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Abstract

Access Methods for Next-Generation Database Systems

by

Marcel Kornacker

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Joseph M. Hellerstein, Chair

Today’s extensible object-relational database management systems (ORDBMSs) are

being deployed to support non-traditional applications such as dynamic web servers and

geographic information systems. ORDBMSs distinguish themselves from purely relational

DBMSs by providing an extensible architecture, built around a richer and user-extensible

type system combined with object-oriented concepts such as type hierarchies. They retain

standard features of relational databases such as declarative access, multiuser operation,

transactional isolation and recoverability.

One particular aspect of DBMS functionality that is critical to performance is their

support for access methods (AMs). In traditional relational DBMSs, B+-trees [Com79]

serve as the AM of choice to provide a very high level of performance for applications

dealing with the standard SQL datatypes (numeric data, character strings, dates, etc.). In
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order to provide the same level of performance for non-traditional applications, B+-trees

are not sufficient; instead, novel kinds of datatype-specific AMs are required. The most

promising approach to supporting those novel AMs is an extensible architecture in which

the core services of the ORDBMS can be complemented with externally-supplied AMs.

In my dissertation, I investigate general issues that arise in the design and implemen-

tation of non-traditional AMs in an extensible ORDBMS. This research was undertaken in

the context of the generalized search tree (GiST), a tree-structured template access method,

which encapsulates standard AM search and update functions and is a suitable basis for

AM extensibility in ORDBMSs. The dissertation contains three contributions. The first

is an extension of the GiST API that makes it more flexible and at the same time im-

proves performance when implemented in a typical commercial ORDBMS. The second

comprises concurrency and recovery protocols that allow GiSTs to be useful in application

scenarios where high concurrency and recoverability are required. With these protocols,

GiSTs fully encapsulate physical concurrency, transactional isolation and recovery, and

thereby relieve an external access method of the burden of dealing with these issues. The

API extensions and the concurrency and recovery protocols together make GiSTs a high-

performance alternative to custom AM development in commercial ORDBMS. The third

contribution is an AM performance analysis framework, implemented in a corresponding

tool, that gives the AM developer a detailed picture of an AM’s performance deficiencies

while still retaining the GiST framework’s independence of the datatype and application
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domain.

Professor Joseph M. Hellerstein
Dissertation Committee Chair
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Chapter 1

Introduction

Today’s extensible object-relational database management systems (ORDBMSs) are

being deployed to support new applications such as dynamic web servers, geographic in-

formation systems, CAD tools, multimedia and document libraries, sequence databases,

fingerprint identification systems, biochemical databases, and so forth. ORDBMSs distin-

guish themselves from purely relational DBMSs by providing a richer and user-extensible

type system, combined with object-oriented concepts such as type hierarchies; they dis-

tinguish themselves from purely object-oriented DBMSs by retaining standard features of

relational databases such as declarative access, multiuser operation, transactional isola-

tion and recoverability. The added flexibility and performance when dealing with non-

traditional datatypes makes them a better match for the abovementioned application areas

than standard relational DBMSs; as a consequence, object-relational extensions to the pure

relational model are now part of most commercially significant DBMSs.
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In the technically most accomplished commercial products such as Informix’ Universal

Server and IBM’s DB2 UDB, a user-extensible type system is provided through an extensi-

ble architecture, supplemented by domain-specific database extensions supplied by external

vendors. In this approach, the database server provides standard DBMS functionality, such

as storage management and query optimization and execution, in a datatype-independent

way. The datatype-specific functions and query predicates (e.g., clipping of geospatial ob-

jects or determining when a point lies within a rectangle) are provided by an external vendor

in the form of a function library, which is linked in dynamically by the server. When pro-

cessing queries over such user-defined datatypes, the DBMS calls the functions provided in

the extension library. By internalizing part of the application functionality in this way, the

DBMS server can avoid shipping the data out to the application, and can thereby realize a

performance advantage.

The techniques used in these ORDBMSs are direct descendents of research proto-

types pioneered in the 80s and 90s (such as Postgres [SR86], Starburst [SCF+86] and

Shore [CDF+94]). Despite this long time period and the high degree of commercial ac-

ceptance, object-relational technology is far from mature: while type hierarchies and ex-

tension methods have been uniformly accepted and even standardized [ISO96], these new

features have often not been complemented by corresponding storage-level techniques to

assure good performance (see DeWitt’s criticism of how object-relational concepts sub-

vert parallel architectures [DeW96], which essentially argues that the translation of those

concepts into physical storage structures still needs improvement). One particular area of
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functionality in traditional relational DBMSs that is critical to performance is their support

for access methods (AMs).

In traditional relational database management systems, B+-trees [Com79] serve as the

AM of choice to provide a very high level of performance for applications dealing with the

standard SQL datatypes (numeric data, character strings, dates, etc.). In order to provide

the same level of performance for the abovementioned applications, B+-trees are not suf-

ficient; instead, novel kinds of datatype-specific AMs are required. The most promising

approach to supporting those novel AMs is an extensible architecture in which the core

services of the ORDBMS can be complemented with externally-supplied AMs. The cur-

rent state of the art in AM extensibility is not very well developed. The support found

in commercial ORDBMSs for AM extensibility is crude, if at all existent. Likewise, the

research community has largely neglected the issue, focussing instead on general exten-

sibility questions, which systems like Exodus [CDF+86], Postgres [SK91] and Starburst

[HCL+90] addressed, or on developing novel search trees to support each new applica-

tion area. For example, a recent survey article [GG98] describes over 50 alternative index

structures for spatial indexing alone. Some of this specialized work has had fundamental

impact in particular domains. However, very few of the structures developed since the B+-

tree have found their way into commercial products, because the cost of development and

maintenance generally cannot be justified in light of the limited applicability of a domain-

specific AM. This state of affairs is a consequence of the lack of an effective form of AM

extensibility in ORDBMSs.
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In this dissertation, I investigate general issues related to the design and implemen-

tation of non-traditional AMs. This research was undertaken in the context of the gen-

eralized search tree (subsequently referred to as GiST), which was originally introduced

in [HNP95]. The GiST is a balanced, tree-structured template access method, which en-

capsulates standard AM search and update functions. By supplying a small set of custom

functions, a GiST can be made to emulate a wide range of tree-structured AMs relatively

effortlessly.

This dissertation contains three contributions. The first is an extension of the original

GiST design that makes it more flexible and at the same time improves its performance

when implemented in a typical commercial ORDBMS. The second contribution consists of

concurrency and recovery protocols that allow GiSTs to be useful in application scenarios

where high concurrency and recoverability are required. With these protocols, GiSTs fully

encapsulate physical concurrency, transactional isolation and recovery, and thereby relieve

the access method developer of the burden of dealing with these issues. The API extensions

and the concurrency and recovery protocols together extend the GiST abstraction into an

effective mechanism for AM extensibility in ORDBMSs. The third contribution is an AM

performance analysis framework, implemented in a corresponding tool, that gives the AM

developer a detailed picture of an AM’s performance deficiencies while still retaining the

GiST’s independence of the datatype and application domain.

Chapter 2 explains the original GiST design and informally discusses its usefulness

and the limits of its generality. Chapter 3 discusses existing approaches to AM extensi-
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bility and the relevance of the GiST abstraction for an AM extensibility architecture. It

goes on to describe an enhanced GiST model that was implemented in a commercial OR-

DBMS, Informix Dynamic Server with Universal Data Option (subsequently referred to

as IDS/UDO). The IDS/UDO implementation employs a newly designed GiST interface

that reduces the number of user-defined function calls, which are typically expensive to

execute, and at the same time makes the GiST a more flexible data structure. Experiments

show that this enhanced form of GiST-based AM extensibility does not suffer from perfor-

mance degradation in comparison to built-in AMs when indexing user-defined data types.

Chapter 4 presents general algorithms for concurrency control in tree-based access

methods, as well as a recovery protocol and a mechanism for ensuring repeatable read.

Although developed in a GiST context, the algorithms are generally applicable to many

tree-based access methods. The concurrency control protocol is based on an extension of

the link technique originally developed for B-trees, and completely avoids holding node

locks during I/Os. Repeatable read isolation is achieved with a novel combination of pred-

icate locks and two-phase locking of data records. A discussion of the fundamental struc-

tural differences between B-trees and more general tree structures like GiSTs explains why

the algorithms developed here deviate from their B-tree counterparts.

Chapter 5 describes an analysis framework for tree-structured access methods. Design-

ing and tuning access methods has always been more of a black art than a rigorous disci-

pline, with performance assessments being mostly reduced to presenting aggregate runtime

or I/O numbers. This chapter describes an analysis framework for AMs that defines perfor-
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mance metrics that are more useful than traditional summary numbers and thereby allow the

AM designer to detect and isolate deficiencies in an AM design. This framework was im-

plemented in amdb, a comprehensive graphical design tool for AMs that are constructed on

top of the GiST abstraction. Amdb complements the analysis framework with visualization

and debugging functionality, allowing the AM designer to investigate the source of those

deficiencies that were discovered with the help of the performance metrics. Several AM

design projects undertaken at U. C. Berkeley have confirmed the usefulness of the analysis

framework and its integration with visualization facilities in amdb. The analysis process

that produces the performance metrics is fully automated and takes a workload—a tree and

a set of queries—as input. The metrics characterize the performance of each query as well

as that of the tree structure. Central to the framework is the use of the optimal behavior,

which can be approximated relatively efficiently, as a point of reference against which the

actual observed performance is compared. The framework applies to all GiST-compliant

AMs and is not restricted to particular types of of data or queries.
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Chapter 2

Generalized Search Trees: Motivation

and Overview

Although the design of novel AMs has been a popular research topic in the past decade

or so, only two or three structures developed since the B+-tree have enjoyed any significant

industrial acceptance. The reason for this is the fundamental complexity and cost involved

in developing access methods (AMs) and integrating them into database servers. Designing

an AM for use in a commercial ORDBMS requires a detailed understanding of concurrency

and recovery protocols; integrating an AM into a database server requires a great deal of

familiarity with such central components as the lock and log managers.

The commercial state of the art in access method extensibility, exemplified by IDS/UDO’s

Virtual Index Interface [Inf98b], Oracle’s Extensible Indexing Interface [Ora98] and DB2
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UDB’s table functions [DM97],1 does not reduce this complexity: essentially, these inter-

faces represent the access method as an iterator data structure, similar to a built-in AM,

which the query executor calls directly to retrieve tuples (illustrated in principle in Fig-

ure 2.1 (a)). An interface like that allows extensibility, but does not reduce the imple-

mentation effort of an external AM when compared to a built-in one, if identical levels

of concurrency, robustness and integration are desired. As a result, few if any database

extension vendors have undertaken the daunting task of implementing a custom-designed,

high-quality access method from scratch for any of the popular ORDBMSs.2 An iterator

interface is most suitable for interfacing existing external retrieval engines to the database

system (see [DM97] for an example). However, this approach is mostly limited to read-

only data, because the concurrency and recovery regimes of the ORDBMS and external

AM are not integrated.

The GiST abstraction was designed to address the problems inherent in AM extensibil-

ity. Compared to an iterator-based extensibility interface, the GiST interface raises the level

of abstraction, only requiring the AM developer to implement the semantics of the data type

being indexed, and those operational properties that distinguish a particular AM from other

tree-structured AMs. An AM extension based on this interface typically needs only a small

percentage of the (tens of) thousands of lines of code required for a full access method im-

plementation. As we will see in Chapter 3, the level of abstraction offered by the interface

1As with most other object-relational mechanisms, the AM extensibility mechanisms present in those
commercial systems are direct descendents of those pioneered in research systems such as Postgres [Aok91].

2See [BSSJ99] for an account of an implementation of an AM using IDS/UDO’s VII.
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Figure 2.1: Access method interfaces – the database extender’s perspective.

can relieve the AM developer of the burden of understanding concurrency and recovery

protocols and the corresponding components of the database servers. Instead, it is the OR-

DBMS vendor who implements the concurrency and recovery protocols within GiST, using

the existing, low-level extensibility interface to add GiST to the database server (illustrated

in Figure 2.1 (b)). Given that database extension vendors tend to bedomain knowledge

experts rather thandatabase serverexperts, this approach to access method extensibility

should result in much higher-quality access methods at substantially reduced development

cost for the extension vendor. For the ORDBMS vendor, implementing GiST is no more

complex than implementing any other fully integrated AM.

The original GiST publication [HNP95] introduced the basic abstraction of the data

structure, but ignored those aspects of an AM extensibility architecture that are required

for an industrial-strength solution, namely efficiency, concurrency control, and recovery.
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This dissertation will address these issues in turn: Chapter 3 presents a redesigned GiST

interface that avoids the performance problems inherent in the original design, and Chap-

ter 4 presents concurrency and recovery mechanisms suited to the GiST framework. In

order to give the reader a perspective on the extent of this work, the remainder of this

chapter contains a description of the original GiST abstraction. The chapter closes with an

informal discussion of its strengths and limitations.

2.1 GiST Overview

A GiST is a balanced tree that provides “template” algorithms for navigating the tree

structure and modifying the tree structure through node splits and deletes. Like all other

(secondary3) index trees, the GiST stores(key, RID)pairs in the leaves; the RIDs (record

identifiers) point to the corresponding records on the data pages. Internal nodes contain

(predicate, child page pointer)pairs; the predicate evaluates to true for any of the keys

contained in or reachable from the associated child page (see Figure 2.2). This captures

the essence of a tree-based index structure: a hierarchy of predicates, in which each pred-

icate holds true for all keys stored under it in the hierarchy. A B+-tree [Com79] is a well

known example with those properties: the entries in internal nodes represent ranges which

bound values of keys in the leaves of the respective subtrees. Another example is the R-

tree [Gut84], which contains bounding rectangles as predicates in the internal nodes. The

3The GiST abstraction is equally applicable to primary indices, but for simplicity we limit out discussion
here to secondary indices.
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Internal Nodes

Leaf Nodes

SP1 SP2 ...

Figure 2.2: Basic GiST structure.

predicates in the internal nodes of a search tree will subsequently be referred to assubtree

predicates(SPs).

Apart from these structural requirements, a GiST does not impose any restrictions on

the key data stored within the tree or the organization of data within and across nodes.

In particular, the key space need not be ordered, thereby allowing multidimensional data.

Moreover, the nodes of a single level need not partition or even cover the entire key space,

meaning that (a) overlapping SPs of entries at the same tree level are allowed and (b) the

union of all SPs can have “holes” when compared to the entire key space. The leaves,

however, partition the set of stored RIDs, so that exactly one leaf entry points to a given

data record.4

A GiST supports the standard index operations: SEARCH, which takes a predicate and

returns all leaf entries satisfying that predicate; INSERT, which adds a(key, RID)pair to the

tree; and DELETE, which removes such a pair from the tree. It implements these operations

4This structural requirement excludes R+-trees [SRF87] from conforming to the GiST structure, and
generally precludes AMs that store data redundantly [HKP97].
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search(search-pred)
push(stack, root);
while (stack is not empty)

child = pop(stack);
for each page entrye on child:
if ( consistent(search-pred,e.pred))

if (child is leaf)
adde to search result set;

else
push(stack,e.child-ptr);

end
end

end

Figure 2.3: Original GiST search algorithm.

with the help of a set of extension methods supplied by the access method developer. The

GiST can be specialized to one of a number of particular access methods by providing a set

of extension methods specific to that access method. These extension methods encapsulate

the exact behavior of the search operation as well as the organization of keys within the

tree.

2.2 GiST Template Algorithms

This section provides a sketch of the implementation of the operations and how they use

the extension methods. For a more detailed description, together with examples of B-tree

and R-tree extension methods, see the original publication [HNP95]. The user-supplied

extension functions are summarized in Table 2.1.

SEARCH In order to find all leaf entries satisfying the search predicate, we recursively
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Function Input Parameters Output Parame-
ters

Purpose

consistent() query qualifier,
predicate

boolean determine whether pred-
icate satisfies the query
qualifier

pick split() set of predicates set of predicates
destined for right
node

determine which entries of
a page are to be moved to
the new right sibling page
and compute the SPs for the
resulting left and right page

penalty() new key, SP penalty value compute penalty for insert-
ing new key into subtree
with given SP

union() set of predicates predicate compute the union of a set
of predicates

compress() predicate compressed predi-
cate

computes a compressed
representation of a predi-
cate

decompress() compressed predi-
cate

predicate computes a decompressed
representation of a com-
pressed predicate

Table 2.1: Summary of the original GiST interface.

descendall subtrees for which the parent entry’s SP is consistent with the search

predicate and return all leaf entries consistent with the search predicate (in both cases

employing the extension methodconsistent()). Figure 2.3 shows an implementation

of the search algorithm. Calls to the GiST interface functions are shown in italics.

I NSERT Given a new(key, RID)pair, we must find a leaf on which to insert it. Note that

because GiSTs allow overlapping SPs, there may be more than one leaf where the

key could be inserted. The extension methodpenalty()compares a key and a subtree

predicate and computes a domain-specific penalty for inserting the key within the
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subtree summarized by the SP. Using this extension method, we traverse a single

path from root to leaf, following the branches with the lowest insertion penalty.

If the leaf overflows and must be split, a extension method,pick split(), is invoked

to determine how to distribute the keys between two nodes. If, as a result, the parent

also overflows, the splitting is carried out bottom-up.

If the leaf’s ancestors’ predicates do not include the new key, they must be expanded,

so that the path from the root to the leaf reflects the new key. The expansion is done

with a extension methodunion(), which computes the union of a set of predicates.

Like node splitting, expansion of SPs in parent entries is carried out bottom-up until

we find an ancestor node whose SP does not require expansion. Figure 2.4 shows the

implementation of the insertion algorithm.

DELETE In order to find the leaf containing the key we want to delete, we again traverse

multiple subtrees as inSEARCH. Once the leaf is located and the key is found on it,

we remove the(key, RID)pair and, if possible, shrink the ancestors’ SPs, which is

achieved by recomputing it with theunion()extension method.

The extension methodscompress()anddecompress()are used to compress predicates

prior to inserting them on a page and to decompress stored predicates prior to passing

them toconsistent(). The original GiST design also contained provisions for emulating

B-trees efficiently (essentially by requiring an extension method that implements predicate

comparisons), but this is does not affect the following exposition and will be ignored.
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The original GiST search algorithm as described above is limited in the types of query

operators it can support: theconsistent()extension function is only allowed to examine the

query qualification and page predicate in order to determine whether to traverse a subtree

or return a leaf item. This limits the query qualification to specify logical containment, i.e.,

globals:
stack; // records nodes on path

insert(new-key, RID)
leaf = locateLeaf(new-key);
if (not enough space on leaf)

splitNode(leaf, new-key);
else

if ( union(entries on leaf, new-
key) != SP(leaf))

updateParent(leaf,
union(entries on leaf, new-key), 0, 0);

end
end
insert entry (new-key, RID) on leaf;

locateLeaf(new-key)
p = root;
loop

if (p is not leaf)
push(stack, p);
minpenalty = penalty(new-key,

pred of first entry on p);
for each page entrye on p:
if ( penalty(new-key,e.pred) ¡ minpenalty)

minpenalty =penalty(new-key,e.pred);
p = e.child-ptr;

end
else

return p;
end

end

splitNode(p, new-key)
create new node p’;
right-entries =pickSplit(entries on p, new-key);

p-SP = union(entries on p without right-
entries);

p’-SP = union(right-entries);
move right-entries from p to p’;
updateParent(p, p-SP, p’, p’-SP);

updateParent(left, left-SP, right, right-SP)
parent = parent(left, stack);
if (not enough space on parent)

splitNode(parent,union(left-SP, right-SP));
else

updateParent(parent,
union(entries on parent, left-SP, right-

SP), 0, 0);
end
update predicate of left entry on parent with left-

SP;
if (right != 0)

insert entry (right-SP, RID(right)) on parent;
end

Figure 2.4: Original GiST insert algorithm.
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range queries, which are typically executed by depth-first tree traversal. In order to support

more advanced query operators and traversal orders, such as nearest-neighbor searches or

index-assisted sampling or statistical computations, Aoki proposes generalizations of the

GiST search algorithm [Aok98]. The generalizations allow the search algorithm to tra-

verse the tree in an application-specific way and let it compute user-defined aggregates;

this added functionality requires additional extension methods. Aoki’s proposed gener-

alizations can be applied independently of the techniques that will be discussed in this

dissertation.

