki†

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720-1776
aoki@cs.berkeley.edu

Abstract
The generalized search tree,or GiST, defines the basic interfaces required to construct a
hierarchical access method for database systems. As originally specified, GiSTs only
support record selection. In this paper, we show how a small number of additional inter-
faces enable GiSTs to support a much larger class of search and computation operations.
Members of this class, which includes nearest-neighbor and ranked search, user-defined
aggregation and index-assisted selectivity estimation, are increasingly common in new
database applications. The advantages of implementing these operations in the GiST
framework include reduction of user development effort and the ability to use ‘‘industrial
strength’’ concurrency and recovery mechanisms provided by expert implementors.

1. Introduction

Access methods are arguably the most difficult user extensions supported by object-relational

database management systems. Dozens of database extension modules are available today for commercial

database servers. However, none of them ship with access methods that are of the same degree of effi-

ciency, robustness and integration as those provided by the vendors.

The problem is not a lack of access method extension interfaces. The iterator interface (by which the

databaseinvokesaccess methods) existed in System R [ASTR76]. Query optimizer interfaces (by which

the databasedecidesto invoke access methods) were introduced in the early extensible database prototypes

(e.g., ADT-INGRES/POSTGRES[STON86] and Starburst [LIND87]). These well-understood interfaces still

constitute the commercial state of the art [INFO97b].

The problem is that these functional interfaces do not isolate the primitive operations required tocon-

struct new access methods. Each access method implementor must write code to pack records into pages,

maintain links between pages, read pages into memory and latch them,etc. Writing this kind of structural

maintenance code for an ‘‘industrial strength’’ access method requires a great deal of familiarity with buffer

management, concurrency control and recovery protocols. To make things worse, these protocols are dif-

ferent in every database server.

The generalized search tree, or GiST [HELL95], addresses this problem — in part. Like the previous

work in this area, GiST defines a set of interfaces for implementing a search index. However, the GiST

interfaces are essentially expressed in terms of the abstract data types being indexed rather than in terms of

of pages, records and query processing primitives. Since a GiST implementor need not write any structural

maintenance code, they need not understand the server-specific protocols described in the last paragraph.

† Research supported by the National Science Foundation under grant IRI-9400773 and the Army Research Office under grant
FD-DAAH04-94-G-0223.



Given that database extension modules tend to be produced bydomain knowledgeexperts rather than

database serverexperts, we believe that GiST serves the majority of database extenders much better than

the previous work.

We say that GiST solves the access method problem ‘‘in part’’ because, as originally specified, GiST

does not provide the functionality required by certain advanced applications. For example, database exten-

sion modules for multimedia types (images, video, audio,etc.) usually include specialized index structures.

Unfortunately, these applications need specialized index operations as well. GiSTs only support the rela-

tional selection operator, such as, ‘‘Find the images containing this shade of purple.’’ Howev er, a typical

image database query is, ‘‘Find the imagesmost likethis one.’’ To get this functionality, would-be access

method implementors must override one or more of the internal GiST methods. This leaves them with

many or all of the pre-GiST implementation issues.

In this paper, we show how to extend the original GiST design to support applications requiring spe-

cialized index operations. These applications include:

(1) ranked and nearest neighbor search (spatial and feature vector databases)

(2) index-assisted sampling

(3) index-assisted selectivity estimation

(4) index-assisted statistical computation (e.g., aggregation)

Our goal is not to create low-level interfaces that permit as many optimizations as possible. Instead, we

expose simple, high-level interfaces. The idea is to enable (say) a computer vision expert to produce a cor-

rect and efficient access method with an interesting search algorithm. In the sections that follow, we

describe these interfaces and show how they implement the desired functionality.

The remainder of the paper is organized as follows. Section 2 reviews the original GiST design.

Section 3 motivates our changes to that design by giving an extended example of our of our test applica-

tions, similarity search. In Section 4, we discuss the interfaces and design details of our extensions. Sec-

tion 5 applies the new extensions to our test applications, giving specific examples of their use. Section 6

describes related work. We conclude in Section 7 with a discussion of project status and future work.

2. A Review of Generalized Search Trees

In this section, we review the current state of generalized search tree research. This includes the defi-

nition of the GiST structure, the callback architecture by which operations are performed on GiSTs, and

recent extensions in concurrency control and recovery. The following sections of the paper will assume

reasonable familiarity with these design aspects.

2.1. Basic Definitions and Structure

A GiST is a height-balanced, multiway tree. Each tree node contains a number of node entries,

E = <p, ptr >, wherep is a predicate that describes the subtree indicated byptr. The subtrees recursively

partition the data records. However, they do not necessarily partition the data space. GiST can therefore

model ordered, space-partitioning trees (e.g., B+-trees [COME79]) as well as unordered, non-space-

partitioning trees (e.g., R-trees [GUTT84]).

2



For consistency with [HELL95], we call each datum stored inp a ‘‘predicate.’’1 We use the term

‘‘key’’ only when it is part of a standard phrase in database terminology.

In the remainder of this paper, we describe the combination of an abstract data type and any GiST

methods associated with that type as adomain. Predicates are associated with a particular domain.

2.2. Callback Architecture

The original GiST callback architecture consists of a set of common internal methods (provided by

GiST) and a set of type-specific methods (provided by the user). The internal methods correspond to the

basic functional interfaces identified in other systems:SEARCH, INSERT and DELETE. The novel aspect of

GiST is the way in which the behavior of the internal methods is controlled by the type-specific methods.

• SEARCH is (by default) simply depth-first search. The decision to follow a node entry pointerE. ptr is

determined by whether or not the node entry predicateE. p satisfies theCONSISTENTmethod with respect

to the query. In other words,CONSISTENTtakes the place of ‘‘key test’’ routines in conventional database

systems. AsSEARCH locatesCONSISTENTrecords, they are returned to the user.

• INSERT is controlled in a similar manner.INSERT evaluates thePENALTY method over each entry in the

root node and the new entry,Enew. It then follows the pointer corresponding to the predicate with the

lowestPENALTY relative toEnew. SincePENALTY encapsulates the notion of index clustering, this process

directsEnew to the subtree into which it best ‘‘fits.’’INSERT descends recursively untilEnew is inserted

into a leaf node.INSERT then calls another common method,ADJUSTKEYS, to propagate any needed pred-

icate changes up the tree from the updated leaf.

• DELETE combines different aspects of the other two methods. The records to be deleted are located using

CONSISTENT (as inSEARCH), after which any changes to the bounding predicates of the updated nodes

must be propagated upward usingADJUSTKEYS (as inINSERT).

GiST defines three additional type-specific methods. UnlikeCONSISTENTandPENALTY, these methods

do not compare entries or predicates. Instead, they are transformations. The first,UNION, is used to form

new predicates out of collections of subpredicates. For example, whenADJUSTKEYS identifies the need to

‘‘expand’’ or ‘‘tighten’’ the predicate corresponding to an updated node, it invokesUNION over the entries in

the updated node to form the new parent predicate. The other type-specific methods,COMPRESSandDECOM-

PRESS, are defined as necessary to optimize the use of space within a node.

2.3. Concurrency Control and Recovery

The GiST concurrency control and recovery protocols [KORN97] do not change the basic GiST

framework. The internal concurrency control algorithm is based on rightlinks [LEHM81] and therefore

depends on a well-ordered traversal of the tree to detect node modifications. The algorithms in this paper

follow the required well-ordering. Therefore, where we use the notation from [HELL95], it should be

assumed to be augmented as described in [KORN97].

1 ‘‘Index column’’ might have been clearer, since ‘‘predicate’’ usually implies ‘‘Boolean logic predicate’’ in database systems.
However, the most general definition of predicate is ‘‘a quality, attribute, or property,’’ which is certainly appropriate in the GiST con-
text.

3



3. Motivating the GiST Extensions

This section presents a concrete example of one of our test applications, similarity search. A com-

plete example will help us determine the specific features lacking in the original GiST (as described in Sec-

tion 2). A clear identification of these missing features will make the purpose of the GiST extensions in

Section 4 more clear. The first subsection explains these deficiencies in the specific context of similarity

search. The second subsection explores the underlying principles.