2.3 Generality of GiSTs and Related Work

In order for a template data structure to be useful as a basis for AM extensibility, it needs

meet two seemingly contradictory requirements: it needs to be able to model a wide variety

of (data domain-specific) AM designs, yet at the same time standardize the structure so that

template algorithms can operate without knowledge of the data domain. The original GiST

design of [HNP95] showed that GiSTs are capable of the latter of the two requirements; I

will argue that GiST incorporates the essential mechanisms of an AM and therefore also

meets the first one. A comparison with prior work in this area shows that GiST was the

first and so far remains the only data structure to balance functionality and generality in

that way.

The task of an index AM is to speed up associative access to a (typically small) subset
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of a (typically large) collection of data, compared to a sequential scan of the full data

collection. This is achieved by a) grouping the data into clusters based on a fixed page size,

and b) providing a directory structure that guides access to those clusters. The efficacy of an

AM in comparison to a sequential scan hinges on the clustering to reflect the “typical query

shape”5 and on the directory structure to represent the clusters accurately. If both aspects

are done well, an AM can limit the number of I/Os for a search to the number of pages

required to store the result set (or a small multiple thereof), usually orders of magnitude

below the number of I/Os needed for a full scan of the data.

The GiST framework provides those crucial clustering and directory abstractions, both

of which are user-controllable: a) the clustering of the indexed data is determined by the

pick split() andpenalty()extension methods, and b) the directory structure is implemented

as a tree, but SPs, which determine accuracy, are user-defined. Therefore, it should be

possible to map all or most of the design elements of an AM onto a GiST and still capture

the order-of-magnitude performance improvement over the full scan.

Currently, the GiST abstraction appears to be the only generic index structure that was

designed specifically with extensibility in mind; alternative data structures reported in the

literature either lack extensibility or have not been specified in enough detail to be practica-

ble. Lomet [Lom91] explores the concept of “grow and post” (GP) trees, which designates

5This consideration does not apply to point queries, i.e., queries that verify the existence of an individual
data point. For such queries, a hash-based index is ideal and can be “extended” to any data domain by
providing a function that maps the domain-specific key to a hashable value. In other words, the generalized
indexing problem for point queries has already been solved and need not be dealt with in the context of a
template AM like GiST.
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a category of AMs with specific structural properties (which are similar to those of GiSTs):

the category includes all AMs that are tree-structured, height-balanced trees that perform

bottom-up splits and are capable of dynamic insertions and deletions. The author proposes

using a multi-dimensional point index to index non-traditional datatypes and does not de-

velop the ideas behind GP trees into an extensible data structure. Another generic tree

structure is theπ-tree [LS92], which was developed as a vehicle for concurrency control

and recovery algorithms (and is therefore discussed in more detail in Section 4.6). The

π-tree has template algorithms for search, insertion and deletion, but due to the focus on

concurrency and recovery, was not developed into an extensible data structure. Further-

more, it requires a partitioning of the data space (i.e., no overlap among SPs at the same

tree level), and is therefore less general than GiSTs. More recently, van der Bercken et al

[vdBDS00a, vdBDS00b] described a Java library for storage structures and query process-

ing algorithms, which also includes a framework of tree-based index structures. The au-

thors report that this framework provides a template AM which is specialized through the

use of functions, complete with generic query processing and bulk-loading algorithms. The

paper contains no details, which makes it hard to judge whether this framework provides a

more customizable or more usable abstraction than GiSTs.

An alternative to providing generic and extensible indexing functionality that is more

prevalent in the research literature is the toolkit approach: a DBMS or storage system ex-

ports the primitives needed to asssemble an index structure from scratch (examples are

[CDF+86, BBG+88, BRS96]). While this gives the AM developer almost unlimited flexi-
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bility, it does not hide any of the challenging implementation issues and therefore does not

address the fundamental problems that prevent widespread acceptance of non-traditional

AMs.
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Chapter 3

Performance-Oriented Extensions of

GiSTs

This chapter demonstrates the advantages of a GiST-based approach to access method

extensibility in industrial-strength systems. It describes the GiST-based extension archi-

tecture implemented in IDS/UDO and the extended GiST interface, which takes into ac-

count the performance considerations of an industrial-strength ORDBMS. A comparison

of a GiST-based R-tree and its built-in counterpart in IDS/UDO shows that the flexibility

afforded by GiST need not carry a performance penalty.

When implementing a GiST-based AM extension architecture in a commercial-strength

ORDBMS, several issues need to be addressed:

Datatype Extensibility In some ORDBMSs, the built-in AMs are extensible in the type of

data they can index. For example, a B-tree can be made to work with character strings
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and user-defined data. It is only required that the data type to be indexed have some

particular characteristics (such as a defined total order in the case of a B-tree). In

order for an existing AM to index this new data type, the data type implementor need

only provide a set of functions that express the particular characteristics required by

the AM (in the B-tree example, this would be a comparison function). This kind of

datatype-extensible indexing is already a standard feature in currently at least two

ORDBMSs (Informix and Oracle), and it is desirable that a GiST-based extension

architecture retain this feature.

UDF Safety Overhead A key ingredient of ORDBMSs is the ability to call user-defined

functions (UDFs) that are external to the database server. Since the reliability of the

server must not be compromised, it must take precautionary steps to insulate itself

from malfunctioning UDFs. In IDS/UDO, a UDF is executed in the same address

space as the server, but calling a UDF still involves some overhead: installation of

a signal handler to catch segmentation violations and bus errors,1 allocation of addi-

tional stack space, if necessary, and checking of parameters for NULL values. This

makes a UDF call considerably more expensive than a regular function call. In Ora-

cle and DB2, UDFs must be executed in a separate address space, which adds even

more to the cost. When dividing the full functionality of an AM between the database

server and an external extension module, as GiST does, UDF calls become inevitable,

which can become a performance problem and make the case for extensible indexing

1These mechanisms are specific to Unix. On Windows NT, similar mechanisms are used.
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less compelling. The original GiST interface as described in Chapter 2 interacts with

the AM extension on a per-page entry basis, which results in a large number of UDF

calls. A commercial-strength GiST implementation should reduce this overhead.

Page Layout CustomizationThe original GiST design assumes that index pages are or-

ganized as an unordered collection of data items (page entries are independent of one

another and can be inserted and removed without maintaining any particular order on

the page). While this is very general, it precludes optimization of the intra-page data

layout, which can be used to compress the data or simplify its access. The B-tree is

the most well-known AM that takes advantage of customized intra-page data layout:

the page entries are ordered within a page to avoid full scans for lookups. Addi-

tionally, internal pages compress interval predicates by storing only the right interval

boundary (and using the left neighbor’s predicate as the left interval boundary). A

GiST-based approach to AM extensibility should facilitate customized page layouts

that allow predicate compression and optimized intra-page search. Note that the orig-

inal GiST design’scompress()anddecompress()extension functions are only applied

to an individual page entry, which precludes such techniques as prefix compression,

that require access to more than a single data item.

The remainder of this chapter is structured as follows: Section 3.1 describes the im-

plementation of the GiST concept in IDS/UDO and how the GiST interface was extended

to take the abovementioned considerations into account. The extended GiST interface is

illustrated with two examples of specific node layouts, a B-tree and a k-d-tree node layout.
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Section 3.2 compares the performance of GiST-based R-trees with their built-in counter-

parts in IDS/UDO.

3.1 GiST-Based Index Extension Architecture

3.1.1 Architecture Overview

In the IDS/UDO GiST-based AM extension architecture, the full functionality of an

AM is divided up into three components: the GiST core inside the database server and the

AM extension and a data type adapter in the external database extension module. Figure 3.1

shows the example of an R-tree extension in this architecture.

GiST Core The generic GiST algorithms, including the concurrency and recovery pro-

tocols, are implemented in theGiST core. The GiST core is part of the database server

and interacts with the AM extension via the extendedGiST interface, which consists of 11

functions that each AM extension needs to implement. In addition to the original GiST

interface, which encapsulates data semantics and the split and insertion strategies, the ex-

tended interface also encapsulates the layout of index pages: the generic GiST algorithms

update pages and extract information from them solely through GiST interface functions

calls. All of these function calls into the AM extension are executed as UDFs, so that the

database server is insulated against failures in the AM extension. In order to reduce the

number of UDF calls, theconsistent()andpenalty()functions of the original interface have
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Figure 3.1: Example of an R-tree in the GiST AM extension architecture.

been converted into functions that operate on one entire page instead of individual page

entries.

To allow AM extensions to implement customized page layouts, the GiST core ex-

ports a GiST-specific page management interface as part of the standard server API (SAPI,

see [Inf98a], the collection of server functions that are callable from an external module).

The GiST-specific page management interface is a very thin layer on top of the server-

internal page management interface. The latter implements a standard slotted page orga-

nization and includes functions to add, update, remove and read page entries, along with

various locking and logging options, as well as functions to create and free pages. In con-
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trast, the externally-visible GiST-specific interface is greatly simplified, being stripped of

all logging and locking-related functions and parameters. Furthermore, no page creation

and deletion are possible and the target page of each function is implicit (it is the currently

“active” page in the tree, i.e., the page that is being traversed, inserted into, etc.) These re-

strictions do not limit the AM developer’s page layout design, but they reduce the potential

for doing unwanted damage; since logging, locking and page creation and deletion are han-

dled by the core GiST algorithms, not the AM extension, exposing this functionality to the

AM would have no benefit. Also, calls to SAPI functions from the AM extension execute

as regular C function calls within the server address space, so there is no need to “ship” the

currently active page to the AM extension; copy overhead is therefore avoided. ORDBMSs

that execute UDFs outside the server address space could employ careful mapping of buffer

pool regions to achieve the same effect.

AM Extension The AM extension implements the extended GiST interface and resides

in an extension module outside the database server. The AM extension specifies its own

custom interface, anextension interface, that encapsulates the behavior of the data it can

index. This interface contains all the functions needed for the supported query operators, as

well as additional functionality needed to implement the split and insertion strategies. For

example, the B-tree extension’s interface specifies a comparison function, which is needed

to support queries and perform insertions. The R-tree extension’s interface specifies a

minimum of seven functions: four of those (overlap(), contains(), equal()andwithin())
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implement search operators, while the other three ((union(), size()andintersect()) are used

in the implementations of the split and insertion strategies.

An extension’s interface is implemented for every datatype to be indexed by adatatype

adaptermodule. For performance reasons, calls by the AM extension to the adapter module

are executed as regular C function calls. Since the AM extension functions themselves are

called as UDFs, the database server is still insulated from failures in any of the external

functions.

The AM extension implements its desired page layout using the GiST-specific page

management interface exported by the server. Due to the modular nature of the architecture,

user-defined page layouts can be implemented as libraries and reused within other AM

extensions (indicated in Figure 3.1 for the R-tree extension). A standard page layout that

implements the original GiST unordered page layout is available for AM extensions that

do not require customization.

In the current implementation, the B-tree extension occupies about 500 lines of code,

excluding comments. The R-tree extension occupies around 800 lines of C code, 150 of

which are calls to the unordered page layout and could have been generated automatically.

The unordered page layout library is fairly small itself, taking up only about 600 lines of

code.

Datatype-Specific AM Adapter This user-defined component implements an AM ex-

tension’s interface for a particular datatype. Typically, datatype adapters are fairly small:
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the B-tree/integer adapter consists of a 10-line comparison function. An R-tree adapter for

simple geospatial objects occupies less than 300 lines of code.

3.1.2 Extended GiST Interface

The functions of the extended GiST interface are summarized in Table 3.1. To provide

context, I will go through each index operation, explaining each interface function as it is

called by the generic algorithm.

A separation of the external functionality of an AM into the AM extension itself plus

the datatype adapter increases flexibility, but also complexity, because the function entry

points of the adapter need to be communicated to the AM extension. In a built-in, datatype-

extensible AM such as the server-provided R-tree, this is achieved through anoperator

class, or opclass, a named collection of UDFs that essentially contains the type adapter’s

functions (see [Aok91] for details). In this architecture, the external, datatype-specific func-

tions that the built-in AM needs to call are resolved using the server-supplied mechanisms

for registered UDFs and called as UDFs. In contrast, the GiST-based architecture avoids

these UDF calls and uses standard C function calls when executing external AM extension

code. The pointers to the C functions of the datatype adapter module are bundled together

into a C structure that is passed as a parameter to each of the GiST interface functions.

The GiST core obtains this structure once at query initialization by calling a UDF that is

registered with the database for the specific AM extension/datatype combination.
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SEARCH To guide tree traversal, the generic search algorithm calls thesearch()function,

which, given the currently traversed page, returns the slot indices of those entries that match

the query descriptor.2 For leaf pages, the matching items’ heap pointers and predicates—

extracted with theget key() function—are returned to the query executor. For internal

pages, the child pointers are extracted from the matching items and stored on a stack for

future traversal. The query descriptor is assembled by the parser and passed as a parameter

into thesearch()function, which then uses SAPI functions to extract the query operator and

the qualification constants. These SAPI calls can involve catalog lookup overhead, which

the AM extension may want to avoid incurring during eachsearch()call. Thebeginscan()

function, called before traversal begins, gives the AM extension an opportunity to extract

and store the necessary information from the query descriptor, which is then passed into

the search()function (as thestateptr parameter). When the search operation is finished,

endscan() is called to free up the data allocated inbeginscan(). Figure 3.2 shows the

implementation of this search operation.

I NSERT The insertion operation begins by traversing the tree from the root to the inser-

tion target leaf. At each page on the path, it calls thefind min pen()interface functions to

determine the mininum-penalty entry, which provides the child pointer for the next page

to traverse. At the leaf, theinsert() interface function physically adds the new item to the

leaf page, or signals an overflow, at which point a split is performed. To perform the split,

2As mentioned in the preceding section, only the currently traversed page is accessible through the GiST-
specific page management interface. For that reason, it is not necessary to pass this page explicitly to the
GiST interface functions.
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search(search-pred)
state-ptr =begin scan(search-pred);
push(stack, root);
while (stack is not empty)

child = pop(stack);
match-entries =search(child, search-pred,

state-ptr);
if (child is leaf)

for each slots in match-slots:
add (get key(s), s.ptr) to search result set;

else
nsn = global NSN;
for each slots in match-slots:

push(stack, [s.ptr, nsn]);
end

end
end scan(state-ptr);

Figure 3.2: GiST search algorithm for the extended interface.

the pick split() function returns the slot numbers of the entries to move to the new right

sibling, along with the new SPs for the left and right page produced by the split. The split

is then installed in the parent: the SP for the original page (output parameterleft SPof the

pick split() function) is updated viaupdatepred()and a new entry for the new right page

is inserted into the parent with theinsert() function. Recursive splitting due to parent page

overflows is handled in the same way. The actual splitting of the original target page is

performed by creating the new right sibling as an exact copy of the page and then removing

the unnecessary entries from both pages with theremove()interface function. After the

split has been completed, the insertion of the new data item can be re-attempted.

If the target page does not overflow, the insertion proceeds without a page split, but

must check after callinginsert()whether the target leaf’s SP needs to be updated. This is
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globals:
stack; // records nodes and NSNs on path

insert(new-key, RID)
leaf = locateLeaf(new-key);
if (not enough space on leaf)

splitNode(leaf, new-key, 0);
else

if ( union(leaf, SP(leaf), new-key)
!= SP(leaf))

updateParent(leaf,
union(leaf, SP(leaf), new-key), 0, 0);

end
end
insert(leaf, new key, RID);

locateLeaf(new-key)
p = root;
loop

if (p is not leaf)
push(stack, p);
p = find min pen(p, new key);

else
return p;

end
end

splitNode(p, key1, key2)
create new node p’;
(split-info, p-SP, p’-SP) =pickSplit(p, SP(p),

key1, key2);
move data from p to p’ according to split-info;
updateParent(p, p-SP, p’, p’-SP);

updateParent(left, left-SP, right, right-SP)
parent = parent(left, stack);
if (not enough space on parent)

splitNode(parent, left-SP, right-SP);
else

updateParent(parent,
union(parent,

union(parent, SP(parent), left-SP),
right-SP),

0, 0);
end
updatePred(parent, slot of left entry, left-SP);
if (right != 0)

insert(parent, right-SP, RID(right));
end

Figure 3.3: GiST insert algorithm for the extended interface.

achieved with a call to theunion() interface function, which computes the new SP, given

the old one and the new item, and also indicates whether the SP has changed. If it has

changed, it is installed in the corresponding entry in the parent page with theupdatepred()

interface function. If this causes the parent’s SP to change, the SP updates are performed

recursively. Figure 3.3 shows the implementation of the insertion operation.
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DELETE There are two scenarios for a delete operation. If it is preceded by a search

operation in the same index, the leaf that holds the item to be deleted has already been lo-

cated, and the deletion of the item can be performed immediately via theremove()interface

function. If an initial lookup of the target item is necessary, it is performed like a search

operation for an equality operator. The query descriptor is assembled using the operator

number returned by theeq op() interface function.

The next two sections sketch the implementations of two particular AMs to illustrate the

flexibility of the extended GiST interface.

3.1.3 Example: GiST-Based B-Trees

The B-tree extension implements a sorted page layout, which it maintains duringinsert()

calls with the help of the datatype-specific comparison function. Theremove()function

compacts the slots after deleting the requested entry from a page. Thesearch()andfind min pen()

functions perform a binary search, again using the datatype-specific comparison function,

to locate the range of entries that match the query descriptor or to find the entry for the

subtree that is appropriate for the new key.

B-trees partition the data space at each level of an index and therefore an insertion

never causes an SP to expand. As a result, theunion() function only indicates that the SP

has not changed. In a simple B-tree extension, theget key() function would only return

a pointer to the predicate stored on the page. For B-trees that support prefix compression
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Figure 3.4: K-d-tree example.

for string keys, theget key() function would need to assemble in a private buffer the full

string predicate of the entry from the entries on the page and return a pointer to that buffer.

Theupdatepred()function simply overwrites an entry’s predicate with the new data; in the

case of prefix compression, the new predicate is compared to neighboring page entries to

determine the compressed predicate.

Predicates in internal pages store only the right boundary of the interval they represent.

The rightmost entry of an internal page carries a 0-length predicate to signal∞, which

requires the extension’s binary search routine to filter out such predicates before calling the

datatype’s comparison function.

3.1.4 Example: K-d-tree Page Layout for GiST-Based Spatial Indices

The k-d-tree [Ben75] is a main-memory multidimensional binary search tree that is

very efficient for storing iso-oriented rectangles that partition a given space. K-d-trees are
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used as the layout of non-leaf pages of hB-trees [LS90], a multidimensional point access

method that partitions the data space. Figure 3.4 shows an example of six rectangles in

2-dimensional space and their k-d-tree representation. By organizing rectangles into a tree

structure, sides that are common to multiple rectangles need only be stored once, resulting

in space savings. On the other hand, each rectangle in a k-d-tree needs to refer to the

nodes on its path to reconstruct its coordinates. A simple, unstructured page layout cannot

map this hierarchical structure efficiently into a sequence of page entries—it could extract

every rectangle from the tree and store each one as a separate page entry with its full set of

coordinates, but the advantages of the k-d-tree data structure in terms of compression and

searching would be lost.

A k-d-tree page layout can be implemented by mapping each node of the k-d-tree onto

a GiST page entry. GiST page entries corresponding to internal nodes of the k-d-tree have

four components: the coordinate value, two pointers to k-d-tree child nodes (with pointers

being stored as slot indices) and one pointer back to the k-d-tree parent node. The root

node entry is assigned slot 0 on every page, and is stored similarly to internal nodes, but

without the parent pointer. Leaf node entries represent data rectangles, which are stored as

a parent pointer and a heap pointer—the predicate data can be derived from the ancestor

nodes. Figure 3.5 illustrates this for the left branch (representing data rectanglesa, b andc)

of the k-d-tree shown in Figure 3.4.