Recall that we described four test applications in Section 1. These applications will be discussed at

length in Section 5. For now, we assert that the important characteristics of these applications can be found

in similarity search as well.

3.1. A Similarity Search Tree

Similarity search means retrieval of the record(s) closest to an example (i.e., query) according to

some similarity function. Similarity search occurs frequently in feature vector (e.g., multimedia and text)

databases as well as spatial databases. When retrieving multiple items, users generally want the results

ranked (ordered) by similarity. Similarity search, ranked search and the well-known nearest-neighbor prob-

lem are very closely related [GUTI94].

For concreteness, our example will use a specific data structure, the SS-tree [WHIT96a]. The SS-tree

is a variant of the clustered file [SALT78] applied to Euclidean space. The tree organizes records into

(potentially overlapping) hierarchical clusters, each of which is represented by a centroid point (weighted

center of mass) and a bounding sphere. (The SS-tree centers the sphere on the centroid, but this does not

give a minimum bounding sphere, so we will not assume that these are dependent predicates here.) Each

tree node corresponds to one cluster, and the centroid and bounding radius of each cluster are stored in an

entry in the cluster’s parent node. The SS-tree insertion algorithm locates the best cluster for a new record

by recursively finding the cluster with the closest centroid.

Similarity search in an SS-tree is quite simple.2 The algorithm traverses the tree top-down, following

datum
(record)

(e)

(b) (a) (b) (c) (d) (e)

(A) (B)

centroid

(a)
(A) 12

3

query

(c) (B)
(d)

Figure 1. Similarity search using an SS-tree.

2 The actual SS-tree search algorithm is based on that of [ROUS95]. For clarity, we present the algorithm of [HJAL95] instead.

4



the pointer whose corresponding bounding sphere is closest to the query. Note that the distance from the

query to a node entry’s bounding sphere represents the smallest possible distance to a record contained by

the subtree represented by that node entry. Therefore, we can stop searching when we find a record that is

closer than any unvisited node.

We demonstrate the algorithm using the tree depicted in Figure 1. Our query point is indicated by the

X. The search begins with the root node, which contains two bounding spheres, one for node (A) and

another for node (B). The bounding sphere of node (B) is closest toX, so we follow the pointer (tree edge)

marked1. Examining node (B) gives us the bounding spheres for nodes (d) and (e). Node (A) is closer

than either (d) or (e), so we visit node (A) next by following pointer2. This, in turn, gives us the bounding

spheres for nodes (a), (b) and (c). Node (c) is the closest out of the five unvisited nodes, so we visit node

(c) via pointer3. Now we hav e three records. One of the records is closer than any of the four unvisited

nodes (as well as its sibling records); the algorithm returns this record.

We can make this algorithm more space-efficient by incrementally pruning branches. As we visit

nodes, the bounding spheres of its entries give usupperbounds as well as lower bounds on the distance to

the nearest neighbor. For example, the bounding sphere of node (d) tells us that we need never visit nodes

(a) and (b). This allows us to remember fewer node entries during our search.

3.2. Issues Raised by the SS-tree

The SS-tree search algorithm has three properties that cannot be modelled using GiST. First, it is not

depth-first. Instead, it ‘‘jumps around’’ in the tree based on the current minimum node distance. Second,

unlike depth-first search, it has search state beyond a simple list of unvisited nodes. This algorithm-specific

state includes the closest record found and the tightest bounding distance seen. Third, the algorithm-

specific state is used to eliminate nodes from consideration. GiST only prunes subtrees usingCONSISTENT.

The SS-tree itself has three structural properties that GiST does not support cleanly. First, the SS-

tree has two predicates, a centroid and a bounding sphere. The original GiST can handle only single-

predicate node entries. Second, the SS-tree contains non-restrictive predicates. That is, a centroid is arep-

resentativeof the records contained in a subtree rather than ageneralizationof them. Because of this, a

centroid can only be used as a search priority hint. GiSTs use predicates as a means of pruning, rather than

directing, the search. Third, SS-trees use batched updates. That is, each node accumulates five changes (of

arbitrary magnitude) before applying any of them. This is because the insertion of a new record will, in

general, change the centroid and radius of every cluster containing it; if predicates are not allowed to

diverge from their true values, we must update every node on a leaf-to-root path for every insertion. GiSTs

do not support batched updates.

3.3. Generalizing the Issues Raised by the SS-tree

The discussion of the previous subsection reveals several issues that must be addressed to support SS-

trees in GiSTs. These issues are shared with other applications. We summarize these issues as follows:

• Search (more specifically, tree traversal) may bedirectedby user-specific criteria. (GiST provides only

depth-first search.)

• The returned value may be the result of astateful computation(i.e., one with user-defined state, such as

an aggregate function) over some of the entries stored in the index. (GiST can only return leaf index

5



records.)

• Both the search criteria and stateful computation may be based onnon-restrictive keys(i.e., metadata,

such as cardinality counts and cluster centroids) stored in the index. (Metadata cannot currently be

stored in GiSTs.)

• The stateful computation may beapproximate. (There are no mechanisms in GiST to compensate for

‘‘sloppy’’ predicates, which makes some trees hopelessly inefficient.)

As we will see in the next section, combinations of the following mechanisms allow the user to con-

struct access methods with the characteristics described above.

• multiple-key support

• user-directed traversal control

• user-defined computation state

• user-controlled predicate divergence

4. New GiST Interfaces

In this section, we extend the basic GiST mechanisms. First, we show how the mechanisms extend to

support entries that contain multiple predicates. Second, we explain how the user can specify traversals

other than depth-first search using a simple priority interface. Third, we illustrate how an aggregation-like

iterator interface can support additional traversals as well as index-assisted computations more general than

record retrieval. Finally, we (more thoroughly) justify the need for divergence control and demonstrate its

uses.

[HELL95] interface proposed interface

CONSISTENT(E, q) CONSISTENT(Ei , qi )

UNION({ E} ) UNION({ Ei } )

PENALTY(E, Enew) PENALTY

PICKSPLIT({ E} ) PICKSPLIT({ Ei } , bounds)

Basic tree

operations

COMPRESS(E) COMPRESS(Ei )

DECOMPRESS(E) DECOMPRESS(Ei )

Optional tree

operations

COMPARE(E1, E2) COMPARE(E1
i , E2

i )

FINDMIN(R, q)

NEXT(R, q, E)
PRIORITY(

→
Q,

→
E, N)

Specialized tree

operations

STATEINIT(
→
Q)

STATECONSISTENT(hi , { S} )

STATEITER(hi , S. E)

STATEFINAL (hi)

Stateful computation

Divergence ACCURATE(Ei , Enew
i , N)

Table 1. Summary of GiST methods.

6



For convenience of reference, we summarize our changes in Table 1. The table classifies the old and

new operations according to their functionality. In addition, it clearly shows which of the operations of

[HELL95] have been deleted, added or replaced.

4.1. Multiple Key Support

In order to support computations over metadata (e.g., subtree cardinality counts and cluster cen-

troids), GiSTs must be able to contain multiple keys. This capability has other, more traditional uses as

well.3 Hence, while our main motivation is the storage of metadata, it makes sense to provide a general

multikey mechanism. This subsection describes such a mechanism for GiSTs.

If ‘‘multiple keys’’ is defined as meaning ‘‘concatenated keys,’’ most of the GiST methods extend

trivially. Each index record contains an entryE = <
→
P, ptr > that contains a compound predicate

→
P and a

tree pointerptr.
→
P contains |P| simple predicates, <p1, . . . , p|P|>. Similarly, a query

→
Q contains simple

predicates <q1, . . . ,q|P|>.

• We apply theUNION, COMPRESSandDECOMPRESSmethods of each domain to the individual predicates and

concatenate the results. For example, forn compound predicates
→
P

1
, . . . ,

→
P

n
,

UNION({
→
P

1
, . . . ,

→
P

n
}) = <UNION({ p1

1, . . . , pn
1}), . . . ,UNION({ p1

|P|, . . . , pn
|P|})>.

• We sayCONSISTENT(
→
P,

→
Q) = true iff CONSISTENT(pi , qi ) = true for all 1 ≤ i ≤ |P|.

• SuccessivePENALTY methods become ‘‘tie-breakers.’’ For three predicates
→

P0,
→

P1 and
→

P2, we say

PENALTY(
→

P1,
→

P0) < PENALTY(
→

P2,
→

P0) iff there exists some 1≤ i ≤ |P| such that

PENALTY(p1
j , p0

j ) = PENALTY(p2
j , p0

j ) for all 1 ≤ j < i andPENALTY(p1
i , p0

i ) < PENALTY(p2
i , p0

i ).

• PICKSPLIT also uses successive domains to break ties. That is, entries that are duplicates according to the

first i domains (a set whose size is strictly non-increasing ini) may be redistributed between the nodes

in accordance withPICKSPLIT results for successive domains.

PICKSPLIT is the most difficult operation to generalize because we must intuit the desired splitting

semantics from other methods. Specifically, in our recursive application ofPICKSPLIT, we must be careful in

our definition of ‘‘duplicate.’’ For unordered domains,PICKSPLIT divides the entries according to some arbi-

trary basis. Any duplicates (as defined by the firsti type-specificEQUALITY methods4) can be interchanged.

For ordered domains, however,PICKSPLIT usesCOMPARE to linearize the entries. In this case, we can only

interchange entries within the single sequence of duplicates (again, as defined by the firsti type-specific

EQUALITY methods) that spans the page ‘‘split point.’’5

3 In general, it is unreasonable to expect the user to define new opaque types for each combination of keys that could be stored

in an index. A common complaint fromPOSTGRES[STON91] users was the need to define composite opaque types in order to achieve

the functionality of standard multikey B+-trees. For example, to build a B+-tree over two columns of typeint and text , the user

had to write C functions (!) implementing a newint_text type and then create a functional B+-tree [LYNC88].

4 Modern extensible databases such as Informix Universal Server require the implicit or explicit definition ofEQUALITY for all

opaque types. This is obviously more general and useful than thePOSTGRESapproach of assuming bitwise equality.

5 Some domain implementations ‘‘order’’ duplicate entries using RIDs or other system-generated identifiers [GRAY93]. Such

behavior obviously breaks the GiST domain abstraction. In these implementations, duplicate entries essentially do not exist; therefore,

no redistribution can be performed beyond that domain. This is generally undesirable because it prevents proper clustering on subdo-

mains.

7



4

���
���
���
���

5

����
5

���
���
���
���

5

��
��
��
��

4

���
���
���
���

5

������
5

���
���
���
���

5

����
6

��
��
��
��

4

���
���
���
���

5

���
���
���
���

5

����
5

������

���
���
���
���

6

Node 2

������
6

ordinal
predicate

predicate
spatial

predicates
bounding

����
����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

4;5 4;55;6 5;64;5

(a) (b) (c)

Node 1 Node 1 Node 2 Node 1

Figure 2. Recursive application ofPICKSPLIT.

Figure 2 shows an example of a recursivePICKSPLIT. The entries consist of one ordinal predicate and

one spatial predicate. Figure 2(a) shows the initial situation: an insertion is causing a node overflow. Fig-

ure 2(b) shows the ‘‘50/50’’ split chosen by thePICKSPLIT method for the first domain. This split is correct

and optimal for the first domain but produces large bounding boxes for the second domain. Since the three

elements with duplicate ordinal value ‘‘5’’ can be redistributed without affecting the correctness and opti-

mality of the first domain’s split, the second domain’sPICKSPLIT is allowed to shuffle the ‘‘5’’s to produce

the split shown in Figure 2(c). The first domain’s bounding predicate has not improved over Figure 2(b),

but the bounding boxes in the second domain have been tightened significantly. Note that duplicate ‘‘4’’s or

‘‘6’’s could not be shuffled.

RecursivePICKSPLIT requires a slight generalization of the original definition. In order forPICKSPLIT

to shuffle part of a node’s entries, we must be able to pass in any occupancy or space bounds that may

apply. For example, in Figure 2, we attempt to achieve a 50/50 split by limiting both nodes to no more than

three fixed-size entries. Recursive splits must work with progressively smaller bounds.

4.2. Traversal Control

Most search algorithms require some degree of control over the order in which nodes are visited.

The standard search tree traversal algorithms are based on stacks. The depth-first search (DFS) induced by

a stack does not consider ‘‘closeness’’ and therefore cannot support efficient similarity search. Here, we

provide a mechanism for specifying user-defined search strategies. We also discuss some of the implemen-

tation issues involved in providing a general traversal control interface.

8



4.2.1. Generalizing Search Stacks

To ‘‘open up’’ traversal control to the user, we define a newSEARCH method based on a priority queue

rather than a stack. The access method implementor provides a set ofPRIORITY methods computed from

node entries and the current scan state. WhenSEARCH visits a node, it adds each entryE = <
→
P, ptr > to the

priority queue, together with a traversal priority vector,
→
T. SEARCH chooses the next node to visit by remov-

ing the item with the highest traversal priority from the priority queue.

The priority queue can contain entries corresponding to leaf records as well as internal nodes. There

are many cases where we need delivery of records to be delayed until some invariant can be satisfied over

all entries visited thus far (similarity search is one such case). It is therefore useful to have a unified mecha-

nism for controlling the delivery of both types of entries.

The priority queue approach subsumes all techniques in which visit order is computed from local

information (i.e., which do not use holistic considerations such as ‘‘current median object’’). For example,

many spatial search algorithms visit nodes in some distance-based order. A statistical access method might

choose to visit nodes that provide the greatest increase in precision. Finally, we can simulate stacks using a

Priority method that returns either a constant value (if we have a priority queue implementation with a sta-

ble sort order) or a decreasing counter (if not).

4.2.2. Implementation Issues

The generality of priority queues comes at a price. Three problems are immediately evident. First,

stack-basedSEARCH implementations need not store full entries or priorities.6 An unoptimized priority

queue implementation therefore consumes more memory than a simple stack. Second, stacks haveO(1)

insertion/deletion cost fork entries, whereas priority queues haveO(log k) insertion/deletion cost.7 Third,

the number of stack items required to retrieve a record from a leaf node of ann-record search tree is

O(log n), whereas the priority queue requires worst-caseO(n) space.8

These three problems can be addressed to varying degrees. We can solve the first problem, larger

entries, using compression (e.g., supporting NULL predicates and priorities). We can ameliorate the second

problem, asymptotic efficiency, with some engineering. Optimizing for the common case, we can imple-

ment the priority queue as a ‘‘staque’’ (i.e., by placing a stack on top of the priority queue which contains

all objects with the current maximum priority). The third problem results inherently from the fact that the

priority queue is more flexible; however, note that for traditional traversals, the behavior will beO(log n) as

usual.

6 The storage of
→
P is as yet unmotivated. We will see that storing the predicates in the priority queue will allow us to perform

several useful tasks, such as pruning node entries as they are removed from the priority queue.

7 Some priority queue implementations achieve better — evenO(1) — amortized costs. However, these amortized costs are not

guaranteed for all workloads and are often not achieved in practice [CORM90].

8 To be fair, trees with rightlinks also requireO(n) stack space in the worst case; this occurs when a scan ‘‘chases’’ a  predicate

value all the way across a tree level due to concurrent splitting.

9



4.3. Stateful Computation

In addition to the ability to direct our tree traversal, we also need control over the current state of our

traversal (or computation). In this subsection, we describe our interface for maintaining this incremental

state. We then give an illustrative example of an application of this interface.

It may be helpful for the user to think of stateful computations as aggregate functions. However, our

stateful computations may have side effects as well as having ongoing state that persists between invoca-

tions. For example, one stateful computation is the standard aggregate function,COUNT. Other computa-

tions actually influence the tree traversal, pruning entries (as in Section 2) or even halting the traversal of

new pointers entirely. The latter ability (to stop traversal without halting the delivery of records) makes

them unlike iterator-based relational operators (see [GRAE93]).

4.3.1. The Interface

Our primitive methods, modelled on Illustra’s user-defined aggregate interface [ILLU95], can be

summarized as follows:

STATEINIT Allocates and initializes any internal state. Returns a pointer to this internal state.

STATEITER Computes the next stage of the iterative computation, updating the internal state as

required. STATEITER may halt traversal,i.e., that no further node pointers should be fol-

lowed.