Thesearch()function traverses the k-d-tree and returns the slot indices of the matching

k-d-tree leaf node page entries. Theget key() function, given a slot index of a k-d-tree
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leaf entry, reconstructs the corresponding rectangle by traversing the tree from the leaf to

the root. Theinsert() function adds a new rectangle to the tree by creating a new k-d-tree

leaf entry and an entry for the required new internal k-d-tree node. Theremove()function

reverses this process, removing both the k-d-tree leaf and internal node page entries. Both

update functions must be careful not to alter the existing slot assignment, otherwise they

will invalidate the k-d-tree child node pointers stored in the other page entries.

A k-d-tree partitions the data space, so that SPs do not expand on insertion, which the

union()function signals to the caller. For the same reason, a new key can only go into one

specific subtree, which thefind min pen()function finds by traversing the k-d-tree. If the

split strategy is to bisect the k-d-tree at the root, thepick split() function traverses the right

subtree of the root and returns the slot indices of itsleaf nodes, together with SPs for the

left and right page of the split, which can be constructed from the root.
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3.2 Performance Measurements

A comparison of GiST-based R-trees with the built-in R-trees available in IDS/UDO 9.2

shows not only that GiST-based AMs enjoy software engineering benefits, but that these

benefits do not come at the expense of performance. In fact, in this particular scenario,

GiST-based R-trees even offeredhigher performance than their built-in counterpart. As

mentioned in Section 3.1.1, the IDS/UDO built-in R-tree can be used to index any datatype

by supplying datatype-specific functions that implement the query operators and some ad-

ditional functions needed for splitting and insertion (size()andunion()). These datatype-

specific functions are provided by the extension module that implements the user-defined

type and execute as UDFs.

The performance comparison I present here involves individual search and insert op-

erations on a three-level R-tree, which were executed on a Sun machine with a 167MHz

UltraSparc CPU. The timings were obtained with thequantify [Rat] profiling tool, and

show the number of cycles needed for full SQLSELECTandINSERT statements.

Extensibility functionality—both AM and datatype extensibility—involves additional

cost in comparison to purely “hardwired” AMs. This cost consists of:

• Function descriptor setup: Before calling a UDF, a handle to it must be obtained,

which can involve a catalog lookup and permissions checking.

• UDF call overhead: The cost of a single UDF call in IDS/UDO, which is executed

in the same address space as the database server, is around 1350 cycles for the test



36

Search
R-tree

GiST

Split
R-tree

GiST

2,000,000 cycles

Insert
R-tree

GiST

500,000 cycles

1,000,000 cycles
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scenario described in this section. In other ORDBMSs, a UDF call might involve

a context switch and interprocess communication, which would make it far more

expensive.

The total execution times, excluding time spent in operating system calls, for three

different operations are shown in Figure 3.6. The operations are: a query with a rectangle

containment qualification that retrieves only a single rectangle, but traverses 78 pages in

the tree; an insertion operation; an insertion operation that causes the leaf page to split.

When the built-in R-tree executes a search, it calls therectanglecontains()UDF for ev-

ery entry on the traversed leaf pages (therectangleoverlaps()UDF for entries on traversed
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internal pages), resulting in a total of 1359 UDF calls. In contrast, the GiST-based R-tree

only calls thesearch()UDF once for everypageit traverses, requiring only 80 UDF calls

(78 plus 2 forbegin scan()andendscan()). During the insertion of a new item, the built-in

R-tree makes 182 UDF calls, most of these while checking the traversed internal pages for

the best subtree to insert in. The GiST-based R-tree subsumes those calls into a single call

to thefind min pen()UDF per page, and thereby reduces the total number of calls to only

four (two tofind min pen(), one toinsert()and one tounion()). When the insertion causes

the leaf page to split, the performance gap widens even more: the built-in B-tree makes 704

UDF calls, most of those to find out how to split the page, whereas the GiST-based R-tree

only needs 66 UDF calls, 56 of these during the split to extract and insert keys on the new

right page.

In all three scenarios, the high number of UDF calls in the built-in R-tree causes it to

perform substantially worse than the GiST-based R-tree, resulting in performance losses

between 14 and 40 percent. This performance loss is an artifact of the implementation

of the built-in R-tree; if the external interface of the built-in R-tree (exposed through the

opclass) were redesigned to mimic the extended GiST interface, the number of UDF calls

in both R-tree implementations would be roughly the same. The built-in R-tree has a slight

advantage when it comes to function descriptor setup (it uses fewer UDFs, which explains

why performance of both AMs is not identical when UDF call overhead is subtracted), but

in the test scenario, this cannot make up for the large number of UDF calls.

Overall, the overhead introduced by GiST-based AMs is limited to setup. The magni-
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tude of this overhead depends on the particular AM (a datatype-extensible B-tree would

only need to initialize a single descriptor for the comparison function, resulting in even less

setup time than the built-in R-tree requires), but in comparison to the execution cost of a

single index operation, this setup cost is small and could probably be reduced even further

by more aggressive descriptor caching.

3.3 Summary and Conclusion

This chapter outlines the performance and functionality requirements of an AM exten-

sibility architecture in a commercial ORDBMS and shows how GiSTs can be adapted to

meet those requirements. The extended GiST interface addresses all three issues identified

at the beginning of this chapter:

Datatype Extensibility By separating the server-external portion of an AM into an AM

extension and a datatype adapter, full datatype extensibility of GiST-based, user-

defined AMs can be achieved.

UDF Safety Overhead By changing the level of abstraction of the GiST interface from a

call-per-entry interface as in the original GiST specification to a call-per-page inter-

face, the number of UDF calls required by index operations is reduced significantly.

Page Layout CustomizationA further advantage of the extended interface is that it hides

the details of the page layout from the GiST core, allowing the AM extension to
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customize the page layout via a simple and externally visible page management in-

terface. This additional flexibility does not necessarily come at the price of increased

implementation complexity for the AM developer, because page layout functionality

can be separated into libraries and re-used across AM extensions.

In summary, a GiST-based AM extension architecture has a number of advantages over

the current state-of-the-art iterator-style AM extension interfaces:

• AM development is greatly simplified. The abovementioned B-tree and R-tree ex-

tensions were implemented and debugged in a matter of hours rather than weeks or

months. Also, page layout code can be reused across AMs very easily, because it

is separated from concurrency and logging details. Such reuse is normally not pos-

sible when custom locking and logging protocols are intermixed with page layout

functionality.

• AM stability is improved, because an AM extension is implemented in terms of a

(relatively) stable GiST interface and need not rely on interfaces to server-internal

services, such as the lock and log manager.

• Despite part of an AM residing outside the server, the AM is still fully integrated into

the DBMS and offers the same set of features as a built-in AM: integrated storage

management, backup and recovery, support for SQL isolation semantics and a high

degree of concurrency. Moreover, the performance of GiST-based AMs is as good or

better than that of built-in AMs.
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A crucial aspect of the engineering advantages of a GiST-based AM lie in the integra-

tion of concurrency and recovery protocols into the GiST framework, which is the topic of

the next chapter.
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Function Input Parameters Output Parame-
ters

Purpose

insert() predicate, heap
pointer, adapter

insert (predicate, heap
pointer) entry on page

remove() set of slots, adapter remove slots from page

updatepred() slot, predicate,
adapter

update predicate part of en-
try at given slot

beginscan() query qualifier,
adapter

state pointer transform query qualifier
into AM-specific format

search() query qualifier,
state pointer,
adapter

set of matching
slots

return slots of page items
matching query qualifier

endscan() state pointer,
adapter

deallocate data allocated in
beginscan()

get key() slot, adapter key extract predicate of entry at
given slot

pick split() original SP, new
key 1, new key 2,
adapter

set of slots destined
for right node, left
SP, right SP

determine which entries of
a page are to be moved to
the new right sibling page,
taking into account that the
given new keys get added to
the two pages, and compute
the SPs for the resulting left
and right page

find min pen() new predicate,
adapter

slot determine slot of internal
page entry with smallest in-
sertion penalty

union() SP, new predicate,
adapter

SP compute union of an SP
and a predicate

eq op() adapter operator number returns AM-specific equal-
ity operator number

Table 3.1: Summary of the extended GiST interface.
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Chapter 4

Concurrency and Recovery for GiSTs

Multiuser access to AMs is a crucial feature of traditional RDBMSs; without it, OLTP

applications would be practically impossible, and the staggering throughput numbers of

modern systems on standard industry benchmarks such as TPC-C would be unthinkable.

For next-generation database applications, such as GIS or multimedia content management,

it is sometimes argued that datasets are more static and hence the traditional requirements

of concurrency and recoverability do not apply. This view is debatable for two reasons:

a) most application scenarios involve at least a small degree of update activity; b) online

information systems have potentially very large user communities, and quiescing query

activity in order to perform batch updates can be impractical.

More specifically, we can distinguish three related requirements: 1) support for con-

current search and insert and delete operations; 2) support for the degrees of transactional

isolation offered by the query language of the DBMS; 3) integration with the recovery
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mechanism that guarantees the integrity of the DBMS’s data. Most research on novel ac-

cess methods ignores these issues, and algorithms for their support are scarce. In addition,

experience with B-tree implementations and IDS/UDO’s built-in R-tree has shown that

these features cause much of the complexity of actual implementations and account for a

major fraction of the code.

In this chapter I describe algorithms that address each of the three requirements in the

context of the GiST data structure. These algorithms can be implemented fully within the

template index operations, only using the lock and log manager of the DBMS server and

the external GiST interface described in the preceding section. As a result, the externally-

implemented AM is fully shielded from the details of concurrency and recovery and the

corresponding components of the DBMS server. Although the algorithms are presented

in the context of the GiST, they can also be applied individually to any particular access

method that complies with the GiST structure. This is not a very restrictive requirement,

because it only excludes access methods that are either not proper trees (e.g., the hB-tree,

as described in [LS90]) or that have other structural peculiarities (for instance, R+-trees,

described in [SRF87], replicate leaf entries). Although the GiST structure is similar to that

of a B-tree, it generalizes the B-tree structure in a way which makes most of the extensively

researched concurrency control techniques for B-trees inapplicable in the less restricted

context of the GiST structure.

The literature distinguishes two types of concurrency control in the context of AMs:

physicalconcurrency control allows multiple search and update operations to be active in
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the index simultaneously, even during structure modifications like node splits and deletes;

logicalconcurrency control, on the other hand, ensures transactional isolation. The solution

for physical concurrency control in GiST that I present here is based on an extension of the

link technique initially developed for B-trees and completely avoids holding page latches

during I/Os. I achieve transactional isolation with a hybrid locking mechanism, which com-

bines traditional two-phase locking of data records with predicate locking. More generally,

I show how the structure of an access method affects the available choices of concurrency

control techniques, and I explain why existing B-tree techniques cannot be directly applied

to more general tree structures. I also address practical issues such as support for unique

indices, and I describe implementation details of the protocols in the IDS/UDO GiST im-

plementation.

The rest of this chapter is organized as follows. Section 4.1 extends the GiST structure

for concurrent access. After these preliminaries, Section 4.2 explains the algorithms for

index lookup, key insertion into non-unique and unique indices, and key deletion. Sec-

tion 4.3 outlines the design of the hybrid locking mechanism and compares it with other

locking approaches. Logging and recovery are described in Section 4.4. Section 4.5 dis-

cusses a variety of implementation issues and describes specific details of the IDS/UDO

GiST implementation. Section 4.6 discusses related work and some of the implications

of the structure of an access method for concurrency control techniques; it also explains

why most of the prior work on B-trees cannot be directly applied in the GiST context.

Section 4.7 concludes this chapter with a summary.
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An insert operation of key 8 and a delete operation of key 7 are executing concurrently
in the tree. The insert operation reaches leafB, which is full and must be split. The
delete operation examines the parent and discovers that it must also examine leafB (arrows
indicate scan positions).
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The delete operation reaches leafB after it was split and incorrectly concludes that key 7
does not exist.

Figure 4.1: Illustration of incorrect interleaving of key search and node split.

4.1 GiST Extension for Physical Concurrency

When multiple operations are carried out on a GiST in parallel, their interactions may

be interleaved in a way that leads to incorrect results. An example for a B-tree is shown in

Figure 4.1, where a node split changes the location of some keys, which causes a concur-

rently executing search operation to miss them.

In order to avoid such situations, we apply the B-link tree strategy [LY81] of adding a

link between a node and its split-off right sibling. All the nodes at each level are chained



46

together via links to their right siblings; the addition of thisrightlink allows operations

traversing this node to compensate for missed splits by following the rightlink. Of course,

rightlinks cannot be followed blindly every time a node is traversed, or parts of the tree

would be scanned multiple times. For the link strategy to work, a traversing operation must

be able to (1) detect a node split and (2) determine when to stop following rightlinks (a

node can have split multiple times, in which case the traversing operation must follow as

many rightlinks as there were node splits).

For B-trees, both of these questions can be answered by examining the keys in the node,

since the key domain has two restrictions: it is ordered and the keys are partitioned across

the leaves. In particular, a comparison of the search key and the highest key on the node

will tell a traversing operation if a node has split and if a right sibling might contain entries

intersecting the search range. GiSTs do not impose these restrictions on the key domain,

which means that the B-link strategy by itself is insufficient. We therefore need to augment

the tree structure so that we can reconstruct the split history of a node, starting from the

time we obtained a pointer to it. This can be achieved by assigning a sequence number

to each node in addition to the rightlink. This node sequence number (NSN) is taken

from a tree-global, monotonically increasing counter variable. During a node split, this

counter is incremented and its new value assigned to the original node; the new sibling node

receives the original node’s prior NSN and rightlink. Figure 4.2 illustrates the extended

tree structure and shows how a traversing operation can take advantage of the NSNs and

the counter variable to detect splits and determine how many times a node was split. In
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general, a traversing operation can now detect a split by memorizing the global counter

value when reading the parent entry and comparing it with the NSN of the current node. If

the latter is higher, the node must have been split and the operation follows rightlinks until

it sees a node with an NSN less than or equal to the one originally memorized. A node with

an NSN less than or equal to the memorized one cannot have been split after the parent has

been visited and therefore its rightlink need not be traversed; since nodes are always split

to the right, this node must demarcate the end of the rightlink sequence that the traversing

operation has to follow.

4.2 Algorithms for Search and Update Operations

The algorithms presented in the following four subsections implement concurrent search,

insertion, deletion and unique-index insertion operations in GiSTs extended with sequence

counters. For now, the presentation ignores issues of transactional isolation, which are dealt

with in detail in the following section.

4.2.1 Search

The search operation returns the set of leaf entries satisfying the search predicate. The

functionsearch() , shown in Figure 4.3, implements the search operation. Calls to the

GiST interface functions of Chapter 3 are shown in italics. For clarity, the page to which

the call applies is shown explicitly, although in the actual implementation this would be
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The example B-tree GiST of Figure 1 has been extended with NSNs and rightlinks. Again,
an insertion of key 8 and a deletion of key 7 are executing concurrently. The insertion is
about to split leaf B. The delete operation records the value of the global counter (5) before
it goes toB.
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The insertion splitsB, increments the global counter value from 5 to 6 and assigns the new
value toB. The new sibling receives the old NSN and rightlink ofB. When the delete
operation reaches leafB, it determines thatB must have split, because the recorded global
values (then 5) is less than the current NSN (6) ofB. Likewise, when it follows the rightlink
to B′, it can determine that this is the end of the “split chain” it has to traverse, because the
NSN ofB′ (1) is less than or equal to the recorded global counter value (5).

Figure 4.2: Example of the extended tree structure and how it avoids incorrect interleaving.

implicit.

The search operation starts by pushing the root pointer on the stack. It then repeatedly

pops an entry off the stack, visits the corresponding node and pushes all entries with match-

ing predicates on the stack. This results in a depth-first traversal of the tree and is repeated

until the stack is empty. While examining a node for matching entries, we hold it latched1

1Latches differ from locks in two aspects: (1) latches, like mutexes, are addressed physically and can
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to prevent concurrent modifications. The latch is released as soon as we are done with the

node and before going to the next node, avoiding latch-coupling across I/Os.

To recognize node splits, we timestamp every page pointer stored on the stack with the

value of the global counter as of the time the page pointer was read.2 When the stack is used

to visit a node, the recorded counter value is compared with the node’s NSN. If the latter is

higher, the node has been split, and we add the rightlink pointer of the node together with

the originally recorded counter value to the stack. This guarantees that the right siblings

split off the original node will be examined later on.

Although thesearch() function shown here is specific to range queries, differ-

ent types of traversals, corresponding to different types of search states (as discussed

in [Aok98]), can be accomodated easily. The reason is that the correctness of the latch-

ing protocol does not depend on the traversal order, because nodes are latched one at a time

and split detection is not affected by traversal order.

4.2.2 Key Insertion

Key insertion is carried out in several phases:

therefore be set and checked much more efficiently than locks, which are usually organized into a hash table;
(2) existing latches are not checked for deadlock by the DBMS, which requires the system-internal latch logic
to make sure its usage pattern is deadlock-free. Latches are commonly used to synchronize access to physical
“objects” of the DBMS such as buffer pool frames. Also, latches do not interact with locks, so that it is
possible to latch the buffer pool frame holding a particular node while some other transaction holds a lock on
the node. See [MHL+92] for more details.

2When reading the value of the global counter while examining a page (line “nsn = global NSN” in
Figure 4.3), we need to synchronize access to the global counter in order to avoid conflicts with node splits,
which update the counter. The implementation of this synchronization depends on the implementation of the
global counter itself, which is discussed in more detail in Section 4.5.
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search(search-pred)
nsn = global NSN;
push(stack, [root, nsn]);
while (stack is not empty)

[child, expected-NSN] = pop(stack);
latch(child, S-mode);
if (expected-NSN< NSN(child))

push(stack, [rightlink(child), expected-
NSN]);

end
match-slots =search(child, search-pred);
if (child is leaf)

for each slots in match-slots:
add (get key(s), s.ptr) to search result set;

else
nsn = global NSN;
for each slots in match-slots:

push(stack, [s.ptr, nsn]);
end
unlatch(child);

end

Figure 4.3: Concurrent GiST search algorithm.

1. The insertion operation begins by traversing the tree along a single path from the root

to a leaf, following branches with the lowest insert penalty.

2. If the chosen leaf would overflow as a result of the key insertion, the leaf must be

split beforehand, which in turn might cause recursive splitting of ancestor nodes.

3. If no split is required, and if the insertion of the new leaf entry will change the leaf’s

SP, the updated SP is propagated to the parent entries by backing up the tree, until an

ancestor node is encountered whose SP does not need to expand.

4. The new(key, RID)pair is inserted on the leaf.
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Note that in contrast to B-trees, an insertion operation may back up the tree for two reasons:

splitting a node requires the installation of a new parent entry, and expanding a leaf’s SP

requires the adjustment of parent entries. The latter step is missing in B-trees. Figure 4.4

shows the insertion algorithm.

The functioninsert()first locates the target leaf, then recursively splits or updates its SP,

if necessary, and finally inserts the new(key, RID)pair. The functionlocateLeaf()traverses

a single path, starting from the root, to locate the target leaf of the insertion. It detects

node splits in the same manner as the search operation, but compensates for missed splits

differently. Instead of following rightlinks, it returns to the lowest unsplit ancestor in order

to re-establish the minimum-penalty path from that ancestor. The reason for this deviation

is that thefindMinPen()extension function can only be applied to a parent node to find

the minimum-penalty child slot. To compensate for missed splits by following rightlinks,

findMinPen()would need to be applied to each of the child nodes (original and split-off)

directly.3

The eventual path to the leaf is recorded on a stack, which is used subsequently to

ascend the tree for necessary structural modifications. The functionsplitNode()carries out

a recursive split operation, including updating of affected SPs. When backing up the tree to

update parent entries it can also become necessary to recognize splits of ancestor nodes that

have taken place since the nodes were initially traversed on the way down to the leaf. In

this instance, it is not even necessary to compare NSNs. If a parent node does not contain

3The reason why a search operation cannot adopt this repositioning strategy is explained in Section 4.2.3.



52

the child’s pointer anymore, it must have been split and the search for the child’s pointer is

continued in the right sibling.