STATECONSISTENT Returns a list of node entries to be inserted into the priority queue. For example, it may

prune the list ofCONSISTENTentries using the current internal state.

STATEFINAL Computes the final (scalar) result of the iterative computation from the internal state.

These methods are invoked, primarily bySEARCH, on an entry-by-entry basis.STATEINIT is called when the

GiST traversal is opened.SEARCH passes all of theCONSISTENT entries in a node throughSTATECONSISTENT

before inserting them into the priority queue;SEARCH also passes each entry removed from the priority

queue throughSTATECONSISTENT before passing them throughSTATEITER. We inv okeSTATEITER on each

entry that passes our consistency filters; in addition, any entries remaining in the priority queue when the

scan halts will be passed through bothSTATECONSISTENTandSTATEITER. SEARCH callsSTATEFINAL when there

are no more entries in the priority queue.

We store each iterator’s state in a master state descriptor. This descriptor contains several other

pieces of state. These include the traversal priority queue and several flags (e.g., whether traversal has been

halted, whether entries will be inserted or have been removed from the priority queue,etc.).

Since our stateful computations subsume relational selection, they subsume the standard logic by

which CONSISTENT is applied inSEARCH. That is, one can implement the standardCONSISTENT logic as a

STATECONSISTENTmethod that returns only theCONSISTENTentries of a node.

4.3.2. An Example: Implementing Ordered Traversal

The pruning technique of Section 2 is one example of a stateful computation. Here, we provide

another. We show how the combination of priority queues and stateful computation eliminates the need for

the special ordered traversal methods (FINDMIN andNEXT) described in [HELL95].

10



The ordered traversal methods were added to allow GiST to emulate the ‘‘left edge’’/‘‘leaf scan’’

range traversal of standard B+-trees. However, in the new framework,FINDMIN is simply a combination of

depth-first traversal (i.e., a counter-basedPRIORITY) and aSTATECONSISTENTmethod that returns only the first

(leftmost)CONSISTENT entry from the entries passed into it. When the search reaches the leaf level,STATE-

CONSISTENT returns each leaf’s rightlink9; traversal stops (i.e., the rightlink is not added to the priority

queue) when the rightmost entry in the node is notCONSISTENT.

Note that such ‘‘leaf scans’’ only work for multiple ordered predicates,i.e., for B+-trees. The exis-

tence of non-partitioning domains makes it very difficult to prevent the repeated delivery of records. Figure

3 shows a scenario in which three different tree descents (labelled (1), (2) and (3)) deliver sev en records to

the user when there are actually only four matching records. The problem is that the records marked (a),

(b), (c) and (d) have accidentally formed a valid increasing sequence because the spatial domain is not par-

titioned. Since the leading predicate is not unique, subtree predicates cannot stop a leaf scan from leaving

the subtree in which it began. Even the mechanism which detects split nodes for concurrency control pur-

poses [KORN97] (which solves an analogous problem of deciding when to stop traversing rightlinks) can-

not prevent the delivery of duplicates in this case.

(2)

(1)

(3)

(3)(1)

(2)

;oo+oo- ; o

oo+oo- ;

Scan (1) returns records (a), (b), (c), (d)
Scan (2) returns records (b), (c)
Scan (3) returns record (d)

o

(c)

+oo- ;

oo+oo- ; oo+oo- ;

5 543 6 1 9 2

oo+o4;5 o

query

-

(b)(a) (d)

Figure 3. Mixing ordered and unordered domains causes repeated record delivery.

9 Note that the rightlinks of the GiST concurrency control scheme exist only to providetemporarypaths between nodes that

have split. Node deletion may result in an tree level that (by itself) does not form a connected graph. This is different from the

Blink-tree [LEHM81] andΠ-tree [LOME92], which require tree levels to be connected graphs. If leaf scan traversals are required, the

GiST implementation must provide extraDELETE logic to ensure the continuity of the current level’s rightlink chain.

11



4.4. Divergence Control

It is not immediately clear why div ergence between parent and child node predicates should be

allowed. After all, looser bounds can only increase the number of ‘‘false positive’’ predicates, increasing

the number of nodes visited duringSEARCH. Certainly, structures such as the B+-tree and the R-tree do not

allow such divergence. Here, we justify the need for divergence control in new applications. We then pro-

vide a simple interface for controlling divergence.

In general, incremental predicate updates are expensive. (Recall that we alluded to this in Section 2.)

To see this, consider the fact that GiST supports predicates which are theUNION of child predicates. Such

predicates always represent a kind of aggregate function (albeit not necessarily a SQL aggregate). Exam-

ples include traditional bounding predicates(MIN/MAX), cardinality/ranking(COUNT), frequency moments

(SUM), and cluster centroids(AVG). The key difference between the latter three and bounding predicates is

that the latter three are guaranteed to be perturbed by any insertion or deletion in a subtree — these predi-

cates are representatives of the underlying data rather than generalization. Hence, all access methods pro-

posed for them are always subject to high update cost;ADJUSTKEYS will modify each node in a leaf-to-root

path. This is clearly unacceptable in an online environment, and this cost is the problem addressed by

divergence control.10

We control divergence using a new GiST method,ACCURATE. ACCURATE assesses two entries accord-

ing to some criterion specified by the user.ADJUSTKEYS calls ACCURATE when an entry update occurs to a

node. IfACCURATE = false for the newUNION of the updated node and the parent predicate that formerly

described it,ADJUSTKEYS installs the newUNION in place of the old predicate.

Acceptable divergence between the parent predicate and child nodeUNION predicate may be based on

arbitrary criteria. These criteria may be value-based or structural. Some relevant value-based criteria

include simple difference for cardinality counts, Euclidean distance for vector-space centroids and partial

area difference for spatial bounding boxes. Relevant structural criteria include the node’s height in the tree.

We do not expect this facility to be easy to use in general. Fortunately, it adds no work in the com-

mon case, since the defaultACCURATE is simply theEQUALITY method defined for each opaque type. That is,

a parent entry predicate must be equal to theUNION of the predicates in the child node. In addition, it is

clearly more general than the alternative. In spite of contrary claims [SRIV88, WHIT96a], batched update

is of questionable value in almost any domain because it provides no bounds on the imprecision of the

answers provided to the user.

4.5. Summary

Table 1 summarizes our changes to the GiST interface. The type-specific methods have not changed

substantially, having been generalized to multiple keys. The new aggregate-like stateful computation inter-

face and the diverge control interface have been added. Finally, the special ordered domain traversal meth-

ods are gone, since their functionality has been subsumed byPRIORITY and the stateful computation

10 It should be noted that the cost of incremental bounding predicate updates can be very high as well. The tree structures in the

literature have acceptable update cost only because updates do not ‘‘usually’’ change their parent predicates. For example, one can

construct an R-tree workload that causes leaf-to-root updates for every new entry, but such is not the common case.

12



interface.

As previously mentioned, the extensions listed in this section require modifications toSEARCH. Pseu-

docode for our newSEARCH algorithm is contained in Appendix A.

5. Applications

In this section, we show how to support many common traversal and computation operations in the

framework just described. We describe the implementation of each of our test applications in turn. By giv-

ing concrete examples, the needs of each application and their solution in our framework should be clear.

For each application, we also describe how div ergence control can be applied to improve update costs.

5.1. Similarity Search

We hav e already given an example of similarity search in Section 2. Here, we give a more complete

description of the different types of similarity search proposed in the literature and suggest how they can be

modelled using our GiST extensions.

Many algorithms have been proposed for similarity search, all based on traversal priority queues.

The traversal priority of a node is determined in whole or in part by a lower-bound distance from the query

to the node’s bounding predicate. The algorithms differ in their formulation of priority, and each priority

formulation results in different space complexity and I/O behavior. Howev er, since all of the algorithms

have the sameO(n) time complexity, each one represents a viable tradeoff. The basic algorithms include:

• Priority DFS searches all subtrees of a node in a local proximity order. It has been applied to a wide

variety of space-partitioning [FRIE77, SANT89] and non-space-partitioning

[BERC96, KATA97, ROUS95, WHIT96a] trees. It is not I/O-optimal and must apply pruning heuristics

to reduce the number of unnecessary node visits. However, since it is based on DFS, it has the advan-

tage of requiring onlyO(log n) space.