When arriving at the root node while backing up the tree, the insertion operation can be

confronted with a missed root split that took place after we initially obtained the root pointer

and began tree traversal. In order to update the additional level(s) created by the missed

root split(s), we need to augment the stack that records the path with the corresponding

nodes of those levels. Those nodes are determined by doing an exhaustive breadth-first

traversal, starting with the now current root, until the old “root” is encountered. This has

no detrimental effects on average performance, because it is an extremely rare event and

there will usually only have been a single level added, which keeps the number of nodes to

traverse fairly small.

Once the split is done, we can release the latch on the parent and the new right sibling

(assuming for the sake of simplicity that the subsequent insertion will go on the original

node). The functionupdateSP()updates a node’s parent entry, if the SP has changed. This

is carried out recursively, and may even result in node splits of ancestors, because an SP

update may expand the parent entry and overflow the parent node.

4.2.3 Key Deletion

In order to delete a key from a tree, it is first necessary to locate the key on a leaf, which

is equivalent to a search operation with an equality predicate. The item on the leaf will not

be physically deleted but only marked deleted, i.e., a logical deletion will be performed.



53

The physical presence of this deleted key is useful for isolation and recovery purposes (as

explained further in Sections 4.3 and 4.4).

Garbage Collection of Deleted Leaf Entries

A leaf entry may only be physically removed and the associated SPs—that of the leaf

and those of the leaf’s ancestors—shrunk after the deleting transaction has been committed.

For that reason, those physical update operations must be performed as garbage collection

by other operations which happen to pass through the affected nodes. Garbage collection

for a single leaf node is performed as anode reorganization, which removes all those

entries from a leaf which have been marked deleted and for which the initiating transactions

have committed.4 As a result of a node reorganization, the SP of that node may have

changed, which can then be propagated to the parent nodes. Note that when removing

entries from a node, the SP of that node should actually shrink, i.e., cover less of the

data space. Since theunion()extension function is implemented externally, a more robust

assumption is thatunion()will change the SP in some way in response to an entry removal,

not that it necessarily shrinks it.

Node Deletion

A node reorganization may also leave a node completely empty, in which case it should

be removed from the tree so that it can be reused for later node splits. Unfortunately, it is

4[Moh90b] shows how this can be done cheaply in a WAL environment. Essentially, if the page’s LSN is
less than the first LSN of the oldest active transaction, then all entries must belong to committed transactions
and no additional locks have to be tested.
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impossible simply to remove the node’s parent entry and retire the node, because ongoing

tree operations might still have pointers to the node on their stacks.

Such an ongoing operation could not be completed correctly if it would visit the node

after it has been deletedand reused for two reasons: (1) if the node had been split before

being deleted, a search operation may still need to traverse its rightlink; (2) the node could

be reused for the split of another node that one of the search operations has already visited,

in which case this operation would traverse the same subtree multiple times and return

duplicate results.

To avoid this situation, the reuse of a deleted node must be delayed until there are no

more search operations targeting that node. For B-trees, thelatch-couplingprotocol is a

popular way to achieve this (see for example ARIES/IM [ML92]): during tree descent, the

latch on the parent node is not released until the latch on the child node has been obtained.

To delay node reuse, ARIES/IM’s delete operation first marks the empty node as a delete

target, then releases the latch on that node and subsequently obtains an X-latch on the

parent node. At that point, there can be no more search operations trying to access the

marked node. Search operations that end up visiting the marked node suspend themselves

until the node delete operation is over and then recover by repositioning within the tree.

While latch coupling is very effective for B-trees, it is practially impossible in the GiST

context. In its simplest form, a search operation would hold a parent node S-latched while

traversing all of its qualifying subtrees, which would seriously impact the degree of con-

currency with regard to update operations, especially if SP updates after insertions are
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frequent.

Alternatively, the search operation could release the latch on the parent after visiting

the first child and later on reposition itself within the parent node, carefully avoiding those

regions of the key space that have already been traversed. Repositioning is unfortunately

not possible in the GiST context, because the key space is not necessarily partitioned and

concurrent changes in the subtree make it impossible to keep track of which regions of the

key space have been traversed (see Figure 4.5 for an illustration). Hence, latch-coupling

and repositioning cannot be used to achieve high concurrency in any non-partitioning tree

structure.

We therefore must look for a different way to delay the reuse of a delete node while

active tree operations still holddirector indirectpointers to that node. A direct pointer is a

node pointer recorded in some operation’s stack. A node pointer indirectly references some

of that node’s right siblings, if the stack entry also contains an NSN which would lead the

operation to cross rightlinks to them. To make node deletion operations aware of existing

direct pointers, an operation places asignalinglock on a node when it pushes a pointer to

that node onto the stack. The signaling lock can be implemented as a short-duration S-mode

lock on the node (released at the end of the index operation), so that other insert and delete

operations are not prevented from physically accessing and modifying that node. A node

deletion checks for signaling locks by trying to acquire an X-mode lock on the respective

node. To extend the deletion protection to those nodes that have been split off and are

therefore referenced indirectly, a node-splitting transaction copies the list of signaling locks
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placed on the original node to the new right sibling (alternatively, splits could be blocked,

lowering both implementation complexity and the degree of concurrency). A signaling lock

is released as soon as the operation that sets it visits that node. The only exception to that

rule is the signaling lock set on the target leaf of an insert or delete operation. The lock has

to be retained until the end of the inserting or deleting transaction for recovery purposes,

otherwise recovery-relevant parts of the link chain would be interrupted (details are given

in Section 4.4).

4.2.4 Key Insertion into Unique Indices

When inserting a duplicate into a unique index, database semantics require that the

insertion operation return with an error message. To insert into a unique index, we therefore

first perform a search operation, followeed by an insertion. The search operation preceding

the insertion verifies that no duplicates will be introduced. If it finds the new value in the

tree, it returns an error condition. If the inserted value is not found in the tree, the phases

of the regular insert operation are carried out: the leaf is located and after key insertion the

parents’ entries are updated, if necessary. In order to avoid a race between two insertion

operations of the same value, the search phase must be executed in repeatable-read mode,

which is the topic of the next section.
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4.3 Transactional Isolation

The highest degree of transactional isolation is defined as Degree 3 consistency or re-

peatable read isolation [Gra78]. It implies that if a search operation is run twice within

the same transaction, it must return the exact same result, even if the result set is empty or

the operation results in an error. This requires regulation of the overlapping data access of

read and update operations of competing transactions, either by restricting access to data

or by replicating the data. This section presents an overview of mechanisms that guarantee

repeatable read isolation by restricting data access; for approaches that employ replication,

see for example [MPL92, St¨u95].

The simplest solution would be to lock all involved tables for the duration of the en-

tire transaction. Unfortunately, this leads to an unacceptably low degree of concurrency.

DBMSs try to avoid this by accessing the tables through index structures and explicitly

locking only as much as needed to guarantee repeatable read isolation. One part of what

needs to be locked is the set of data records returned by the search; this will prevent modi-

fication or deletion of the data records in the result set. This is not sufficient, because it is

also necessary to lock those regions of the search range for which no data records were re-

turned, in order to prevent subsequent insertions into the search range. These insertions are

known as phantom insertions [EGLT76] and result either from newly-inserted data records

or rolling-back deletions of data records.

In the following discussion we assume the availability of a standard lock manager that

supports locks of varying modes and durations. Furthermore, we assume to be dealing with
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secondary indices, which store the RIDs of data records that are stored separately in tables.5

We require that all insert and delete operations X-lock the data records they update and all

search operations S-lock the data records they retrieve (except for those running under

degree 0 consistency, which allows reading of uncommitted data). Lower isolation levels

(degree 1 and 2) can be implemented entirely with data locks acquired in this manner, with

the duration of S-locks varying according to the chosen isolation level (instant duration

for degree 1 and transaction duration for degree 2). The data locks are also necessary for

degree 3 search operations to protect the result set from modification. It is not sufficient to

protect the result set of a search operation by only protecting one particular access path to

it, because conflicting data record updates may not need to use this access path. For that

reason, data record locks (or locks of larger granularity on the base table) are mandatory.

In the rest of this section we will only be concerned with phantom protection.

Note that the practice of performingreinsertionsto delay node splits, which was first

introduced for the R∗-tree [BKSS90] and was also adopted in the original GiST design

of [HNP95], is problematic when insertions and searches are performed concurrently.

When performing a reinsertion, a node split is delayed by removing some of the entries

and re-inserting them into the tree, which can improve clustering. By relocating entries to

different nodes of the tree, a search operation might run across a matching entry more than

5For the sake of simplicity and to avoid confusion, we limit the discussion here to secondary indices. Note
that the techniques presented here are equally applicable to primary indices, which store the data records
themselves in the leaf level of the index. The difference between primary and secondary indices from the
perspective of concurrency control is that for secondary indices, the RID of the data record residing in the
base table is an immutable ID; in primary indices, the RID of the index-resident data record can change due
to node splits, and an immutable surrogate needs to be formed (e.g., the hash value of the key or a synthetic
ID).
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once; this would result in duplicates in the result set, which is not allowed at any of the

isolation levels. For that reason, reinsertion is not part of the insertion algorithm described

in Section 4.2.2.

We can identify four evaluation criteria for isolation mechanisms:

Computational Efficiency We are generally concerned with execution efficiency, and would

like to keep the overhead required by the locking protocol as low as possible. The

overhead consists of computing lock names, setting and checking locks in addition

to the data locks, etc.

High Degree of Concurrency We would like the obtained degree of concurrency to be as

close as possible to the maximum degree of concurrency. The maximum is deter-

mined by the overlap between qualification predicates of search operations and the

set of target objects of conflicting update operations. The actual degree can be lower

due to limitations of the isolation mechanism.

Gradual Expansion of the Locked Region Instead of taking place instantaneously, search

operations usually accumulate their result set over a period of time, in particular if

they are executed within a SQL cursor from an external application, which may have

significant delays for user interaction, etc., and which may terminate before the full

search range is exhausted. It is desirable to expand the locked region only gradually,

in lockstep with the data space “covered” by the search operation, so as to maxi-

mize concurrency during the lifetime of the search operation. Note that this form of
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concurrency is independent of the previous one.

Implementation Complexity Implementation complexity translates directly into engineer-

ing cost, which should be kept as low as possible. Although it seems irrelevant

from an academic perspective, coding and debugging concurrency control protocols

is notoriously difficult and time-consuming. Very complex designs are prone to bug-

ridden implementations or may require a prohibitive engineering effort.

4.3.1 A B-Tree Solution: Key-Range Locking

One solution to the phantom problem in an ordered key domain is a technique called

key-range locking,6 which works as follows. Each data item with keyki is treated as a

surrogate lock name for the key range(ki−1; ki]. For a scan with a given search range, we

retrieve and two-phase lock all the data records7 within the range and we also lock the first

data recordpast the right end of the range; this is typically done with the help of a B-tree

index. As a result, all the key ranges(ki−1; ki] intersecting the search range are locked.

Before a leaf entry insertion, we check the data record to the right of the insertion point for

existing locks, thereby making sure that the “gap” into which we are inserting is not locked

by any scan.

Essentially, key-range locking requires theordering property of the key domainand the

correspondence between logical key order and physical order of (key, RID) pairswithin and

6Other terms are key-value locking [Moh90a], or next-key locking [GR93].
7As in the data-only locking approach of ARIES/IM [ML92].
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across nodes. This allows conflicting search and insert operations to agree on a sequence

of physical data records as a surrogate for a logical search range.

With respect to our four evaluation criteria, we observe the following:

Efficiency Surrogate lock names are easy to compute (they are either the returned data

records or the data record right next to the last one in the sequence); additionally, a

logical lock range has been transfered into a sequence of purely physical locks, which

can be set and checked very efficiently by the standard lock manager. Furthermore,

only the final lock in the search range represents isolation overhead, because all of

the preceding ones would have been acquired anyway.

Concurrency A drawback is that the degree of concurrency is not maximal, because the

final lock might cover a substantially wider range than is required by the search pred-

icate, depending on the key value. The reason is that the “density” of the lock pred-

icates depends on the data stored in the index: range predicates depend on adjacent

data items and cannot be chosen irrespective of the leaf-level data. This becomes a

problem when a search operation’s range qualification ends in between two leaf keys.

The corresponding lock predicate will extend past the search range, which reduces

the degree of concurrency. It is also problematic when a delete operation locks a

range predicate (i.e., the next key) in order to protect the interval covering the key. In

principle, only a single value needs to be locked, and the larger the interval, the more

concurrency is restricted. Note that logical deletion does not suffer this drawback,

since the deleted value is physically retained on the page and can serve as a surrogate
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key. (See [Lom93, Moh90b, Moh95] for the details.)

Gradual Expansion The lock range is expanded gradually, because additional intervals

of the data space are only locked when the next key in the key range is read.

Complexity Key-range locking is relatively straightforward and can be implemented with

a standard lock manager, resulting in moderate implementation complexity. Some

care must be taken when obtaining locks while holding page latches. This can lead

to deadlock, which the lock manager cannot detect and which therefore must be

avoided. The typical approach of releasing page latches, requesting the lock, then

re-acquiring the page latches does not result in overly complex code, because repo-

sitioning a scan (or any traversal operation) is comparatively simple in B-trees.

Overall, the key-range locking protocol, even though it is not optimal, is very effective,

and we will see that it is difficult to produce something of equal quality in the more general

GiST case.

4.3.2 Predicate Locking

Key-range locking is not directly applicable to GiSTs, because we cannot assume an

ordered key domain and therefore cannot count on finding a physically contiguous se-

quence of leaf entries as a surrogate for the possibly multi-dimensional search range. Two

alternative techniques, predicate locking [EGLT76] and its more efficient relative preci-

sion locking [JBB81], circumvent this problem. The search operations register their search
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predicates in a tree-global table, so that insert and delete operations can check for conflict-

ing concurrent search operations. Symmetrically, insert and delete operations register their

keys in a tree-global table, which is checked by search operations for conflicts with the

search predicate. An operation can only start traversing the tree after it verifies that there

are no conflicting predicates. A predicate lock is retained until the end of the transaction.

When applying our evaluation criteria, we see that predicate locking has two disadvantages—

its efficiency and degree of gradual expansion—in comparison to key-range locking:

Efficiency As a result of not using surrogate keys that correspond to physical data items,

predicate evaluation is potentially expensive—in fact the cost cannot be pre-determined—

and requires user code. Moreover, every lock acquisition goes through the entire list

of potentially conflicting locks, making this locking protocol more costly as the num-

ber of concurrent operations increases.

Concurrency The accuracy of the lock predicates is maximal, because this technique does

not rely on surrogate lock names, but instead uses the search predicate directly.

Gradual Expansion A search operation must set its predicate lock before the index is

accessed and any data records are retrieved. Unlike key-range locking, the locked

key range is not expanded gradually, which can be very detrimental to concurrency if

the search is done as part of an interactive cursor. An even worse scenario is a search

qualification whose “coverage” of the data space also depends on the search state,

e.g., a nearest-neighbor search (the qualification only specifies a center point, while
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the search state—the number of points retrieved so far—determines the area that

has been examined by the search operation). In this case, an update operation cannot

determine whether it conflicts with the ongoing search and would conservatively need

to suspend itself while the search is ongoing. In other words, any search operation of

this nature would lock the entire table.

Complexity The implementation complexity of this approach is moderate. All lock re-

quests are issued before tree traversal begins, which eliminates complexity due to

lock/latch problems. In addition to the standard lock manager, a predicate lock man-

ager is needed, which can be patterned after the standard lock manager.

4.3.3 A Hybrid Locking Protocol

Instead of resorting to pure predicate locking, we can use a hybrid mechanism, which

synthesizes two-phase locking of data records with predicate locking. The underlying idea

is to rely on two-phase locking for existing data records and augment that technique with a

restricted, more efficient version of predicate locking for phantom avoidance. In the hybrid

mechanism,existingdata records that are scanned, inserted or deleted are still protected by

the two-phase locking protocol. In addition to data locks, search operations acquire pred-

icate locks to prevent phantom insertions. That way, only insertion operations, whichadd

data, check for conflicting predicates; search and delete operations simply check for con-

flicting data locks. Furthermore, the predicate locks are not registered in a tree-global list;
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instead, they aredirectly attached to the index nodes they apply to. Predicate attachments8

are performed so that the following invariant is true at all times: if a search operation’s

qualification predicate matches a node’s SP, the qualification predicate must be attached to

the node. An insert operation can therefore limit itself to checkingonly the predicates at-

tached to its target leaf. A delete operation must be carried out as a logical delete, so that the

respective leaf entry is not physically deleted but is only marked as deleted (see [Moh90b]

for a discussion of this technique in the context of B-trees). The physical presence of the

leaf entry and the lock on the corresponding data record ensure that search operations will

block on the deleted entry until the delete is committed.

The advantage of this hybrid approach over pure predicate locking is that two-phase

locking of data records is still used for everyexistingdata record, eliminating the need

for search and delete operations to check for conflicting predicates. Only insert operations,

whichaddto the set of existing records, check for search predicates; furthermore, they only

check the set of predicates attached to their target leaves, which is typically substantially

smaller than the tree-global set of predicates.

This isolation mechanism requires augmentation of the basic algorithms with testing

and setting of data and predicate locks. For example, search operations attach their predi-

cates to the nodes as they are visited and the predicates and their node attachments are only

removed when the owner transaction terminates. Since the tree structure changes dynami-

cally as nodes split and SPs are expanded during key insertions, the predicate attachments

8Note that these predicate attachments can be implemented through an in-memory data structure, similar
to a lock table; a physical modification of the index page in question is not necessary.
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must adapt to the structural changes. We distinguish two cases that require existing predi-

cate attachments to be replicated at other nodes. The first case is a node split, which creates

a new node whose SP might be consistent with some of the predicates attached to the orig-

inal node. The invariant is maintained by attaching those predicates to the new node. The

second case involves the expansion of a node’s SP, causing it to become consistent with ad-

ditional search predicates. Again, those predicates need to be attached to the node; they are

found in the ancestor nodes accessed during the SP update phase of the insertion operation,

and they are “percolated” to all the child nodes whose expanded SP is consistent with the

predicate. The following paragraphs describe the details.

Search While traversing the tree in a top-down fashion, the search operation S-locks

each data item in the result set and attaches its predicate to every node that it visits. The

attachment takes places immediately before visiting a node (it must not take place when

the node is held latched and it should not take place much earlier because the lock limits

concurrency).

Similar to B-trees, there is an opportunity for undetectable deadlock if the latches are

not released when blocking on a data lock. To avoid this situation, the latches must be

released before blocking on the data lock and then reacquired when the search operation is

unblocked. If the latched leaf has been split in the meantime, we also visit the split-off leaf

nodes guided by the node’s original NSN. When revisiting a leaf, we have to make sure that

leaf entries are not included in the result set multiple times, even if the leaf has been mod-
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ified or split in the meantime. We can keep track of which entries of a particular leaf have

already been processed by including theirdataRIDs (not the entries’ RIDs themselves) in

a list. Note that this is only possible with leaf entries, not with entries of internal nodes; the

discussion in Section 4.2.3 makes this clear.

Insertion The phases of the insertion operation as described in Section 4.2.2 are aug-

mented as follows:

1. As part of the two-phase locking protocol, the new data record is X-lockedbeforethe

tree insertion is initiated.

2. If the target leaf has search predicates attached that conflict with the new key, the

operation blocks on those predicates until their owner transactions commit.

3. If a node split is necessary, we attach to every new node all of the original node’s

predicates that are consistent with the new node’s SP.

4. The SP updates are performed atomically, i.e., all involved ancestor nodes are held

latched simultaneously,9 and the updated SPs are only installed in the ancestor nodes

if the new key does not conflict with any of the search predicates attached to the

ancestor nodes. During the SP update phase, we “percolate” search predicates from

ancestor to child nodes, if the ancestors’ predicates are consistent with the child’s

updated SP.

9Note that this form of latch-coupling does not have the same detrimental effect on the degree of concur-
rency as latch-coupling during treedescent; at the point where the SP updates are performed, the involved
ancestor nodes are most likely still cached in the buffer pool and therefore no lengthy I/Os are necessary.
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5. If any conflicting search predicates are detected, we block on those until their owner

transactions commit. If no conflicting predicates are detected, we proceed to insert

the new(key, RID)pair on the target leaf.

If the insertion detects any conflicting search predicates along its update path, it must

be suspended until the conflicting search transactions are terminated. When resuming the

insertion, the leaf originally located might have been split. This again is recognized by com-

paring the memorized NSN with the leaf’s current NSN, followed by repositioning in the

parent and retraversal, as is done inlocateLeaf()in Figure 4.4. The structural modifications

(node splits and SP updates prior to inserting item on leaf) then need to be reattempted.

This repetitive process may result in starvation, which can be dealt with in a relative simple

and crude way (after a number of attempts, the inserter acquires an X-lock on the index for

the duration of the insertion operation).

Deletion Delete operations do not set or check predicate locks, and therefore the algo-

rithm described in Section 4.2.3 need not be augmented. We perform logical deletion to

ensure that repeatable-read search operations have an opportunity to be suspended when

they encounter such a key.10 For the same reason, the delete operation must not shrink

parent entries before the deletion is committed, because this would remove the path to the

key and make the key inaccessible for concurrent search operations. A subsequent rollback

10In B-trees, the delete operation could physically remove the key, but would have to leave a lock on the
next key. This is not applicable to GiSTs for the reasons already mentioned in Section 4.3. Even in B-trees,
logical deletion is preferable if increased concurrency is important (see [Moh90b] for further discussions of
logical deletions). In fact, the index manager of DB2/MVS V4 has adopted it for that reason.
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of the deletion, including expansion of the ancestor SPs, would then cause a phantom to

appear.

Insertion into Unique Index The search operation for the new key value preceding the

actual insertion must be carried out like a standard search operation with a qualification

of the form “= key”, executed in repeatable-read isolation mode. If two insert operations

happen to be interleaved in a way that they both miss each other’s new key during their

search phases, the predicates will ensure that each operation blocks on the other’s predicate.

This will result in a deadlock, which can be resolved in a standard manner by the lock

manager. Once the insert operation is finished, the predicates left behind from the search

phase can be released. If the new key value is already present in the index, the search

operation requests an S-mode lock on the corresponding data record. Note that in this case

no predicate locks need to be left behind by the search operation; the lock on the data

record alone is sufficient to ensure repeatability of the error condition and availability of

the original data item for subsequent searches.

Garbage Collection Shrinking an SP as a result of removing logically deleted entries

from a page cannot cause the SP to become consistent with additional search predicates.

From that perspective, recursive SP updates performed during garbage collection need not

replicate search predicates from ancestors to children. As pointed out in Section 4.2.3, the

GiST interface functionunion(), which implements the SP re-computation, may actually

expandthe SP (it may do this as a result of a design or coding error or on purpose). For
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robustness, we therefore percolate search predicates, just like in the SP update phase of an

insertion.

Applying our four evaluation criteria, the hybrid technique can be characterized as fol-

lows:

Efficiency The hybrid protocol is more efficient than pure predicate locking, because only

insert operations need to check predicates. Furthermore, the number of predicates to

check should on average be less, since only the predicates attached to the leaf need

to be considered, but the actual number relative to the total number of active search

operations is impossible to predict.

Aside from that, structural modifications now incur an overhead, because they need

to replicate predicate locks in order to maintain the invariant. Such overhead is not

present in the key-range locking technique or in pure predicate locking.

Concurrency Just like regular predicate locking, the accuracy of the lock predicates is

perfect and concurrency is not diminished. Note that the use of data record locks

does not impede concurrency, since these locks are not used as surrogate lock names

for intervals of the data space.

Gradual Expansion Unlike pure predicate locking, the lock range is expanded gradually,

although not to the same extent as in key-range locking. The reason is that predicates

are attached to the visited nodes top-down, starting with the root.11 This can block

11We cannot attach predicates bottom-up, i.e., only attach a predicate to a parent node when all child nodes



71

an insertion into the search range, even if the leaf where the insertion takes place has

not been visited by the search operation. For this to happen, the insertion must cause

SP updates in ancestor nodes where the search predicate is already attached. Grad-

ual expansion is retained (although diminished) even for nearest-neighbor queries:

although the search predicate cannot be used to differentiate conflicting from non-

conflicting updates, the absence of a global predicate lock list will still allow some

updates to proceed (unless they perform structural updates that touch nodes on the

traversal paths of the search operations).

Complexity The implementation complexity of the hybrid technique is fairly high. It re-

quires a predicate lock manager that can handle per-node predicate lists and will

allow transactions to update other transactions’ predicate attachments.

4.3.4 A Node Locking Protocol

The hybrid mechanism presented in the preceding subsection can be simplified in a

variety of ways. This reduces implementation complexity at the expense of concurrency.

One simplification is to ignore the predicate-specific information of a predicate node

attachment and treat each predicate as if it conflicted with any insertion.12 This way, pred-

icate node attachments can be implemented by simple node locks, with search operations

of interest have been visited, because the search operation does not revisit the parent. It would therefore be
unable to pick up additional traversal paths that have been added by concurrently executing insertions—these
traversal paths would then result in phantoms if the search operation is re-executed. Section 4.2.3 discussses
additional problems involved in repositioning a search operation.

12This simplification was inspired by [CM00]. Section 4.6 will describe their approach in more detail and
contrast it with the node locking approach.
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setting locks by requesting transaction-duration S-locks on traversed nodes and insertions

checking them by requesting instant-duration X-locks on updated nodes. The results are

more efficient lock checking and a simpler implementation. This obviously reduces the

degree of concurrency, but it does not prevent concurrent searches and insertions entirely,

because insertions still only check for conflicting locks at their target leaf.

Replacing predicate locks with node locks also eliminates the need for node split and SP

update structure modifications to perform lock replication, which is typically not supported

by a standard lock manager. The reason is that the existence of any node locks will now

prevent the structure modification from taking place (as described in the preceding section),

whereas in the hybrid protocol the structure modification is able to proceed if the predicate

and the new key to not conflict.

These simplifications turn the hybrid locking protocol into a node locking protocol, in

which search operations protect their traversal trees by locking visited nodes and insertions

are blocked if the nodes on their update paths collide with a traversal tree. This protocol

has the following properties:

Efficiency Setting and checking page locks is relatively cheap, which reduces the com-

putational complexity of the node locking protocol. Furthermore, the computation

resources involved in these operations are known, whereas those for predicate oper-

ations less predictably depend upon the datatype and the specific search predicate.

The handling of structure modifications conflicting with searches also has different

computational requirements. The node locking protocol blocks those structure mod-
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ifications, which requires them to be reversed.13 The hybrid protocol, on the other

hand, replicates existing predicate locks, which is potentially more costly.

Concurrency Compared to the hybrid mechanism, the obtainable degree of concurrency

is reduced, because the discriminating power of predicates is lost. The actual reduc-

tion of the degree of concurrency depends on the quality of the SPs, which in turn

depends on the particular AM, the data and the specific workload. Although it is

impossible to generalize, published evidence [TCH00] suggests that overly “wide”

SPs can be a problem in spatial workloads with even moderate dimensionality. For

these workloads, the loss in concurrency of the node locking protocol might be un-

acceptable.

Gradual Expansion Since search operations traverse the tree in the same way in both

protocols, the degree of gradual expansion is the same.

Complexity The node locking protocol does not need a specialized predicate lock man-

ager, which lowers the implementation complexity. On the other hand, it needs to

block structure modifications that conflict with search operations. This will increase

the implementation complexity of those structure modifications considerably. Over-

all, the node locking protocol most likely is less complex to implement than the

hybrid protocol.

13A split begun at the leaf level and carried up the tree recursively will need to be reversed if it needs to
split a node with a lock. Reversing a node split or SP update is at least as expensive as the node split or SP
update itself.
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In summary, the hybrid and the node locking approaches have very different charac-

teristics, and a comprehensive experimental comparison has not been attempted yet. It is

unlikely that a clear winner will emerge, i.e., one technique that dominates the other in

every conceivable aspect and under every workload. A comparison of a technique similar

to the node locking approach with the hybrid approach in [CM00] reports that the node

locking approach is much more efficient and offers similar degrees of concurrency, but

the observation was made for workloads with 2- and 3-dimensional data and where all

search operations required repeatable-read isolation. In different scenarios, e.g., higher di-

mensions or very few repeatable-read searches (as one would expect from highly dynamic

databases), the outcome may well be reversed, because the computational disadvantage

of predicate checking may be insignificant, but its concurrency advantage may matter a

lot. The book on this subject cannot be closed yet, and it would be interesting to see a

comprehensive experimental evaluation.

4.4 Logging and Recovery

The goal of recovery is twofold. First, it ensures that the tree’s leaf data only reflects

insertions and deletions of committed transactions and none of those of uncommitted trans-

actions. Second, the physical tree structure must be brought back into a consistent state

after a system crash. As an example of an inconsistent state, consider a node split that was

interrupted by a system crash before a parent entry could be installed for the new child.
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Since the global counter value has been incremented, a subsequent traversal operation will

not recognize the “missed split” and the tree structure will remain corrupted. The following

GiST recovery protocol is targeted at a write-ahead logging (WAL) environment with page-

oriented redo and logical undo (for a description of WAL environments, see [MHL+92] and

[GR93]).

4.4.1 Logging for High Concurrency

In order to obtain high concurrency, a logging protocol must separate update opera-

tions into their content-changing (key insertion and logical deletion at the leaf level) and

structure-modifying parts (node splits, SP updates, node deletions). This allows us to as-

cribe the content-changing operations to the initiating transactions, whereas structure mod-

ification operations (SMOs) are carried out separately from any transactions as individually

committed atomic units of work.14 The advantage of this approach is that an SMO can be

“committed” as soon as it finishes and the latches on the involved nodes can be released im-

mediately (within an atomic unit of work, we employ two-phase latching: once acquired, a

latch is only released when the atomic unit of work finishes). This is in contrast to content-

changing operations, whose updates are protected by data record locks until the end of their

enclosing transactions (page latches are of course also released once the operation is fin-

14These atomic units of work have also been called “atomic actions” [LS92] or “nested top actions”
[MHL +92] in the research literature. A technique for executing a sequence of page updates as individu-
ally committed atomic units of work is described in [MHL+92]. Essentially, the log records written for these
page updates are separated from those of the surrounding transaction by appropriate setting of the backchain
pointers in the log record headers.
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ished). As an example of what would happen without atomic units of work, consider how

an SP update would be carried out if it were to execute as part of the same transaction that

initiated the preceding key insertion. In this case, the updated parent entry containing the

SP would have to be locked until the end of the insert transaction, otherwise another update

to the same parent entry by a different transaction would be incorrectly rolled back if the

insert transaction were aborted. Locking the parent entry, however, would serialize all key

insertions that need to update the same parent entry.

By exclusively latching all nodes involved in an SMO for the duration of the SMO,

the SMO prevents all intervening access to its nodes. This allows SMOs to be undone

physically, i.e., by physically reversing the original modifications. Content-changing oper-

ations, on the other hand, cannot latch their target leaves for the duration of their enclosing

transaction, because this would prevent structural modifications of that leaf. As a conse-

quence, they requirelogical undo, during which part of the tree structure may need to be

re-traversed to relocate the inserted or marked leaf item. Another differentiating charac-

teristic is that content-changing operations are undone when their enclosing transaction is

rolled back, but an SMO is only undone if a crash prevents it from finishing, i.e., if the log

at the time of the crash does not contain all of the SMO’s log records. This implies that

if an SMO only writes a single log record, it need never be undone and can therefore be

logged as a redo-only operation, which reduces log record size. The functionality of the

log manager determines whether this optimization can be employed: if only a single page

is updated during the SMO, the log manager must be able to tag this as a redo-only record;
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for a multi-page SMO, the log manager must also be able to relate a single log record to

multiple pages.

Sections 4.2.2 and 4.2.3 used the following atomically executed SMOs as the building

blocks of insert and delete operations: (1) split of a single node, including installation of

the parent entry for the new node and update of the parent entry for the split node; (2)

parent entry update on a single ancestor node; (3) deletion of a node, including the deletion

of the parent entry; (4) garbage collection of a node. An SMO writes a single log record

per modified page, with each log record containing enough information to redo and undo

the corresponding page operation. The log record data must be sufficient to execute the

redo and undo actionsindependentlyof any other pages in the index. The reason is that

the WAL protocol does not guarantee that pages are written to disk in the order they were

modified, and therefore at restart time the database may not be in a state that corresponds

to a chronological order of page modifications. As an example, consider the split SMO.

The fact that it moves some page entries from the left page to a new right page cannot be

captured by simply logging the slot indices of the moved entries, because the redo action

would need to refer to the original node to re-create the new right sibling. The latter would

fail if the on-disk image of the original nodepostdates the split and therefore does not

contain the entries in question. For that reason, the split SMO log record for the new

right sibling must include the page entries destined for this node. The SMO’s redo and

undo actions execute the same GiST interface functions that are executed during normal

operation, which requires that the corresponding catalog information that enables access
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to those UDFs be recoveredbeforeany indices are recovered. Note that no additional

user-supplied extension code is required to write the log records or execute any special

logging-related actions, so that logging can be handled independently by the core DBMS

component and need not be taken into account by the external AM designer.

4.4.2 Logical Undo Recovery

Key insertion and logical deletion at the leaf level are undone logically, by revisiting the

leaf holding the key, which may have changed its location since the original operation was

performed. The latter happens if between the time the index operation was performed and

the time the transaction is aborted, a split takes place that moves the relevant entries right-

ward onto other leaves (for the same reason, logical undo is also employed in ARIES/IM

[ML92] and ARIES/KVL [Moh90a]). In order to relocate the leaf holding the entry of

interest, we traverse rightlinks, starting from the original leaf. Note that a full retraversal

of the tree starting at the root is not always possible during restart recovery, because the

tree may still contain unfinished splits. For the same reason, the undo recovery phase must

not execute any structure modifications as part of a logical undo of a leaf entry insertion

or deletion (if they intersect with the yet-unfinished SMOs, they will be lost). The GiST

logging protocol fulfills this requirement, because it can avoid or defer all SMOs during

the undo recovery phase. More specifically (a) undoing a leaf entry deletion only involves

unmarking the entry, not updating the parent entries; (b) undoing a leaf entry insertion only

involves physical deletion of the entry; even if the node becomes empty, no node deletion
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is performed.

4.5 Implementation Issues

The previous sections describe the algorithms for concurrent operations in a GiST, but

omit the implementation of some important details. This section discusses two issues that

arise during the implementation of a high-concurrency GiST: sequence number generation

and predicate management.

4.5.1 Node Sequence Numbers

A key component of the concurrency protocol for GiSTs is the tree-global counter used

to generate node sequence numbers. This counter is incremented during splits and must be

made recoverable in order for split detection to work after a crash. In a write-ahead logging

environment, this can be achieved easily without having to write additional log records,

using the existing infrastructure.

First, instead of maintaining a separate counter for each index in a database, it is pos-

sible to use a single database-wide counter. WAL-based recovery systems often have log

sequence numbers (LSNs) associated with their log records, which are also reflected in the

page to which the log records refer (for a description of logging and restart in WAL envi-

ronments, see [MHL+92] and [GR93]). These LSNs are guaranteed to be monotonically

increasing, which makes the LSN of the last log record written an ideal candidate for the
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global counter value. During a split SMO, a log record is written for the original node,

which implicitly increments the global counter. Furthermore, this counter is automatically

recoverable without having to write any log records.

Using end-of-log LSNs to generate NSNs gives us an opportunity for a second opti-

mization. When a search operation examines an internal node, it needs to memorize the

end-of-log LSN along with all the qualifying subtree pointers. Reading the end-of-log LSN

requires synchronization within the log manager, which could cause it to become a bottle-

neck. To alleviate the traffic on the end-of-log LSN, descending operations can memorize

the node’s LSN instead. This is possible, because the LSN and the NSN of a page come

from the same source. If the parent’s log record is written after those of the children, the

parent’s LSN will be greater than any of the child NSNs, except for those whose recent

splits are not reflected in the parent.

If this infrastructure is not internally available within the DBMS, as was the case in

the IDS/UDO implementation of GiST, the global counter must be stored and maintained

explicitly in the database. By storing the counter on a separate page in the index, the

buffer manager’s latches can be used to synchronize access to it. Updates of the counter

now require explicit logging, but the logging frequency can be reduced with the following

trick: instead of logging every single counter increment, only write a log record every nth

increment, with the actual counter valueplus n. An example will clarify this. Suppose only

every 100th increment is logged, and we are incrementing the counter to 200, logging a

value of 300. The next 99 increments need not be logged, because after a crash, the value
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will be restored to 300. The search optimization—looking at the parent’s LSN instead of

the global counter—can also be applied, even if no node LSNs are available. It is sufficient

to store the highest child NSN in the parent, which can be updated easily during a node

split. The additional storage cost in the parent node is low, and the value can be used in the

same way as the node LSN.

4.5.2 Predicate Management

Predicate locking is one of the two centerpieces of the hybrid locking protocol. A

predicate manager component can be used in conjunction with the regular lock manager to

offer the required functionality.

The predicate management functions required by the search and insert operations are:

(1) attaching search predicates to nodes; (2) removing search predicates from nodes; (3)

checking all of the predicates attached to a node for conflicts with a key of an insert op-

eration; (4) replicating predicate attachments between two nodes; (5) replicating predicate

attachments at sibling nodes when doing a node split. These functions are best realized

by a predicate manager component, which can be implemented along the lines of a lock

manager within a DBMS (see [GR93] for an example). The major data structures within

a predicate manager would be: (a) a list of predicates per transaction, (b) a list of node at-

tachments for each predicate, and (c) a list of the predicates attached to each node. With the

help of the standard lock manager, an operation can block “on a predicate” by blocking on

the owner transaction of the predicate. This is easily achieved by constructing a lock name
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from the owner transaction ID and requesting an S-mode lock on that name, assuming that

every transaction acquires an X-mode lock on its own ID when it starts up.

Analogous to the replication of predicate attachments as a consequence of node splits,

it is also necessary to replicate the signaling locks set on a node. This requires an extension

of the standard lock manager functionality.

4.6 Related Work

In this section, I compare my approach to concurrency and recovery wih the prior

work in this area, which has mostly been restricted to B-trees [BS77, LY81, Sag86, SG88,

Moh90a, ML92]. The comparison shows that structural differences between B-trees and

the class of trees represented by GiSTs make most of the concurrency techniques developed

so far for B-trees inapplicable in the GiST context and hence in the context of structures

such as R-trees [Gut84], TV-trees [LJF94] and so forth.

The link technique, on which GiST concurrency is based, was first introduced in [LY81]

as the B-link tree, and has been the basis of many subsequent papers on B-tree concurrency

(for example [Sag86]). Its superiority over subtree-locking concurrency protocols, as de-

scribed in [BS77], has been confirmed by two performance studies [SC91, JS93].

A different approach than node linking was taken in ARIES/IM [ML92], which em-

ploys a conventional non-link tree structure and allows latch-coupling during tree descent,

but is still able to propagate splits bottom-up without having to lock subtrees. Instead of
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following rightlinks, the traversing operations recognize an ongoing split and compensate

for it by repositioning themselves in an ancestor node and retraversing the tree from there.

As explained in Section 4.2.3, repositioning a search operation within an ancestor node

requires partitioning of the key space, so this technique is, like the original B-link tree

technique, also not applicable in a GiST context.

Another general tree structure for which concurrency algorithms were developed is the

π-tree [LS92], which was designed for multidimensional point data, and partitions its key

space at each level of the tree. It deviates from GiSTs in that it is not a proper tree but a

DAG: two index entries on different parent nodes can point to the same child node. Theπ-

tree also employs the link technique to allow traversing operations to recover from missed

splits. Because each tree level partitions the key space, it can rely on SPs to detect splits.

Node deletion is not discussed in [LS92], but is possible by latch-coupling during descent

and repositioning in an ancestor node for each traversal of a subtree. No algorithms for

transactional isolation were developed for theπ-tree, but a slight modification of the the

method described in Section 4.3 is also applicable to them.