• Priority bucketvisits buckets (leaf nodes) in proximity order, probing each unvisited subtree in a global

proximity order. It is I/O-optimal for space-partitioning trees [ARYA93, HENR94], but the subtree pri-

ority queue requiresO(n) space. (This is distinct from theO(log n) space required for each probe.)

• Priority nodeis the search algorithm presented in Section 3. It is a generalization of priority-bucket and

visits individual nodes (as opposed to subtrees) in a global proximity order. This algorithm is optimal in

terms of both I/O [BERC97, HJAL95, YANG95] and distance calculations [WHIT96b]. Both types of

optimality hold for partitioning and non-partitioning trees. The algorithm has the disadvantage of

requiringO(n) space for the node priority queue. Furthermore, the algorithm requires a (strictly) greater

number of priority queue operations than priority-bucket.

5.1.1. Modelling Similarity Search

For brevity, we will only describe how to model priority-node. The other algorithms are depth-based

variations as described in Section 4.2.1. We show how to implementation of the basic traversal algorithm,

pruning optimizations, and tree divergence.

The basic traversal algorithm requires only aPRIORITY method that computes a lower bound on the

distance to a index entry. Records are also inserted into the traversal priority queue. By prioritizing record

entries ahead of internal node entries, we can deliver records to the user when they appear at the top of the

13



priority queue.

As mentioned in Section 3, pruning optimizations are possible forkth nearest neighbor search (where

k is knowna priori). These optimizations are based on the principle that we need never visit a node, or

ev en insert it into the priority queue, if it is more distant than theupperbound distance to thekth closest

entry that we have seen. (It can be shown that upper bound distances give no advantage in terms of bound-

ing the actual search [BERC97].) These techniques are easily implemented using aSTATECONSISTENT

method that maintains a separate priority queue, specifically for pruning, of sizek.

5.1.2. Application of Divergence Control

Some types of similarity search use cluster centroids rather than bounding predicates. That is, the

prioritized search is driven by the distance from the query to the centroid (rather than the minimal distance

to the bounding predicate). This kind of heuristic traversal is common in non-Euclidean similarity search.

If updates are performed online, we may choose to allow the centroids to diverge from their true values

usingACCURATE.

5.2. Sampling

Sampling scans are beginning to appear in commercial database systems. Sampling has many finan-

cial and scientific applications [OLKE95]. It can also be used to improve response time for decision sup-

port queries that do not need completely accurate answers [INFO97a].

Sampling access methods support some type of randomized probing operation. Augmented trees can

be used, as can some variation of acceptance/rejection (A/R) sampling, or some combination. This subsec-

tion shows how to emulate both types of sampling.

Sampling is easy using trees augmented with ranks [KNUT73] or other weighting [WONG80] infor-

mation. To sample from ann-record index, we choose a random numberk ∈ [1, n] and return thekth

record by following the pointers whose corresponding ranges containk (see Figure 4(a)). This is discussed

in undergraduate textbooks [CORM90].

A/R sampling is more complex. Conceptually, we choose a random path from root to leaf. As we

descend this path, we discover some piece of auxiliary information associated with each node. Based on

this auxiliary information, we choose to accept or reject the node (and therefore the path). Our A/R deci-

sion criterion is designed to ensure that we return records whose expected distribution is consistent with

that of the data set; simply following random pointers in each node does not sample records with equal

probability, and sometimes we want records according to some predicate-based distribution. However,

rejections may cause us to probe the index sev eral times before returning a record. For example, we can

simulate ranked sampling in unranked B+-trees by assuming a conceptual tree in which each node has the

same (i.e., maximum) fanout. If the path to thekth record in our conceptual tree turns out to be impossible

because some node does not contain enough entries, we start over with a new path [OLKE89]. Similar

algorithms are possible for spatial access methods [OLKE93].

Figure 4(b) is a conceptual example of A/R sampling. Since we have no actual ranks in the tree, we

pretend each subtree is full (i.e., each node has maximal fanout). We therefore estimate that the tree con-

tains 27 records. Our first attempt, scan (1), selects record 7. The bogus ranks lead us to a subtree that

does not exist, so we reject this path. Our second attempt, scan (2), selects record 16 (which is record 11 in

14



‘‘find record 7’’

‘‘find record 7’’

‘‘find record 6’’

2 3 2 23

7

‘‘find record 1’’
(a)

(b)

5

‘‘find record 16’’(2)

‘‘find record 7’’

(1)

subtree cardinality
‘‘find record 11’’

‘‘find record 1’’

Figure 4. Index-based sampling algorithms.

(a) Sampling from a ranked tree.

(b) Sampling using acceptance/rejection techniques (conceptual diagram).

the physical tree). This time, our path does not follow any nonexistent pointers, so we are able to use the

ersatzranking to locate this record.

5.2.1. Modelling Sampling Trees

Ranked trees can be supported trivially in our framework. Cardinality counts (weights) can be main-

tained as metadata predicates and can be updated automatically by the existingUNION/ADJUSTKEYS mecha-

nisms (i.e., theUNION of multiple counts is just theSUM aggregate).STATEINIT chooses an initial recordk;

SEARCH simply aggregates the counts/weights in the nodes it visits usingSTATEITER, following the pointers

corresponding tok. Each descent returns one sampled record.

A/R sampling is harder to model. A sampling ‘‘scan’’ is essentially the standard depth-first GiST

search, but it does not follow pointers based onCONSISTENT. Instead, as the scan proceeds,STATECONSISTENT

uses the metadata in the current node’s entries to select exactly zero or exactly one of the entries. If zero

entries are selected, the node has been rejected andSTATECONSISTENT returns the root (this act restarts the

scan). Otherwise, the scan follows the chosen pointer.

15



5.2.2. Application of Divergence Control

Ranked trees are a good application for divergence control. In fact, Oracle has implemented a spe-

cific type of divergent B+-tree in Rdb 7.0 [SMIT96]. In essence, theirADJUSTKEYS algorithm makes the par-

ent predicate slightly larger than the Union of the predicates in the child node. This use of ‘‘sloppy’’ predi-

cates significantly reduces the rate of forced updates. When used for sampling, such ‘‘pseudo-ranked’’

trees [ANTO92] become a combination of ranked sampling and A/R sampling; paths must be rejected

when they correspond to subtrees whose existence has been erroneously predicted by the ‘‘sloppy’’ parent

predicates.

5.3. Selectivity Estimation

In spite of recent advances in selectivity estimation, ‘‘asking the database’’ by probing an index can

still be the only cost-effective way to compute the result size of a restriction query. There are two main rea-

sons for this. The first has to do with database extensions, and the second has to do with deficiencies in

existing query optimizer technology.

First, analytic selectivity estimation techniques do not exist for many new, user-defined types and

functions. Nearly all of the advances in selectivity estimation have resulted from applications of classic

statistics to the traditional ordinal domains. It will take time to develop the same theoretical understanding

for user-defined types, a situation that has been described as a ‘‘nightmare’’ for query optimizer implemen-

tors [CHAU97]. Extensible database systems typically provide selectivity function interfaces (e.g., the

am_scancost interface in Informix Universal Server [INFO97b]) but vendors obviously cannot provide

domain-specific guidance for implementing these functions.

Second, the non-parametric statistics used by commercial query optimizers have well-known vulner-

abilities. For example, the result size estimate for a range query may have a very high degree of relative

imprecision, even if its absolute imprecision is bounded using frequent value statistics and small histogram

bins. The difference between returning 5 records and 50 records from a table can matter a great deal when

it is the driving table for a large join query. Practitioners have recognized this problem and have shown that

index-assisted approaches are a viable solution; Digital Rdb/VMS [ANTO93] (now Oracle Rdb) and IBM

SQL/400 [ANDE88] (now IBM DB2/400) have long supplemented the standard selectivity estimation tech-

niques by probing unranked search trees.