Chakrabarti and Mehrotra [CM00] describe an approach to repeatable-read isolation

for GiSTs that they characterize as an application of “dynamic granular locking,” similar

in spirit to key-range locking in B-trees and derived from a protocol developed specifically

for R-trees [CM98]. It is largely identical to the node locking protocol of Section 4.3.4 (in

fact, it inspired the simplifications of the hybrid protocol): a search operation’s traversal

tree is protected by locks on the traversed nodes and an insert operation avoids conflicts by
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blocking on those locks set along its update path; splits of locked nodes are also avoided,

otherwise the locks would need to be replicated to the new sibling node. Chakrabarti and

Mehrotra’s technique deviates from the node locking protocol as follows:

• (Non-singleton) search operations rely purely on node locks and do not acquire any

data record locks. While this is appealing from an efficiency point of view (fewer

locks set), the DBMS server may require acquisition of data locks in order for those

locks to be visible to conflicting operations that do not traverse the same index. Aside

from that, node locks reduce concurrency for insertions and do not work for isolation

levels below repeatable read.

• Conflicting locks on the update path of an insertion are checked during descent, not

ascent. This may lead to a simpler implementation.

Note that the description of this technique as “granular locking” is misleading, because the

SPs are not used as granules for the purpose of locking (otherwise the lock on the root node

would lock the entire data space). Instead, these locks protect parts of the physical tree

structure, namely thetraversal pathsof search operations and theupdate pathsof insert

and delete operations (and their undo operations).15

The fundamental ideas for access method recovery—essentially, the requirement for

15As a result of this misunderstanding, the authors state incorrectly that the shrinking of SPs after a com-
mited deletion must be prevented, if it would affect the SP of a node that is locked by a search operation.
The reasoning is that such shrinking would decrease the “coverage” of the node lock and thereby allow future
insertions into the now “unprotected” data space. This is incorrect, because the existing lock protects the
node, not the associated data space, from updates; it will prevent future insertions that would alter the search
operation’s traversal tree even after shrinking the SP.
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separate atomic units of work to carry out structure modifications—have been recognized

early on and have been published in a number of articles [ML92, Moh90a, GR93, LS92].

The GiST logging and recovery protocol as presented in Section 4.4 directly builds on that

prior work.

The basis of the GiST concurrency protocol was developed in [KB95] in the context of

R-trees, which have the same structural properties as GiSTs (non-partitioning, non-linear

keys). The R-tree concurrency control protocol replicates the NSN of a node in its parent

entry, which adds extra space overhead. The paper also does not sufficiently address the

problems of transactional isolation, recovery and node deletion. The data-only locking

approach and logical deletion have been adopted from [ML92, Moh95, Moh90b].

4.7 Conclusion

This chapter presents search tree algorithms for physical and logical concurrency as

well as recovery. Although presented in the context of GiSTs, these algorithms are appli-

cable to a broad class of search trees. In conjunction with the algorithms developed in this

paper, the GiST structure can serve as the basis of truly extensible indexing in commercial-

strength database systems. The core DBMS plus GiST can be extended with a new access

method simply by supplying it with a set of pre-specified methods, which specialize the

abstract GiST structure into the desired access method. Details such as concurrency and

recovery—which usually account for a major fraction of the complexity of the code and
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are error-prone and hard to debug—can be ignored by the extension code.

The key features of the GiST concurrency protocol are that it does not hold any latches

during I/Os and is deadlock free, resulting in a degree of concurrency that should match that

of the best B-tree concurrency protocols. The basic idea is derived from the link technique

pioneered for B-trees, which allows compensating for unexpected splits by moving across

rightlinks. To make this work for a broader class of tree structures, it is necessary to add

sequence numbers to the nodes to make node splits visible without reference to the stored

keys.

In order to ensure repeatable read transactional isolation, which guarantees the absence

of “phantoms” across search operations, GiST can use a hybrid locking mechanism, which

combines two-phase locking of data records with a novel form of predicate locking. Pred-

icate locking is responsible for avoiding phantoms, whereas more efficient data record

locking is used for retrieved index entries. This division of responsibilities is necessary,

because data record locking alone cannot reasonably solve the phantom problem in a key

space without linear order. A simplification of this protocol leads to a less complex node

locking protocol.

These algorithms are general enough to work for all tree-based access methods with

a “traditional” B-tree-like structure, because structural elements, not semantic knowledge

about the data, are exploited.



87

globals:
stack; // records nodes and NSNs on path

insert(new-key, RID)
leaf = locateLeaf(new-key);
// at this point, only the leaf is X-latched
if (not enough space on leaf)

splitNode(leaf, new-key, 0);
release all latches at ancestor levels,
target leaf stays X-latched;

else
if ( union(leaf, SP(leaf), new-key) != SP(leaf))

updateParent(leaf,
union(leaf, SP(leaf), new-key), 0, 0);

end
end
insert(leaf, new key, RID);
unlatch(leaf);

locateLeaf(new-key)
p = root;
p-NSN = global NSN;
loop

if (p is leaf)
latchmode = X-mode;

else
latchmode = S-mode;

end
latch(p, latchmode);
if (p-NSN< NSN(p))

// encountered a split
unlatch(p);
[p, p-NSN] = pop(stack);
go to beginning of loop;

end
if (p is not leaf)

push(stack, [p, NSN(p)]);
child-ptr = find min pen(p, new key);
p-NSN = global NSN;
unlatch(p);
p = child-ptr;

else
// leave leaf p X-latched
return p;

end
end

splitNode(p, key1, key2)
create new node p’;
latch(p’, X-mode);
(split-info, p-SP, p’-SP) =pickSplit(p, SP(p),

key1, key2);
move data from p to p’ according to split-info;
NSN(p’) = NSN(p);
rightlink(p’) = rightlink(global);

// the following increment is exe-
cuted atomically

<global NSN = global NSN + 1;>
NSN(p) = global NSN;
rightlink(p) = p’;
updateParent(p, p-SP, p’, p’-SP);
unlatch(p’);

updateParent(left, left-SP, right, right-SP)
latch(parent(left, stack), X-mode);

if (NSN(parent) != par-
ent NSN recorded on stack)

parent = node in rightlink chain starting with
currently recorded parent, holding en-

try for left;
latch correct parent;

end
if (not enough space on parent)

splitNode(parent, left-SP, right-SP);
else

updateParent(parent,
union(parent,

union(parent, SP(parent), left-SP),
right-SP),

0, 0);
end
updatePred(parent, slot of left entry, left-SP);
if (right != 0)

insert(parent, right-SP, RID(right));
end
unlatch(parent);

Figure 4.4: Concurrent GiST insert algorithm.
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[4;10) [10;20)

4 5 7 8 10 11 12 13

A B

A regular B-tree, where entries in internal
nodes are shown as intervals for clarity (nor-
mally only stored with their left or right
boundary). A scan of the key range[5; 20]
starts in leafA.

[4;6) [6;12) [12;20)

4 5 6 7 8 12 13 19

A A' B B'

After the scan is done with leafA, leafA and
B are split as a result of inserting keys 6 and
19. Additionally, keys 10 and 11 are deleted
and as a result, leafB is also deleted. The
scan notices this and repositions itself in the
parent node, remembering that it already cov-
ered range[5; 10) (by having scanned former
leafA). The next leaves to visit areA′ andB′.
LeafA′ does not contain any items contained
in the remaining scan range[10; 12], and the
scan moves on to leafB′.

[4;12] [5;13]

4 7 10 12 5 8 11 13

B

A fictitious non-partitioning B-tree, where
the key space is not partitioned across the
leaves and as a result internal entries have
overlapping intervals. A scan of the key range
[5; 20] again starts in leafA.

[4;10] [6;12] [5;19]

4 10 6 7 12 5 13 19

A BA' B'

After the scan is done with leafA, leavesA
andB are split as a result of inserting keys 6
and 19. Keys 8 and 11 are deleted, result-
ing in the removal of leaf B. The scan no-
tices this, and, in order to continue correctly,
would have to go to leafB′ and ignoreA′.
Notice that it is impossible to determine this
by repositioning in the parent node: (1) al-
though the scan has already covered former
leafA with the interval[4; 12], it would be in-
correct to go to leafB′ and ignore entry 5; (2)
for that same reason, if the scan would go to
leaf A′, it would incorrectly repeat scanning
of entries 7 and 12.

Figure 4.5: Illustration of why repositioning requires partitioning.
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Chapter 5

An Analysis Framework for Access

Methods

The preceding two chapters have dealt with the technical problems involved in making

non-traditional AMs work inside a DBMS. In this chapter, I will address the more funda-

mental problem of AM performance analysis.

Despite the large and growing number of AMs that have been produced by the research

community, the design and tuning of AMs has always been more of a black art than a

rigorous discipline. Traditionally, performance analyses focus on summaries of observed

performance, such as aggregate runtime or page access numbers, or on performance metrics

that express data-specific properties of index pages (e.g., spatial overlap between the pages

of an R-tree [Gut84]). The drawback ofaggregate numbersis that they do not provide any

insight into the causes of observed performance. As a result, it is hard to quantify the con-
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tribution of individual design ideas or explain performance differences between competing

AM designs, if those deviate in more than one design aspect. Also, aggregate numbers do

not allow AMs to be assessed on their own, because competing AM designs are needed

to put the numbers into perspective. In contrast,data-specific performance metricsof-

fer some insight into the causes of observed performance, but they require the designer to

understand their correlation with the optimization objective, i.e., the minimization of aggre-

gate runtime or page access numbers. Since such an understanding is agoalof the analysis

process, anya priori assumptions are often incorrect and misleading. If the correlation of

the data-specific performance metric with the optimization objective is not perfectly clear,

using such a performance metric to guide AM design is problematic.

In this chapter I present an analysis framework that defines performance metrics that are

superior both to aggregate numbers and data-specific performance metrics. This framework

is implemented in amdb, a comprehensive support tool for the AM analysis process. Within

amdb, the analysis framework is integrated with a collection of modules in an interactive,

easy-to-use graphical environment. Those modules are: a visualization component for the

tree structure and its contents (the latter user-extensible, so it can be adapted to a specific

application domain); a facility for interactive execution of tree searches and updates as well

as breakpoints and single-stepping through those commands, similar to functionality found

in programming language debuggers; browsers for viewing performance numbers derived

from the analysis framework. The salient features of amdb and its analysis framework are:

Universal Applicability The analysis framework and most of the amdb visualization fa-
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cilities are independent of the semantics of the data and queries of the application

domain, which makes them universally applicable to any AM design that is based

on the GiST abstraction. The analysis framework treats the workload—a tree and a

set of queries—as an input parameter, allowing the designer to tune an AM for that

particular workload.

Better Performance Metrics The analysis framework defines performance metrics that

reflectperformance loss, measured in I/Os and derived from a comparison of ob-

served performance with the performance of a workload-optimal tree. This tree min-

imizes the total number of I/Os for the input workload and can be approximated

relatively efficiently. The advantage of these performance metrics in comparison to

aggregate I/O measurements is that they reflect the potential for performance im-

provement, allowing an AM design to be assessed individually. The loss metrics are

further broken down to reflect the performance-relevant characteristics of the tree,

which gives the designer a clearer understanding of the effects of individual design

ideas or the differences between two competing AM designs.

Fully Automated Analysis The fully automated analysis process executes the user-supplied

set of queries, gathers tracing data, uses that to approximate an optimal tree and com-

putes the performance metrics.

Visualization Integration The analysis framework is integrated into amdb to the extent

that the metrics as well as tracing information gathered during workload execution
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are visualized using the data-independent tree structure visualization facilities. This

integration is particularly helpful, because it lets the designer investigate poorly per-

forming parts of the tree and queries. The analysis framework and the visualization

tools are complementary: the performance metrics highlight the sources of poor per-

formance, thereby focusing the designer’s attention. The visualization tools are then

used to investigate those parts of the tree or those queries which have been flagged

by the performance metrics.

Designing AMs is a creative process that amdb supports with an analysis framework

that points out specific sources of performance degradation and visualization tools for in-

vestigating them. The experience we have gathered so far with amdb justifies our claims

about its usefulness: in two AM design projects undertaken at U.C. Berkeley, amdb was in-

strumental in quickly locating performance problems in existing AM designs and verifying

that the remedies to those problems worked as intended.

The rest of the chapter is structured as follows. Section 5.1 describes the analysis frame-

work and its intended usage and gives an overview of amdb . Section 5.2 demonstrates

amdb’s usefulness with two examples of amdb-based AM design projects. Section 5.3

discusses the analysis framework in detail, along with illustrative examples, among them

a test for unindexability. Section 5.4 discusses related work and Section 5.5 contains the

conclusion and an outline of future work.
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5.1 A Tour of Amdb

This section gives an overview of the analysis framework and its intended usage and de-

scribes amdb’s visualization and debugging features (which are presented in greater detail

in [SKH99]).

Amdb supports access methods developed using the public domain libgist package

which implements the GiST abstraction. Amdb and libgist are written in Java and C++

and are portable across many versions of UNIX as well as Microsoft Windows NT. The

software can be downloaded from http://gist.cs.berkeley.edu/.

5.1.1 Overview of the Analysis Framework

The goal of the analysis framework is to explain the observed performance of an AM

running a user-supplied workload. The single ultimate performance number is the total

execution time of the entire workload. This total depends on the number and nature of

page accesses, the buffering policy and the CPU time spent examining pages. We will for

now concentrate on explaining observed page accesses and ignore the other components of

the performance equation. Section 5.3.4 addresses these issues.

The introduction mentioned the deficiencies of the current practice of reporting perfor-

mance with aggregate I/O numbers or data-specific metrics. To be effective and universally

applicable, an analysis framework should have three properties:

1. The performance metrics should be data-independent and not be tailored to the se-
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mantics of a particular application domain, so that the analysis framework is appli-

cable in the full generality of the GiST AM design framework.

2. The performance metrics must give an indication of the quality of measured AM

performance in terms of the optimization objective, i.e., minimization of I/Os.

3. The metrics should give the designer an understanding of the causes of observed

performance.

In order to ensure data-independence of the framework, the workload—a tree and a

set of queries—is an input parameter of the analysis, and the metrics characterize the per-

formance of an AM specifically in the context of that workload. Also, the performance

metrics directly characterize the observed performance of the workload execution, namely

the page accesses. They are not stated in terms of data or query semantics, and are therefore

data-independent.

Instead of simply reporting the number of observed page accesses, a more meaningful

performance metric is theperformance loss, i.e., the difference between the number of page

accesses in the actual tree and the optimal tree. The optimal tree is defined as minimizing

the total number of page accesses over the entire workload. Knowing the magnitude of

performance loss is a clear indication of the quality of an AM, expressed in the units of the

optimization objective, I/Os. Moreover, the performance loss shows the potential for per-

formance improvement, which cannot necessarily be discovered even when comparing two

competing AM designs using traditional performance metrics. We can compute aquery



95

performance loss, which expresses the difference in the number of I/Os of a query exe-

cuted against the actual tree and the workload-optimal tree.1 Similarly, we can compute a

node performance loss, which expresses a node’s contribution to query or aggregate work-

load performance loss. Furthermore, we can also computeimplementation metricsin order

to characterize aspects of the AM implementation. The extension methodspickSplit()and

penalty()directly control the tree structure and performance loss metrics for these func-

tions should express to what extent they are responsible for the structural deterioration that

causes performance loss.

Given a particular performance loss, we can further subdivide it to reflect the funda-

mental performance-relevant properties of GiST-based AMs, which are:

Clustering The clustering of the indexed data at the leaf level and of the SPs at the internal

levels determines the amount of extra data that a query needs to access in order to

retrieve its result set. An AM design controls the clustering through thepickSplit()

andpenalty()extension methods.

Page Utilization The page utilization determines the number of pages that the indexed

data and the SPs occupy and therefore also influences the number of pages that a

query needs to visit. Similar to the clustering, the page utilization is controlled by

thepickSplit()andpenalty()extension methods.

1Having knowledge of the execution profile of the workload, in particular the result sets of the queries,
allows us to approximate the optimal tree relatively accurately. The details of how the metrics are computed
are presented in Section 5.3.
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Optimal Clustering Utilization
Excess

Coverage

Total I/Os

Total Performance Loss
(Excess I/Os)

Figure 5.1: Decomposition of observed I/Os on a per-query and per-node basis.

Subtree PredicatesWhile the size and shape of the indexed data is part of the input,2 the

size and shape of the SPs are parameters of the design and considerably influence

performance. A SP’s task is to describe, or cover, that part of the data space which

is present at theleaf level of its associated subtree (i.e., the perfect SP would simply

enumerate all the data items contained in the leaves of its subtree; of course, this is

problematic with regard to the size of the SPs). We speak of SPexcess coverageif

the SP covers more of the data space than is needed in order to represent the data

contained in the subtree. If a SP exhibits excess coverage, it may cause queries to

visit more than the minimum number of pages determined by the clustering and page

utilization.

Clustering lossspecifies the part of performance loss that can be attributed to the dif-

ference between workload-optimal and achieved (leaf-level3) clustering in the index tree;

utilization lossspecifies the part that is attributable to node utilization deviating from a tar-

get utilization;excess coverage lossspecifies the part that is due to accesses to leaf nodes

2One could argue that the size of the indexed data can be changed by applying compression in the index.
We will ignore this possibility by assuming that a similar form of compression can be applied to the data as
a pre-processing stage.

3Why this is restricted to leaf-level clustering is explained in Section 5.3.
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Figure 5.2: Amdb user interface.

that contain no relevant data to a query. All of these subdivisions of performance loss are

also specified in I/Os—possibly fractions of I/Os; They are summarized in Figure 5.1. Such

a breakdown of performance loss is more useful than aggregate numbers, because it helps

the designer understand the nature of the loss and thereby provides more insight into the

causes of observed performance. The breakdown of the node metrics in particular helps the

designer identify anomalies in the tree structure. The examples in Section 5.2 will illustrate

this point.

5.1.2 Amdb’s Visualization Functionality

Understanding flaws in an AM design requires inspecting the corresponding tree; thus,

amdb provides interactive graphical views of the entire tree, paths and subtrees within the

tree, and contents of nodes within the tree. These are the global view, tree view, and node
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view, respectively (Fig 5.2). These views not only help visualize the tree structure and

its contents, but also help visualize profiling data and performance metrics by associating

them with nodes in the tree (discussed in detail in Section 5.1.4). Finally, they provide

navigation features, which enables designers to drill down to the source of a deficiency.

The highest-level,global viewprovides a manageable aggregate view of the entire index

(Fig 5.2: 1). This representation factors out much of the tree structure by mapping it onto

a triangle with an adjustable baseline and height. The purpose of this view is to project a

user-selected tree statistic or performance metric onto this abstract display and depict the

variation of the statistics across the total tree. The user can choose both a color map (or

palette, Fig 5.2: 2) and a statistic; the global view assigns colors to the statistical values and

renders the nodes accordingly. Nodes are visually concatenated and merged if necessary

with other nodes on the same level. Thus, the pixel density of nodes increases geometrically

with the level. The user can also perform an approximate drill-down into an area of interest

by clicking on it. Subsequently, a path from the root node to a node in the neighborhood

of the specified point will be shown in the tree view, a lower-level view which shows more

detail.

The tree viewshows the structure of the search tree (Fig 5.2: 3). It offers an intuitive

point-and-click interface for browsing the tree while improving on conventional tree navi-

gation interfaces which become cumbersome for high fanout trees. In this view, the tree’s

nodes are represented by boxes and labeled with a unique number for reference. Each node

is enclosed in a scrollable and stretchable container which displays its direct siblings. This
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container (Fig 5.2: 4) allows users to focus on nodes of interest while bounding the amount

of detail displayed. Any node can be expanded or contracted by clicking on it. When a node

is expanded, the container holding its children is displayed below it with a line linking the

two; when contracted, the entire subtree below the node is removed. Like the global view,

the tree view represents a user-selected tree statistic or performance metric by coloring the

nodes. With these features, a user can simultaneously focus on several paths and subtrees

of interest without being overwhelmed by the width of the search tree.

After drilling down from the global view and tree view, the user can investigate the

contents of specific nodes using amdb’s node view (Fig 5.2: 5). Since tree nodes contain

arbitrary user-defined predicates, the access method designer must provide a module that

displays the node given its contents. Currently, amdb contains a suite of modules that

visualize two-dimensional projections of spatial data. The node view also allows the user

to simulate a split (by calling thepickSplit()extension function) and visualize the results by

separating the items with contrasting colors. In addition to user-defined data visualization,

amdb provides a textual description of the keys, their sizes, and associated pointers.

5.1.3 Amdb’s Debugging Functionality

The behavior of an AM can be difficult to understand without being able to observe

its mechanics. Previously, only standard programming language debugging tools were

available for examining libgist AMs. Because these tools are designed for analyzing low

level actions, such as a single line of source code, they are too cumbersome for gaining an
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understanding of how search and update operations behave and interact with the tree.

Amdb allows a designer to single-step through tree search and update commands.

Those commands generate events for various node-oriented actions, such as node split,

node traversal,etc., which permits users to step from event to event. Since manual stepping

can become tedious, it also supports breakpoints. Breakpoints can be defined on generic

events, e. g., node update, or can be tied to a specific tree node, e.g., update of node 227.

When a breakpoint event is encountered, execution is suspended, and the user has an op-

tion to single-step through events or continue until the next breakpoint. Additionally, amdb

allows batch execution of commands via scripts so users can conveniently restore state.

5.1.4 Using Amdb to Analyze Access Method Performance

To use amdb in order to analyze an AM design, the designer constructs an index tree

and decides on a set of queries to run against that tree. Together, these two items consti-

tute thetarget workload. Taking this workload as input, amdb then runs the analysis that

produces the performance metrics described in the previous section. The analysis process

consists of running the queries against the index tree, gathering tracing data such as traver-

sal paths, and approximating an optimal tree based on the tracing data. Given this optimal

tree approximation, amdb computes the performance metrics for each query and the aggre-

gate workload. These are broken down further into per-node loss metrics, which are also

computed for each query and the aggregate workload. A detailed description of the tracing

data, the nature of the optimal tree and the computation of the performance metrics are
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given in Section 5.3.

The performance loss metrics express I/Os, not particular application-specific prop-

erties of the tree at hand or the AM design; the metrics can therefore only serve as an

indication of, not an explanation for performance deficiencies. The explanation of per-

formance deficiencies and a subsequent improvement of the AM design need to be done

by the AM designer, based on an understanding of the semantics of the application do-

main. Gaining such an understanding is a creative process, which is helped by the amdb

visualization facilities and their integration with the analysis framework: the performance

metrics “flag” those parts of the tree and those queries that perform badly; the visualiza-

tion facilities then let the designer navigate those index nodes and queries and investigate

the reasons for their above-average performance loss. Aside from the user-extensible data

visualizations, amdb also gives the designer access to a very comprehensive set of work-

load statistics, including per-query aggregate page access numbers, full traversal paths, the

amount and specific location of data retrieved,etc. The performance metrics themselves

are very voluminous—there are three loss metrics for each query and each node of the

tree–which makes it necessary to find good visualizations for them.

The node metrics are visualized by coloring nodes in the global and tree view, so that

ill-behaved parts of the tree can be identified easily without having to browse through each

node’s metrics individually. The navigation and data visualization features of these views

let the developer navigate those parts of the tree structure and examine the data contained

therein. The global and tree views are also used to visualize the per-query loss metrics
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and trace data on a per-node basis (for example, traversal paths can be visualized very

effectively through node coloring). This tracing data in combination with the visualizations

give the developer a very detailed view of the behavior of each query and are instrumental

in understanding poorly performing queries.

Before designing an AM for a particular workload, it is instructive to determine whether

that workload is possibly unindexable, i.e., whether no index structure will be able to out-

perform a sequential scan on that workload. The amdb analysis process produces all the

data necessary to perform such a test; the details are given in Section 5.3.3.

The next section describes two amdb-assisted AM design projects in which the amdb

performance metrics were used to assess the merits or demerits of an AM design. In these

examples, total I/Os or execution times were inconclusive or, at worst, misleading.

5.2 Sample Applications of Amdb

Since the time amdb was implemented and made available to the public, two AM design

projects undertaken at U.C. Berkeley made use of this tool. We will describe each one in

turn in order to illustrate how amdb was used to help the design process. In both of these

projects, the designers were able to use amdb to achieve significant improvements.
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5.2.1 Content-Based Image Retrieval

An AM design project was undertaken in the context of a content-based image search-

ing, Blobworld [CTB+99]. The Blobworld system addresses content-based querying by

breaking the images into “blobs” of homogeneous characteristics, and searching for im-

ages by specifying the characteristics of the blobs in the desired images. A full Blobworld

query must perform computationally complex comparisons of the high-dimensional fea-

ture vectors of the blobs in the images. For the purpose of indexing this data set, the

dimensionality of the feature vectors was reduced from 218 to five dimensions by doing a

singular value decomposition. The data set was then bulk-loaded into an R-tree using the

STR partitioning algorithm [LLE97]. The details of this AM design project are described

in [TCH00].

Using amdb, the designers found that while clustering and utilization were good (i.e.,

the corresponding losses were 3 and 1 percent of the total number of about 200,000 I/Os

for the entire workload), excess coverage contributed a very large percentage to the total

I/O count (about 31 percent). The tree visualization of the excess coverage loss statistics

actually showed that this loss was not distributed evenly across the entire tree, but that

some nodes attracted significantly higher loss than others. The data visualizations of those

high-loss nodes showed that they contained a large fraction of empty “corner” space. The

designers drew the conclusion that SPs should be encoded as polygons instead of simple

hyperrectangles in order to “cut away” empty corners.

One particular design idea for SPs was to combine two hyperrectangles instead of just
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a single one, as in the standard R-tree. Running the benchmark workload in amdb quickly

showed that, as implemented (rectangles were chosen from a set of randomly constructed

bounding rectangles), this design resulted in a small total performance degradation in com-

parison to the original R-tree. Looking at amdb’s metrics made it clear that this design

decreased excess coverage loss at the leaf level, but increased I/Os at the internal levels.

The reason is that at internal levels, having two hyperrectangles was not an effective way

of excluding “empty” corners;4 the combination of two hyperrectangles therefore ended up

being no more discriminating than just a single one, but used up more space. This partic-

ular example illustrates the value of the performance breakdown: had only aggregate I/O

numbers been available, the varying effects on the leaf and internal levels would not have

been visible, making it harder to draw the same conclusion. In this example, the integra-

tion of the available metrics with the visualization tools was also very important, because it

facilitated examining those nodes with high excess coverage loss and drawing conclusions

about a more accurate encoding of the space covered by the feature vectors.

The amdb analysis also established that another design alternative—convex minimum-

bounding polygons—causes almost no excess coverage loss and is therefore close to op-

timal for the given workload. Taking this into account, the designers then focussed on

finding an approximation to this fairly CPU-intensive design, rather than searching for a

yet more accurate SP design. In this case, the amdb performance metrics clarified that no

substantial improvements could be gained from investigating more accurate SPs.

4This might be an effect of the particular algorithm used to construct the SPs, but that is not the point
here.
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5.2.2 Multidimensional Point AM for Window Queries

As part of the graduate database class at U.C. Berkeley (CS286, Spring 1999), the stu-

dents were required to design an improved AM for a particular synthetic multidimensional

point dataset (containing 8-dimensional data arranged into 200 clusters of 100 points each).

The workload consisted of 10,000 range queries centered on randomly chosen data points.

The starting point was the performance achieved with an R∗-tree, which the students needed

to improve.

A confirmation of the efficacy of amdb and the analysis framework in particular was

that many of the design groups managed to improved performance to a great extent (some

by a full 50 percent), although none of the students had previously worked on spatial point

AMs (in fact, any AMs at all) and each group only spent about a week on the assignment.

We believe that without amdb, such results would not have been possible.

All groups started their design process by looking at the breakdown instead of just the

total numbers of aggregate I/Os and proceeded to address one or more of the performance

factors which proved to be problematic. At the leaf level, the initial total number of 26,600

I/Os broke down into roughly 5,400 I/Os due to clustering loss, 1,800 I/Os due to utilization

loss, 9,050 I/Os due to excess coverage loss and 10,350 optimal I/Os.

One of the design ideas that the students came up with was to relax the utilization

restrictions in the R∗-tree split algorithm (which allows at most a 40/60 imbalance). The

purpose was to to allow a node split to separate two clusters cleanly instead of forcing it

to divide up individual clusters between two nodes to satisfy utilization restrictions. This
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resulted in a substantial performance improvement, reducing the total number of leaf I/Os

to 19800. Aside from clustering and excess coverage loss, it also reduced the utilization

loss component, which was unexpected, because splits were allowed to be less balanced.5

The breakdown of the aggregate I/O number therefore clarified the effects of this design

idea and in this particular case allowed the design group to conclude that further work on

rectifying an assumed utilization problem was not necessary. Another design group had a

contrary experience: their SP design resulted in a total reduction of 4,000 leaf I/Os. The

breakdown showed that the cause for this was a reduction of excess coverage loss by about

5,000 I/Os, mitigated by an increase of utilization loss by about 1,000 I/Os. Again, the

breakdown conveyed more useful information that just the aggregate number and gave a

more insightful assessment of the effects of this particular design idea.

Generally speaking, all groups stated in their reports that the performance metrics

were essential in finding which aspects of the AM needed improvement. In addition,

some groups complained that the multidimensional data visualization supplied with amdb

(which consists of a simple projection on the first two dimensions) was not sufficiently

powerful. This illustrates our earlier point about the complementary nature of amdb’s data-

independent performance metrics and data-specific visualizations, namely that the latter is

necessary for gaining an intuition of the nature of the problem, whereas the former tells the

designer which particular subtrees or queries to investigate.

5The possible reason for this is that it allowed clusters to separate into their own nodes; in this particular
data set, if a node contains more than one cluster, it will be forced to split at some point.
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5.3 Details of the Analysis Framework

The following subsection discusses the optimal tree and how to construct it. Sec-

tion 5.3.2 derives the query performance metrics, first for the leaf level, then for internal

levels, and presents examples of analyses conducted with these metrics. Section 5.3.3 de-

rives node metrics based on the query metrics. Various examples throughout this section

illustrate the performance metrics.

The discussion of the metrics in this section is purposely informal and relies mainly

on examples; I felt this would improve readability. The input variables and metrics are

formally defined and summarized in Table 5.1 and Table 5.2, respectively. Variables with

subscriptq are query-specific and variables with subscriptp are page-specific. Also note

that the performance metrics are a complete partitioning of the I/Os observed for the work-

load; an I/O or fraction thereof is not attributed to more than one loss category.

5.3.1 Construction of the Optimal Tree

The optimal tree is defined by the following characteristics:

no excess coverage,which eliminates page accesses due to overly general SPs;

target page utilization, which would ideally be 100%, but this is unattainable in practice.

Instead, the AM designer specifies a desired target page utilization, which will also

be used as a parameter for the optimal tree. For some AM design projects, this value

will be determined by external considerations, e.g., the existence of a competing AM
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Q set of queriesq in workload
L set of leaf nodes in tree
I set of internal nodes in tree
C [bytes] page capacity
Rq [bytes] size of result set
Lo

q set of accessed pages in optimal clustering
Lq set of accessed leaves in actual tree
L′

q set of relevant leaves in actual tree (leaves that contain items ofq’s
result set)

ut [%] target utilization
up [%] utilization
uq [%] average utilization seen by query,uq =

∑
p∈L′

q
up/|L′

q|
Iq set of accessed internal nodes in tree
I ′q set of accessed internal nodes on paths toL′

q

I l
q internal “leaves” of traversal tree, I l

q ={
p|(p ∈ Iq \ I ′q) ∧ ¬(child(p) ∈ Iq ∪ Lq)

}
Qp set of queries that accessp
Q′

p set of queries for whichp is relevant leaf
rq optimal ratio of accessed to retrieved data,rq = |Lo

q| ∗ C ∗ ut/Rq

Rp,q [bytes] size of fraction ofq’s result set found onp
Qo

p,q [bytes] optimal amount of accessed data,Q0
p,q = rq ∗Rp,q

Qo
p [bytes] optimal amount of accessed data aggregated over workload,Qo

p =∑
q∈Q′

p
rq ∗Rp,q

Table 5.1: Input variables of the analysis process (profiling data, tree statistics and derived
variables).

with a well-known average utilization.6 If no such point of reference is available, one

or more reasonable utilizations (in the 50–80% range) should be tried. The value we

often used in practice was the average workload page utilization. We will see that

the absolute level of the target page utilization does not affect the significance of the

performance metrics for the comparison of nodes within the tree structure.

optimal clustering, which minimizes the total number of “relevant” page accesses (at the

6In this case, the target utilization should be in the vicinity of the known average utilization. Also, for
purely static trees, a value of 100% is attainable and should be used.
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CLq clustering loss CLq = (uq/ut)|L′
q| − |Lo

q|
ELl

q leaf-level excess coverage loss ELl
q = |Lq| − |L′

q|
ULl

q leaf-level utilization loss ULl
q = |L′

q|(1− uq/ut)

ELi
p,q internal-level excess coverage loss

on pagep
ELp,q =




0 if p ∈ I ′q
1 if p ∈ I l

q

up/ut otherwise
ELi

q internal-level excess coverage lossELi
q =

∑
p∈Iq\I′

q
ELi

p,q

ULi
p,q internal-level utilization loss on

pagep
ULp,q =

{
1− ELi

p,q if p ∈ Iq \ I ′q
1− up/ut otherwise

ULi
q internal-level utilization loss ULi

q =
∑

p∈Iq
ULi

p,q

Ir
q remainder of internal-level ac-

cesses
Ir
q =

∑
p∈I′

q
up/ut

CLp clustering loss CLp =
∑

q∈Q′
p
(up −Qo

p,q/C)/ut

ELl
p leaf-level excess coverage loss ELl

p = |Qp \Q′
p|

ULl
p leaf-level utilization loss ULl

p =
∑

q∈Qp
1− up/ut

ELi
p internal-level excess coverage lossELi

p = |
{
q|p ∈ I l

q

}
|

ULi
p internal-level utilization loss ULi

p =
∑
{q∈Qp|p/∈Il

q} 1− up/ut

Qr
p remainder of internal-level ac-

cesses
Qr

p =
∑
{q∈Qp|p/∈Il

q} up/ut

Table 5.2: Performance metrics produced by the analysis process.

leaf level, those are accesses to pages containing items of the result set of a query,

see Table 5.1) for the entire workload.

A tree with these properties will execute the investigated workload with the minimal

number of page accesses. This tree is only a theoretical construct, since it is generally

impossible to create reasonably-sized SPs with no excess coverage. Nevertheless, it is

possible to approximate this tree well enough to be able to infer the page access pattern of

the workload queries.
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To construct the optimal leaf level, we partition the indexed data items so that the total

number of leaf accesses is minimized over the workload7 and the partition size is equal to

the target page capacity. This task can be converted into a hypergraph partitioning prob-

lem by modelling the workload as a hypergraph (each indexed data item is a node with a

weight that is equal to its size in bytes; each query, identified by its result set, is a hyper-

edge). Hypergraph partitioning is provably NP-hard [GJ79], but existing approximation

algorithms work reasonably well in practice. Section 5.3.5 discusses the implementation in

more detail, in particular the hypergraph partitioning.

To construct the optimal internal levels, we need to create reasonably-sized SPs with no

excess coverage, which is generally not possible. Nevertheless, it is still possible to report

utilization and excess coverage loss metrics for those.

Figure 5.3 serves as a running example throughout the rest of this section. It shows the

traversal tree of a query (its traversal paths in the index, which form a subtree of the index)

that retrieves five data items, for which it needs to access four leaves in the actual tree

and two leaves in the optimal tree. The page capacity is four items (to keep the example

simple, data items and SPs are assumed to have the same size) and the target utilization is

75 percent. Occupied slots are shaded, and the pages in the actual tree are enumerated for

reference.

7Note that clustering to minimize the number of leaf accesses over theentireworkload will generally not
minimize the number of leaf accesses for each queryindividually. The minimum number of leaf accesses for
a single query is the size of its result set divided by the page size. This usually cannot be achieved for the
entire workload, because the queries’ result sets overlap and their clustering requirements are contradictory.
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Actual Tree:

X XXXX

Optimal Clustering:

XXX XX

0

7

654

321

Figure 5.3: Traversal paths and optimal clustering for example query.

5.3.2 Query Performance Metrics

The per-query performance metrics express performance loss due to suboptimal clus-

tering, page utilization and SPs in the index. At the leaf level, these numbers are derived by

comparing the page access pattern in the actual tree with the corresponding pattern in the

optimal tree. At the internal level, the corresponding optimal structure is not available for

comparison, but we can still derive a reduced set of the metrics, namely excess coverage

and utilization loss. The next two subsections in turn describe how the loss metrics are

derived for the leaf level and the internal levels.

Leaf-Level Performance Metrics

For each query, the performance loss at the leaf level—actual minus optimal number

of leaf accesses—is divided up into utilization, excess coverage and clustering loss. More

formally:

|Lq| = |Lo
q|+ ELl

q + ULl
q + CLq.

In the example, the query experiences a performance loss of two leaf accesses when

compared against the optimal tree. The following paragraphs how to compute the losses
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for this example.

Excess coverage lossWhen accessing a leaf during query execution that does not contain

any items of the result set, the leaf access is due to excess coverage in the leaf’s SP. Those

pages do not count toward utilization loss, even if they are underutilized, because packing

them more densely would not lower the total number of leaf accesses (unless retrieved data

were added, but then the accesss would not count as excess coverage to begin with). For

the same reason, the access cannot count as clustering loss, because the feature of that

node relevant to the query is its SP, not its page utilization or clustering. In the example

in Figure 5.3, leaf 0 is accessed but contains no matching items, and therefore the access

counts as excess coverage loss.

Utilization loss Deviation from the target utilization in the remaining leaves is summed

up as utilization loss. In the example, leaf 2 has a utilization of 50%, which is2/3 of the

target utilization of 75%, resulting in a loss of1 − 0.5/0.75 = 1/3. The idea behind this

accounting is that if the pages had been packed more densely, part of the accesses could

have been avoided. Note that a page utilization in excess of the target utilization counts as

a negative performance loss, i.e., a performance gain.

Clustering loss Clustering loss is the difference between the conceptually “tightly packed”

leaves in the index and the corresponding leaves in the optimal tree. The accessed leaves in

the index become “tightly packed” by subtracting the utilization loss. In the example, the
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result set is spread over three leaves, or8/3 tightly packed leaves. The difference between

that and the two leaf accesses in the optimal tree is2/3, the clustering loss.

To summarize the leaf-level metrics established for the example query: excess coverage

loss is 1 I/O, utilization loss is1/3 I/Os and clustering loss2/3 I/Os. The sum is 2 I/Os,

which is the total performance loss that the example query experiences at the leaf level.

Internal-Level Performance

Although it is not possible to construct the optimal internal levels for the workload in

a manner similar to the leaf level, the characteristics of the accessed internal nodes in the

actual tree still allow us to derive two of the three metrics, namely excess coverage loss and

utilization loss. The remaining internal-node accesses cannot be subdivided any further.

More formally:

|Iq| = Ir
q + ELi

q + ULi
q.

Excess coverage lossSimilar to the leaf-level metric, accesses to internal nodes without

any matching entries are counted as excess coverage loss. In addition, we also count in-

ternal pages that do not lead to any leaves containing retrieved data; these internal pages

are accessed due to excess coverage of SPs in the subtree. In the example, page 6 does not

carry any matching SPs and its access is fully counted as excess coverage loss. Page 4 has a

matching SP, but it only matches because of excess coverage in page 0’s SP, so we count its

utilization,2/3 of the target utilization, as excess coverage. The remaining1/3 are counted
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as utilization loss, because, unlike the leaves of the traversal tree, the property of relevance

of these nodes is not their SP but the SPs of their children,i. e., the data contained in this

node.

Utilization loss Similar to the corresponding leaf-level metric, the sum of the deviations

from the target utilization is the utilization loss, excluding from consideration leaf nodes of

the traversal path of the query. In the example, only page 4 causes the query to experience

utilization loss at the internal levels in the amount of1/3 I/Os.

To summarize the preceding observations: of the4 page accesses to internal nodes,5/3

are caused by excess coverage and1/3 by underutilization. The remaining 2 accesses to

nodes5 and7 cannot be subdivided any further.