To be cost-effective, index-assisted selectivity estimation should perform significantly less work than

actually answering the query. If our goal is fast convergence using the fewest I/Os, three heuristics immedi-

ately suggest themselves. First, we should generally visit nodes at higher levels before nodes at lower lev-

els because of their larger subtree cardinalities. Second, we should descend subtrees with higher impreci-

sion (partial predicate matches, loose divergence bounds) before those with lower imprecision (complete

predicate matches, tight divergence bounds). Finally, adding auxiliary information to each node may pro-

duce better estimates. For example, guessing the number of records in a subtree using fanout estimates will

be much less accurate than obtaining the actual cardinality from ranking information.

5.3.1. Modelling Selectivity Estimation Trees

The option implemented by Rdb/VMS and SQL/400, selectivity estimation using unranked trees,

requires very little beyond the ability to traverse the index usingCONSISTENT. Both systems descend the tree

16



Node visited by traversal algorithm.

��
��
��
�� Record believed to be in result set.

Rdb/VMS assumes uniform fill

SQL/400 assumes a uniform leaf fill factor

Rdb/VMS assumes 50% match on partial matches

range predicate coverage

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(b)

���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�

�
�
�

(a)

(c)

Figure 5. B+-tree descent strategies for selectivity estimation:

(a) The actual query predicate coverage.

(b) Descent to level above leaves inSQL/400 [ANDE88].

(c) Descent to ‘‘split level’’ in Rdb/VMS [ANTO93].

part-way, using simple uniformity models and fanout estimates to ‘‘guess’’ the tree structure below that

point. Figure 5 giv es an example of how these approaches work in a B+-tree.11

11 SQL/400 actually uses AS/400 radix trees, which are not height-balanced. The discussion here therefore takes some liberties

with the ideas of [ANDE88]. For example, we ignore SQL/400’s pilot probes, which only serve to estimate the radix tree height.

17



Emulation of the SQL/400 approach turns out to be very simple.STATECONSISTENT stops returning

entries for a given subtree when the scan is one level above the leaves (Figure 5(b)). When there are no

more non-leaf entries to be visited, the scan halts andSTATEITER multiplies the number of leaf node entries

accumulated in the priority queue by the mean leaf fanout (occupancy).

Emulation of Rdb/VMS uses a similar approach.STATECONSISTENTstops descent when more than one

entry in the current node isCONSISTENT (Figure 5(c)). STATEITER combines the current tree level, the mean

fanout and the number ofCONSISTENTentries in the terminal node (with partially matching entries counting

as1⁄2) to calculateestimate= fanoutlevel × entries.

Obviously, more sophisticated estimation and traversal algorithms are possible. For example, one

can use Selinger-style uniformity models [SELI79] in any domain in which we can sensibly measure degree

of overlap. For example, this is straightforward in multidimensional domains [WHAN94]. Again, this sim-

ply requires replacingSTATEITER.

5.3.2. Application of Divergence Control

Ranked selectivity estimation trees can again be ‘‘pseudo-ranked’’ (as with sampling). Figure 5 hap-

pens to show an example where the unranked tree schemes work relatively well (i.e., the actual number of

records is 15, and both schemes give an estimate of 18). However, Variable-length keys cause large fanout

variance. This variance greatly reduces the estimation accuracy of unranked trees. Using ranked trees to

estimate subtree cardinality reduces the severity of this problem. As previously discussed for sampling

trees, the standard GiSTUNION/ADJUSTKEYS logic can maintain subtree cardinality counts automatically.

Each count is actually a range of possible values rather than a single value (as is normally the case with

ranked trees), and theACCURATE method and theSTATEITER (estimation) method must account for this.

Divergence leads to some estimation inaccuracy, but at least the inaccuracy has tight bounds.

For completeness, we discuss emulation of the pseudo-ranked estimation in Oracle Rdb. Oracle Rdb

uses the same traversal and partial-match logic as Rdb/VMS, so onlySTATEITER changes (to add the counts

for eachCONSISTENTentry instead of multiplying). The traversal picture looks the same as Figure 5(c).

5.4. Aggregation Using Statistical Access Methods

Statistical access methods such as SIAM [GHOS86] and TBSAM [SRIV88] are a generalization of

ranked trees. Ranked trees store simple order statistics (i.e., subtree counts), whereas statistical access

methods can store more complex statistics (e.g., qth frequency moments).

A statistical query is the computation of a scalar aggregate function over all recordsCONSISTENTwith

the restriction predicate(s). A statistical access method improves the efficiency of such queries by storing

preaggregated metadata in the root of each subtree. (This is different from other index-based approaches,

which are typically designed to accelerate restriction and grouping [O’NE97].) Consider the following

query, which computes the variance of household incomes within a circular region:

SELECT VARIANCE(income)

FROM households

WHERE Contains(Circle(’...’), location)

One approach is to use a primary R-tree to locate the appropriate households and then computeVARIANCE

over the matching records. Alternatively, we can maintainΣ income, Σ (income2) andCOUNT as ‘‘keys’’ in

18



each subtree root; variance is easily computed using the individual sums of these quantities over all subtrees

that fully match the restriction predicate. The performance of the two alternatives can differ wildly. For

example, if the query happens to cover the entire domain space, the first approach scans the entire index

and the alternative approach visits one index node.

5.4.1. Modelling Statistical Access Methods

Statistical access methods can be emulated using the following callbacks. The traversal algorithm

aggregates all entries for whichCONSISTENT(
→
P,

→
Q) = true andUNION(

→
Q,

→
P) =

→
P (i.e., full matches) and fol-

lows all pointers for whichCONSISTENT(
→
P,

→
Q) = true but UNION(

→
Q,

→
P) ≠

→
P (i.e., partial matches). The latter

test occurs inSTATECONSISTENTand the aggregation occurs inSTATEITER andSTATEFINAL .

Figure 6 shows how this traversal algorithm works for an index over an ordinal domain (e.g.,

TBSAM). For such domains, only the ‘‘edges’’ of the range query contain partial predicate matches, so at

most two edge descents must be made. A more general structure (e.g., a statistical R-tree) can have many

‘‘edge’’ predicates because of bounding predicate overlap, resulting in many more descents. Hence, signifi-

cant work remains in cost tradeoffs for more general trees.

5.4.2. Application of Divergence Control

Statistical applications are not as well-suited for divergence control as selectivity estimation. The

inaccuracy of arbitrary frequency moments of arbitrary attributes (e.g., salary) is potentially much higher

than that of order statistics (cardinalities). Furthermore, the fact that the answer is being delivered to the

user suggests that the inaccuracy of the answer must be much more explicit than in selectivity estimation.

In fact, an ideal interface would allow the user to specify the desired accuracy; general accuracy-

specification interfaces require more study.

Node visited by traversal algorithm.

nodes that do not need to be visited
due to preaggregation

Figure 6. Traversal of a B+-tree-like statistics access method.

19



6. Related Work

With few exceptions, the work on specialized traversal/computation algorithms, generalized storage

structures and semantic divergence control have been orthogonal. Since we have covered the first topic at

such length in the preceding sections, we discuss only the latter two here.

Although there have been many extensible database projects, there have been few attempts to capture

the primitive structural operations required to implement predicate-based search structures. TheGENESIS

file management interface [BAT O85, BAT O88] remains the most comprehensive framework to date. How-

ev er,GENESISfocuses on ease-of-use for implementors who select from a set of reusable software compo-

nents. By contrast, GiST [HELL95] focuses on identifying the interfaces that simplify the implementation

of the components which are most oftennon-reusable to the greatest possible degree. GiST alone has an

integrated concurrency control and recovery scheme capable of addressing all possible search structures

built upon it [KORN97]. Neither system appears to have actually implemented search or computation oper-

ations more general than record selection.

There have been relatively few discussions of imprecise index structures. Several authors have pro-

posed batched updates (e.g., [SRIV88, WHIT96a]). Antoshenkov’s work on pseudo-ranked B+-trees

[ANTO92] is more rigorous but applies only to ordinal domains. To avoid creating new jargon, we have

consciously modelled some of our conceptual framework and terminology after that of theepsilon serializ-

ability (ESR) literature [PU91]. It is possible that additional concepts can be borrowed from that literature

as well. However, there are enough considerations unique to divergent GiSTs (e.g., the hierarchical nature

of both the data and traversal) that we consider them to be separate problems.

7. Conclusions, Status and Future Work

In this paper, we hav e shown how two mechanisms, traversal priority callbacks and aggregation-like

iterators, enable users them to emulate many of the special-purpose index traversal algorithms proposed in

the literature. These traversal mechanisms, combined with multikey support, significantly enhance the abil-

ity of GiSTs to support new database applications. A final mechanism, divergence control, enables us to

implement these specialized structures as efficient, dynamic indices.

We hav e given specific details of how these (largely orthogonal) mechanisms support four important

applications. We hav e a limited implementation of our framework inPOSTGRESQL 6.1

(URL:http://postgresql.org/ ) and are presently implementing our test applications in this frame-

work.

Future directions include:

Selectivity estimation:We are actively investigating improved techniques for selectivity estimation using

GiSTs. Salient issues include:

• Better estimators of the number of records in an index node (i.e., subtree) matching a predicate (i.e.,

STATEITERs optimized for particular domains). Examples include the use of fractal estimators for the

spatial domain [BELU95].

• Balancing I/O cost and estimation accuracy in traversal strategies. The previously proposed descent

strategies have many obvious vulnerabilities. Tw o more attractive options are: descent to a predeter-

mined degree of relative imprecision and descent to a dynamically determined ‘‘tailoff’’ in the reduction

20



of imprecision. Tailoff detection is particularly natural if we perform a priority queue traversal in which

the priority is computed from the imprecision.

• Effects of improved accuracy on optimization (i.e., when is the cost of tree descent warranted?). For

example, a query optimizer might only invoke index estimation when the uncertainty of its histogram-

based estimate is high. The estimated impact on the rest of the query plan might also be considered.

• Many researchers have pointed out that multidimensional selectivity estimation can benefit from spe-

cialized main memory data structures that resemble condensed search trees (e.g., [MURA88]). Such

structures could easily be constructed using GiST; the costs and benefits of this approach relative to that

of augmenting secondary memory structures (as discussed here) are not well-understood.

In addition, it will be interesting to compare the sensitivity of the more complex estimators to divergence as

well as the practicality of creating and maintaining the statistics required to support them (notably, those

based on fractals).

Tuning issues:Controlled divergence is a powerful tool for balancing the update rate and inaccuracy of

access methods, such as TBSAM and centroid trees, that would otherwise be impractical. However, requir-

ing the user to turn performance ‘‘knobs’’ for each index is not reasonable. We need general parameter

guidelines or, better yet, automatic tuning methods.

Further traversal-order generalizations:Marcel Kornacker posed the following interesting question:

‘‘What traversal strategies do not fit in a priority queue model?’’ We hav e not yet been able to find a rea-

sonable traversal algorithm that cannot be emulated using priorities. When such an algorithm is found, it

may not prove to beimportant enough to warrant a change to the callback interface — the priority queue

methods (actually,SEARCH) can always be overridden for that specific GiST.

Acknowledgements

Joe Hellerstein, Marcel Kornacker and Allison Woodruff hav e provided many comments that have

improved the presentation and generality of the concepts in this paper. In particular, Marcel’s skepticism

about non-priority-based traversals influenced the design of the traversal control interface.

References

[ANDE88] M. J. Anderson, R. L. Cole, W. S. Davidson, W. D. Lee, P. B. Passe, G. R. Ricard and L. W. Youngren,

“Index Key Range Estimator,” U. S. Patent 4,774,657, IBM Corp., Armonk, NY, Sep. 1988. Filed June 6,

1986.

[ANTO92] G. Antoshenkov, “Random Sampling from Pseudo-Ranked B+ Trees,”Proc. 18th Int. Conf. on Very Large

Data Bases, Vancouver, BC, Canada, Aug. 1992, 375-382.

[ANTO93] G. Antoshenkov, “Dynamic Query Optimization in Rdb/VMS,”Proc. 9th IEEE Int. Conf. on Data Eng.,

Vienna, Austria, Apr. 1993, 538-547.

[ARYA93] S. Arya and D. M. Mount, “Algorithms for Fast Vector Quantization,”Proc. 3rd Data Compression Conf.,

Snowbird, UT, 1993, 381-390.

[ASTR76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,

R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade and V. Watson, “System

R: Relational Approach to Database Management,”Tr ans. Database Systems 1, 2 (June 1976), 97-137.

21



[BAT O85] D. S. Batory, “Modeling the Storage Architectures of Commercial Database Systems,”Tr ans. Database

Systems 10, 4 (Dec. 1985), 463-528.

[BAT O88] D. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell and T. E. Wise, “GENESIS:

An Extensible Database Management System,”IEEE Trans. on Software Eng. 14, 11 (1988), 1711-1730.

[BELU95] A. Belussi and C. Faloutsos, “Estimating the Selectivity of Spatial Queries Using the ‘Correlation’ Fractal

Dimension,”Proc. 21st Int. Conf. on Very Large Data Bases, Zurich, Switzerland, Sep. 1995, 299-310.

[BERC96] S. Berchtold, D. A. Keim and H.-P. Kriegel, “The X-tree: An Index Structure for High-Dimensional Data,”

Proc. 22nd Int. Conf. on Very Large Data Bases, Mumbai (Bombay), India, Sep. 1996, 28-39.

[BERC97] S. Berchtold, C. Bo
..
hm, D. A. Keim and H.-P. Kriegel, “A Cost Model for Nearest Neighbor Search,”Proc.

16th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Sys., Tucson, AZ, May 1997,

78-86.

[CHAU97] S. Chaudhuri, “Query Optimization at the Crossroads (panel session),”Proc. 1997 ACM SIGMOD Int.

Conf. on Management of Data, Tucson, AZ, May 1997, 509.

[COME79] D. Comer, “The Ubiquitous B-tree,”Computing Surveys 11, 2 (1979), 122-137.

[CORM90] T. H. Cormen, C. E. Leiserson and R. L. Rivest,Introduction to Algorithms, McGraw-Hill, New York, NY,

1990.

[FRIE77] J. H. Friedman, J. L. Bentley and R. A. Finkel, “An Algorithm for Finding the Best Matches in

Logarithmic Expected Time,”Tr ans. Math. Software 3, 3 (Sep. 1977), 209-226.

[GHOS86] S. Ghosh, “SIAM: Statistics Information Access Method,” inProc. 3rd Int. Wksp. on Statistical and

Scientific Database Management(Luxembourg, July 1986), R. Cubitt, B. Cooper and G. O
..

zsoyoglu (ed.),

EUROSTAT, Luxembourg, 1986, 286-293.

[GRAE93] G. Graefe, “Query Evaluation Techniques for Large Databases,”Computing Surveys 25, 2 (June 1993),

73-170.

[GRAY93] J. Gray and A. Reuter,Tr ansaction Processing: Concepts and Techniques, Morgan Kaufmann, San Mateo,

CA, 1993.

[GUTI94] R. H. Gu
..
ting, “An Introduction to Spatial Database Systems,”VLDB J. 3, 4 (Oct. 1994), 357-399.

[GUTT84] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,”Proc. 1984 ACM SIGMOD Int.

Conf. on Management of Data, Boston, MA, June 1984, 47-57.

[HELL95] J. M. Hellerstein, J. F. Naughton and A. Pfeffer, “Generalized Search Trees for Database Systems,”Proc.

21st Int. Conf. on Very Large Data Bases, Zurich, Switzerland, Sep. 1995, 562-573.

[HENR94] A. Henrich, “A Distance-Scan Algorithm for Spatial Access Structures,”Proc. 2nd ACM Wksp. on

Advances in Geographic Information Systems, Gaithersburg, MD, Dec. 1994, 136-143.

[HJAL95] G. R. Hjaltason and H. Samet, “Ranking in Spatial Databases,” inAdvances in Spatial Databases(Proc.

4th Int. Symp. on Spatial Databases, Portland, ME, Aug. 1995), M. J. Egenhofer and J. R. Herring (ed.),

Springer Verlag, LNCS Vol. 951, Berlin, Germany, 1995, 83-95.

[ILLU95] “Illustra User’s Guide, Server Release 3.2,” Part Number DBMS-00-42-UG,

Illustra Information Technologies, Inc., Oakland, CA, Oct. 1995.

[INFO97a] “Informix-OnLine Extended Parallel Server Version 8.1 for the UNIX Operating System,” Part Number

000-21384-77, Informix Corp., Menlo Park, CA, Jan. 1997.

[INFO97b] “Guide to the Virtual-Table Interface, Version 9.01,” Part Number 000-3692, Informix Corp., Menlo Park,

CA, Jan. 1997.

22



[KATA97] N. Katayama and S. Satoh, “The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor

Queries,”Proc. 1997 ACM SIGMOD Int. Conf. on Management of Data, Tucson, AZ, May 1997, 369-380.

[KNUT73] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting and Searching, Addison Wesley,

Reading, MA, 1973.

[KORN97] M. Kornacker, C. Mohan and J. M. Hellerstein, “Concurrency and Recovery in Generalized Search Trees,”

Proc. 1997 ACM SIGMOD Int. Conf. on Management of Data, Tucson, AZ, May 1997, 62-72.

[LEHM81] P. L. Lehman and S. B. Yao, “Efficient Locking for Concurrent Operations on B-trees,”Tr ans. Database

Systems 6, 4 (Dec. 1981), 650-670.

[LIND87] B. Lindsay, J. McPherson and H. Pirahesh, “A Data Management Extension Architecture,”Proc. 1987

ACM SIGMOD Int. Conf. on Management of Data, San Francisco, CA, May 1987, 220-226.

[LOME92] D. Lomet and B. Salzberg, “Access Method Concurrency with Recovery,”Proc. 1992 ACM SIGMOD Int.

Conf. on Management of Data, San Diego, CA, June 1992, 351-360.

[LYNC88] C. A. Lynch and M. Stonebraker, “Extended User-Defined Indexing with Application to Textual

Databases,”Proc. 14th Int. Conf. on Very Large Data Bases, Los Angeles, CA, Aug. 1988, 306-317.

[MURA88] M. Muralikrishna and D. J. DeWitt, “Equi-depth Histograms for Estimating Selectivity Factors for Multi-

Dimensional Queries,”Proc. 1988 ACM SIGMOD Int. Conf. on Management of Data, Chicago, IL, June

1988, 28-36.

[O’NE97] P. O’Neil and D. Quass, “Improved Query Performance with Variant Indexes,”Proc. 1997 ACM SIGMOD

Int. Conf. on Management of Data, Tucson, AZ, May 1997, 38-49.

[OLKE89] F. Olken and D. Rotem, “Random Sampling from B+ Trees,”Proc. 15th Int. Conf. on Very Large Data

Bases, Amsterdam, Netherlands, Aug. 1989, 269-277.

[OLKE93] F. Olken and D. Rotem, “Sampling from Spatial Databases,”Proc. 9th IEEE Int. Conf. on Data Eng.,

Vienna, Austria, Apr. 1993, 199-208.

[OLKE95] F. Olken and D. Rotem, “Random Sampling from Databases: A Survey,”Statistics and Computing 5, 1

(Mar. 1995), 25-42.

[PU91] C. Pu and A. Leff, “Replica Control in Distributed Systems: An Asynchronous Approach,”Proc. 1991

ACM SIGMOD Int. Conf. on Management of Data, Denver, CO, May 1991, 377-386.

[ROUS95] N. Roussopoulos, S. Kelley and F. Vincent, “Nearest Neighbor Queries,”Proc. 1995 ACM SIGMOD Int.

Conf. on Management of Data, San Jose, CA, May 1995, 71-79.

[SALT78] G. Salton and A. Wong, “Generation and Search of Clustered Files,”Tr ans. Database Systems 3, 4 (Dec.

1978), 321-346.

[SANT89] O. Santana, G. Rodriguez, M. Diaz and A. Pla´cido, “The Infinite Distance in the Determination of the

Nearest Euclidean M-Neighbours in the K-D-B Tree,”Proc. IEEE Int. Wksp. on Tools for AI, Fairfax, VA,

Oct. 1989, 146-152.

[SELI79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price, “Access Path Selection in a

Relational Database Management System,”Proc. 1979 ACM SIGMOD Int. Conf. on Management of Data,

Boston, MA, June 1979, 23-34.

[SMIT96] I. Smith, “Oracle Rdb: What’s New,” inDECUS Spring ’96(St. Louis, MO), DECUS, Littleton, MA, June

1996, IM-016. Presentation only.

[SRIV88] J. Srivastava and V. Y. Lum, “A Tree Based Access Method (TBSAM) for Fast Processing of Aggregate

Queries,”Proc. 4th IEEE Int. Conf. on Data Eng., Los Angeles, CA, Feb. 1988, 504-510.

23



[STON86] M. R. Stonebraker, “Inclusion of New Types in Relational Data Base Systems,”Proc. 2nd IEEE Int. Conf.

on Data Eng., Los Angeles, CA, Feb. 1986, 262-269.

[STON91] M. Stonebraker and G. Kemnitz, “The POSTGRES Next-Generation Database Management System,”

Comm. of the ACM 34, 10 (Oct. 1991), 78-92.

[WHAN94] K.-Y. Whang, S.-W. Kim and G. Wiederhold, “Dynamic Maintenance of Data Distribution for Selectivity

Estimation,”VLDB J. 3, 1 (Jan. 1994), 29-51.

[WHIT96a] D. A. White and R. Jain, “Similarity Indexing with the SS-tree,”Proc. 12th IEEE Int. Conf. on Data Eng.,

New Orleans, LA, Feb. 1996, 516-523.

[WHIT96b] D. A. White and R. Jain, “Algorithms and Strategies for Similarity Retrieval,” Tech. Rep. VCL-96-101,

Visual Computing Laboratory, Univ. of California, San Diego, La Jolla, CA, July 1996.

[WONG80] C. K. Wong and M. C. Easton, “An Efficient Method for Weighted Sampling Without Replacement,”SIAM

J. Computing 9, 1 (Feb. 1980), 111-113.

[YANG95] Q. Yang, A. Vellaikal and S. Dao, “MB+-tree: A New Index Structure for Multimedia Databases,”Proc.

Int. Wksp. on Multi-Media Database Management Systems, Blue Mountain Lake, NY, Aug. 1995, 151-158.

24



Appendix A: Priority Search Algorithm

global NIters;
global Iters[NIters]; // state iterator metadata

Algorithm InitSearch(
→
Q, RootNode)

→
H = newHandle;

// initialize the priority queue with the root node
new.

→
T =  0;

new. e.
→
P = NULL;

new. e. ptr =RootNode;
PQInsert(H . PQ,new);

// initialize the iteration state
for each i ∈ [1,NIters]

H . iter[i ] = STATEINIT(Iters[i ],
→
Q);

endfor
H . status =iterate;

return
→
H ;

end

Algorithm SEARCH(
→
H ,

→
Q, RootNode)

if (
→
H = NULL)
→
H = InitSearch(

→
Q, RootNode);

endif

if (H . status =done)
return ∅

endif

while (H . PQ≠ ∅)
// return any records already marked as ready
cur = PQRemove(H . PQ));
if (cur. return =true)

return cur. e;
endif

// prune entry after extraction from the queue
{ S} = ∅;
ListInsert({S}, cur);
for each i ∈ [1,NIters]

{ S} = STATECONSISTENT(H . iter[i ], { S});
endfor
if ({ S} = ∅)

continue while;
endif
cur = ListRemove({S});

// process this entry;STATEITER may setH . status
for each i ∈ [1,NIters]

new. e. P[i ] = STATEITER(H . iter[i ], cur. e);
endfor
if (new. e.

→
P ≠ NULL)

new. return = true;
PQInsert(H . PQ,new);

endif

// fetch and process the next node
if (H . status =iterate)

n = NodeRead(cur. e. ptr);
{ S} = ∅;
// extract all entries (including rightlinks, if any)
for each e ∈ n

if (CONSISTENT(e, Q) = true)
new. e  =e;
for each i ∈ [1,H . nKeys]

new. T[i ] = PRIORITY(
→
Q, e, n);

endfor
ListInsert({S}, new);

endif
endfor
// prune entries before insertion into the queue
for each i ∈ [1,NIters]

{ S} = STATECONSISTENT(H . iter[i ], { S});
endfor
for eachnew∈ { S}

PQInsert(H . PQ,new);
endfor

endif
endwhile

H . status =done;
return STATEFINAL (

→
H);

end

25