5.3.3 Node Performance Metrics

The per-node loss numbers are derived from the per-query loss numbers and show

which parts of the tree contribute to performance deterioration. More specifically, these

metrics show how a node’s utilization and clustering properties as well as its SP affect

workload performance. Generally, we sum up the per-query loss metrics across the nodes

to arrive at per-node metrics. Similar to per-query metrics, we subdivide the accumulated

performance loss of a leaf page into excess coverage, utilization and clustering loss. More

formally:

|Qp| = Qo
p + ELl

p + ULl
p + CLp, p ∈ L.
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At the internal levels, we can only identify excess coverage and utilization loss; the remain-

ing accesses cannot be subdivided any further. More formally:

|Qp| = Qr
p + ELi

p + ULi
p, p ∈ I.

Figure 5.3 will again be used as our running example.

Excess coverage lossA node’s excess coverage loss is simply the number of times the

node was accessed but no matching data was found. This does not take into account ac-

cesses to internal nodes that are caused solely by excess coverage in the children’s SP,

which are also classified as excess coverage loss. In this particular case it is the shared

responsibility of the children, and it needs to be apportioned to them in some way. It is

not clear how that should be done, so this type of excess coverage loss is presently not

accounted for in the node performance metrics.8

In the example, we have pages 0 and 6 with excess coverage loss of 1 I/O each. The

excess coverage loss of page 0 should also include the data accessed in page 4, but appor-

titioning this excess coverage loss to the children is not generally possible, as explained in

the preceding paragraph.

8In the experiments conducted so far, those accesses played an insignficant role in comparison to the
workload total. Note that the termQr

p also includes excess coverage loss created by child nodes that cannot
be apportioned to the child nodes themselves.
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Utilization loss A node’s utilization loss is the product of its traversal count (minus those

accesses caused by excess coverage) and its deviation from target utilization. In the exam-

ple, pages 2 and 4 both have a utilization of 50%, a deviation of1/3 from the 75% target

utilization.9 If each of these pages were traversed 100 times across the entire workload,

each one would contribute331
3

I/Os to the entire workload utilization loss.

Clustering loss Each query’s clustering loss needs to be distributed according to how

much each accessed, non-empty leaf contributes to total clustering loss. We use as the

guiding principle the quality of the clustering in a nodefor the particular query in question.

The quality of clustering can be expressed as the ratio of accessed to retrieved data, and

the optimal clustering establishes a benchmark ratio against which the accessed leaves in

the actual tree will be measured.10 In the example, the query accesses 2 leaves in the

optimal tree to retrieve 5 data items, which fill up5/3 pages, resulting in a benchmark ratio

of 6/5. At leaf 3, the example query accesses 1 page worth of data in order to retrieve

1/3rd of the page, although according to the benchmark ratio it should only have accessed

1/3 ∗ 6/5 = 2/5 of a page. The difference of3/5 is the clustering loss that the node

contributes to this query. The corresponding numbers for pages 1 and 2 are−2/10 and

4/15. The sum across these leaves is2/3, which is the total clustering loss for the query

9Conversely, if the target utilization were 45%, those pages would have recorded a utilization gain. Since
utilization metrics recorddeviationfrom a constant, changing this constant does not affect performance dif-
ference between any two nodes.

10More formally: the pages inL′
q cause a loss ofCLq that needs to be distributed according to how much

each page inL′
q contributes. GivenLo

q, we define a benchmark overhead ratiorq = |Lo
q| ∗C ∗ ut/Rq. Given

that ratio, we expect to accessrq ∗ Rq,p on each pagep if clustering in the actual tree were as efficient as in
the optimal tree. The differenceup ∗ C − rq ∗Rq,p is p’s contribution to queryq’s clustering loss.
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established in Section 5.3.2. The total per-node clustering loss is simply the sum of the

per-node losses over the queries.

Example 1: Comparison of R- and R∗-Trees

This example illustrates how to make an initial performance assessment with the help

of the per-query and per-node metrics. We compare R- and R∗-trees for range queries over

8-dimensional point data; we purposely chose to compare two well-known data structures,

because knowing how they work will make the results of the analysis easier to follow.

The data set used in the experiment consists of 40,000 8-dimensional points, with each

dimension limited to the interval[0, 100), arranged into clusters of 100 points each. The

clusters are box-shaped and have a diameter of 10; the center points of the clusters are

distributed randomly. The trees were produced by bulk-loading 20,000 randomly selected

data items and individually inserting the remaining 20,000.11 This ensures that the split

and insertion strategies are reflected in the resulting trees. Bulk-loading was done using

the STR technique, which partitions the data points into iso-oriented tiles. We ran 20,000

square range queries over the trees, each with a side length of 12. The center points of

the queries were randomly selected items from the data set, so that every query intersected

with a cluster. On average, each query retrieved 20.6 items.

The aggregate results of this analysis are summarized in Table 5.3. We only report leaf-

level performance numbers, since for this type of workload, R- and R∗-trees are relatively

11The R∗-tree variant used for this comparison does not attempt reinsertion, which was intentionally left
out of the revised GiST abstraction of Chapters 3 and 4.
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short and the upper levels can be buffered. Section 5.3.4 talks more about how to account

for buffering.

R∗-tree [I/Os] R-tree [I/Os]
actual tree, total 72,044 97,414
optimal clustering 23,262 23,224
utilization loss 4,650 3,906
excess coverage loss 16,895 30,171
clustering loss 27,237 40,113
sum 72,044 97,414

Table 5.3: Comparison of leaf-level performance in R- and R∗-trees.

The performance numbers indicate that, as expected, R∗-trees outperform R-trees, but

that there is is still room for improvement.

Low utilization losses indicate that underutilization is not a problem. The target utiliza-

tion was set to 80% and the average workload utilizations are close to that number (74.28%

for the R∗-tree and 75.75% for the R-tree).

Comparing clustering losses with those in the initial bulk-loaded tree confirms that

the initial clustering is deteriorated by splits and insertions, although only to a moder-

ate extent in the case of R∗-trees. This can be deduced from the clusteringoverhead,

which is the ratio of optimal accesses plus clustering loss to optimal accesses. For the R∗-

tree, this ratio is(23262 + 27237)/23262 = 2.17 and for the initial bulk-loaded tree it is

(10412 + 8903)/10412 = 1.86. A possible reason for the relatively high clustering loss

in the bulk-loaded tree is that by creating equi-distant partitions along each dimension, the

STR algorithm cuts through clusters that exist in the data; since the queries are centered on

the data points, breaking up clusters will also cause more page accesses.



119

Using amdb, we can see that in both cases the clustering loss is not spread evenly across

the entire leaf level, but mostly confined to a few hot spots (this is shown in the global view,

which is described in Section 5.1; we omit a screen shot of this particular scenario here

because it is not fundamentally different from the one in Figure 5.2). The difference is that

for the R-tree, these hot spots are more frequent and more stretched out.

Looking at per-node excess coverage loss in both trees, we can see that this is roughly

co-located with clustering loss. This seems to suggest that the SP design works well for

the clustering requirements of the workload, because we do not experience excess coverage

loss where clustering loss is low. Intuitively, this is what we expect for minimum-bounding

rectangles, because good clusters for this workload are rectangular, which results in tightly-

fitting MBRs.

Example 2: Comparison of SPs for Nearest-Neighbor Searches on Multidimensional

Points

This example illustrates how to evaluate and compare different SP designs indepen-

dently of the remaining AM design aspects. We compare three different SP designs for a

popular type of workload, nearest-neighbor queries on multidimensional point data. The

three types of SPs are: minimum bounding rectangles, as employed in R∗-trees [BKSS90];

minimum bounding spheres, as employed in SS-trees [WR96]; a combination of the two,

which is used in SR-trees [KS97]. The latter two AMs were specifically designed for the

type of workload that underlies our comparison.
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The data set used in the experiment consists of 40,000 8-dim points, with each dimen-

sion limited to the interval[0, 100), arranged into (uniformly distributed) clusters of 100

points each. The clusters are box-shaped and have a diameter of 10. The query set consists

of 20,000 nearest-neighbor queries, each centered on a randomly selected (without replace-

ment) data point and retrieving 20 items. In order to eliminate the effects of page utilization

and clustering, the R∗-, SS- and SR-trees were built by bulk-loading the leaf level, so that

only their internal levels differ.

Leaves Internal Total
R∗ 15061 51486 66547
SR 15003 61699 76702
SS 134094 173350 307444

Table 5.4: Excess coverage loss of SPs of R∗-, SS- and SR-trees.

The measured excess coverage losses for the entire workload are shown in Table 5.4.

Essentially, R∗- and SR-tree SPs cause about the same amount of excess coverage loss,

whereas the spheres of the SS-tree have about 10 times as much excess coverage loss. The

reason is that the point sets in the leaves form clusters for which the MBRs have an aspect

ratio that significantly deviates from 1. The corresponding spheres, which have a similar

diameter as the MBRs, suffer from a much higher volume. The higher excess coverage loss

of the SR-tree in comparison to the R∗-tree is due to the increased storage requirements of

their SPs, which decreases the fanout of internal nodes. Reducing the fanout leads to an

increase in the number of nodes, which also increases the number of traversals caused by

excess coverage.



121

The bad performance of spherical SPs in this example may well be an artifact of bulk-

loading, which produces clusters that are often skinny along one or more dimensions. If

the clusters would have a spherical shape, the result of the comparison might even favor

spherical SPs. Intuitively, though, spherical SPs are less robust regarding the shape of the

clusters, because, unlike rectangles, they have the same extent in all dimensions.

Another performance study that compares sphere and rectangle SPs [KS97] comes to

a contrary conclusion, namely that spheres result in smaller-diameter SPs, because three

separate elements of AM designs were evaluated together: by comparing insertion-loaded

SR- and R∗-trees, the insertion and split strategies also come into play and mask the perfor-

mance effects of the SP design. This example illustrates the value of the excess coverage

metric and the importance of separating individual aspects of an AM design.

Example 3: Unindexability Test

As part of constructing the optimal leaf level, we can perform a simple test that will tell

us if a workload is not indexable,12 even if it were possible to construct an optimal tree for

it. This test is not limited to GiST-compliant AMs, but applies to all index structures that

store indexed data on fixed-size pages.

The test can be stated as follows:If in the optimal tree the aggregate number of leaf

access for the entire workload takes longer than sequentially scanning the leaf level for

each query, the workload should be considered unindexable.The aggregate number of

12This test assumes that total execution time of the workload under consideration is dominated by page
access cost.
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leaf accesses in the optimal tree is a lower bound on the total number of page accesses for

the entire workload, because minimally each query needs to access its result set. If this

lower bound takes longer to execute than a sequential scan of the leaf level for each query,

no actually constructed tree can be expected to outperform sequential scans. Since index

accesses usually result in random accesses, a relatively small number of leaf accesses will

take as long as a sequential scan of the entire level. The exact ratio of sequential to random

accesses depends on the disk drives and the OS overhead, and we will assume a ratio of

14:1 as a conversion ratio representative of current technology.13 Note that this test cannot

be reversed: failing this criterion does not necessarily mean that a workload is indexable,

because it might not be possible in practice to come close enough to the optimal clustering

and SPs to achieve performance that will on average be better than a sequential scan. Also

note that this test does not constitute a proof of unindexability, since in practice we can only

approximate the optimal leaf-level clustering. Rather, the test should be seen as a strong

hint, which becomes particularly compelling if one is unable to improve on the generated

clustering by hand.

To illustrate the usefulness of the test, we look at two different kinds of workloads:

nearest-neighbor queries on both uniform and clustered synthetic point data of moderate

dimensionality (16 and 32). Such datasets are very popular for performance studies of ac-

13Using Seagate Barracuda ultra-wide SCSI-2 drives, [Rie98] measures a throughput of ca. 9MB/s under
Windows NT. The average seek time and rotational delay for this drive are 7.1ms and 4.17ms, respectively.
For 8KB transfers, this results in a ratio of 14 sequential I/Os for each random I/O. In the past years, raw
drive throughput has increased faster than seek times and rotational delay have decreased, so the conversion
ratio is likely to increase in the future.
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cess methods for high-dimensional data such as feature vectors ([BBK98] is one example).

The datasets we use for the analysis contain 10000 points each (experiments with 20000

and 40000 points give identical results for appropriately scaled result set sizes). When

applying the unindexability test, the average result set size of the workload queries is im-

portant: if the average result set contains fewer items than the number of leaf pages divided

by the conversion ratio, unindexability cannot be established. For the 16-dimensional data

set, with with a target page capacity of around 40 points and 250 leaves, the threshold result

set size is 18 points, or0.18% of the data set. There is also a corresponding upper bound

for the result set size, beyond which unindexability is ensured: a result set size in excess

of the size of the data set divided by the conversion ratio. For the preceding example, this

upper threshold is at around 7% of the data set.

Figure 5.4 plots the leaf accesses as a function of the result set size for the example

data sets. To establish unindexability, it is sufficient for a workload to access more than 7%

of the leaves. For the uniform 16-dimensional workload, this threshold is reached when

result set sizes exceed about0.3% of the data set size, a surprisingly small number. For

the uniform 32-dimensional workload, the situation is a little better, because doubling the

number of dimensions also doubles the storage size. Note, though, that the threshold result

set size does not double as well. In contrast to uniformly distributed data sets, unindexabil-

ity cannot be established for corresponding workloads involving clustered data sets, even

for much larger result set sizes.

Unindexability of uniformly-distributed high-dimensional point data is confirmed by
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Figure 5.4: Results of the unindexability test for 16- and 32-dimensional uniformly dis-
tributed and clustered data.

a recently published theoretical analysis of nearest-neighbor queries( [SBGR99]), which

notes that for this type of data, increasing the dimension decreases the distance between

the nearset and the farthest points. This implies that a given point is more likely to be a

“nearest neighbor” for any query point in higher dimensions than in lower dimensions. As

a result, a given point can be co-retrieved with a larger variety of points, making it more

difficult to co-locate with all co-retrieved points. Note that our unindexability test is able to

reach the same conclusion without knowledge of the data domain or the particular indexing

problem. It can therefore be used as an automated first step in the AM design process.
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Even if unindexability cannot be established, it is still instructive to look at the ratio

of the number of workload leaf accesses in the optimal clustering to the number of pages

needed to store the result sets. This ratio, which we will call the workload-optimal access

overhead, is a measure of the inter-query “tension” in the workload: the higher this over-

head, the more extra data must be accessed, even if the index achieves optimal clustering

and is able to construct SPs without excess coverage. For example, the optimal access over-

head of B-tree workloads is never worse than 2, and that of 2-dimensional uniform point

data is1.5 on average for 20-item result sets. On the other hand, that of 16-dimensional

uniform point data is12.2 and for 32 dimensions the corresponding ratio is16.3. A cor-

respondingly defined query-optimal access overhead can be used to find “atypical” queries

in a workload, for which the overhead deviates noticeably from the average.

5.3.4 Other Performance Factors

The analysis framework presented so far completely ignored a number of components

of the performance equation (CPU time, buffering, and comparison with approximations).

We will now address these components individually and also comment on the usefulness

of approximation numbers as the basis for our comparisons.

CPU Time Although CPU time can play an important role in the overall performance of

an AM, it is excluded from the analysis framework. Since CPU time is not amenable to the

same type of analysis as page accesses, it is unclear how to construct a model of optimal
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CPU time behavior. Another drawback of CPU time is that it depends on the quality of

the implementation and the particular hardware platform on which the analysis is run. This

implies that these metrics are less general than page access-related metrics. Since CPU time

can play an important role in overall execution cost, we suggest that an AM designer weigh

it judiciously against the page access metrics of the analysis framework when deciding

which aspects of the AM implementation need to be improved.

Buffering Buffering has been shown to reduce the number of I/Os for AM queries [LL98]

and its presence—a standard feature in all commericial DBMS—will therefore change ob-

served workload performance. We will outline several ways of taking buffering into ac-

count in the context of our analysis framework. A popular buffering technique for tree-

structured AMs is to pin the first few levels of the tree ([LL98] reports that this technique

never performed worse than LRU replacement in their experiments). Modifying the analy-

sis metrics to take this into account is straightforward: the observed page accesses to those

upper levels can simply be subtracted. For other buffering techniques, we can estimate an

average hit rate and reduce the performance metrics uniformly by that rate. Either way,

buffering can be dealt with separately and need not be integrated into our framework. Note

that in order to integrate a realistic view of buffering into the framework, it is not sufficient

to simulate a buffer pool/replacement strategy against a serial execution of the queries. In

production DBMSs, queries are typically executed concurrently and index access is most

likely interleaved.
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Comparison with Approximation Numbers The performance metrics use the optimal

tree as a point of reference. Unfortunately, in practice we can only approximate the optimal

tree, which questions the utility of reported performance numbers. First, note that in the

optimal tree, only clustering is approximated. Page utilization and SPs are stipulated to be

perfect, and therefore the corresponding numbers accurately reflect the true performance

loss. However, since no bounds on clustering quality are known for the heuristic algorithm

we use for optimal clustering, the reported clustering loss numbers are only with regard to

a “good” clustering rather than the optimum. Nevertheless, those numbers are still useful

information for the AM designer: if the reported clustering loss is positive, clustering in

the actual tree cannot be optimal and should therefore be a target for performance improve-

ment. The number of cases in which negative clustering loss will be reported depends on

the effective quality of the clustering algorithms. With the algorithm currently in use, we

have not seen a single workload for which substantial negative clustering loss was reported.

5.3.5 Implementation

During the execution of the workload, amdb collects profiling data for each query in-

dividually, consisting of query result sets (references to retrieved items), visited pages, the

number of bytes retrieved per page, etc. This puts a burden on the workload execution

that is proportional to the cost of the execution itself, i.e., profiling a single page access or

item retrieval incurs a small, constant cost, and is negligible. For example, 2,500 nearest-

neighbor queries on 5,000 2-dimensional points took 12.3 seconds without profiling and
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13.06 seconds with profiling on a Dell Dimension Workstation 333MHz Intel Pentium II

processor. The size of the stored profiling data and performance metrics depends on a num-

ber of factors, such as the size of the result sets, tree size and excess coverage present in

the tree, so it cannot be stated as a simple percentage of the tree size. Informally speak-

ing, the sizes are fairly moderate. For example, the profile sizes for the workloads used

in the unindexability tests in Section 5.3.3 range from 1.4MB (for 5,000 queries retrieving

21 of 10,000 16-dimensional points) to 40MB (for 20,000 queries retrieving 120 of 40,000

16-dimensional points).

Hypergraph partitioning is used to construct the optimal leaf level used for the query

and node analysis, the optimal tree used for the implementation analysis and the optimal

split used for thepickSplit()analysis. This task is performed by the public domain pack-

agehMetis from the University of Minnesota [KAKS97].HMetis employs heuristics

to approximate the optimal partitioning (which itself is NP-hard). Although designed pri-

marily with VLSI applications in mind, we nevertheless found it to produce high-quality

partitionings. As an example, we compared an R-tree bulk-loaded with 2-dimensional,

Hilbert-value-sorted points with the equivalenthMetis -partitioned leaf level. The latter

even slightly improved the clustering of the Hilbert-sorted leaf level (one has to keep in

mind that even a perfectly square grid partitioning might be suboptimal for a given set

of queries, because the queries might prefer a different grid origin or a different aspect

ratio). We also found cases where thehMetis -produced clustering was inferior to space-

partitioned [LLE97], bulk-loaded leaf levels, but the performance difference was minuscule
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and the two clusterings were practically of the same quality. Using hypergraph partitioning

to arrive at a clustering of the data items requires that each data item be covered by a suffi-

ciently large number of queries, and furthermore that the queries themselves are sufficiently

diverse (where establishing “sufficiently” is an area of future work). For the experimental

results presented earlier, we tried to be conservative and executed half as many queries as

there were data items. The queries themselves were centered on uniformly selected data

items so that even coverage was ensured.

5.4 Related Work

5.4.1 Index Performance

Pagel, et al. [PSW95] study index clustering in a manner very similar to that of our

analysis framework, also using an idealized goal of an optimal clustering to establish lower

bounds on page accesses. They focus on window queries over multidimensional datasets,

and apply simulated annealing to find an approximation to the optimal clustering. In their

complexity analysis, they use a graph model for clustering that is not unlike the use of

hypergraph partitioning.

The literature is rife with performance studies of various index structures, especially

for multidimensional querying. Gaede and G¨unther survey over 50 different multidimen-

sional index structures [GG98], most of which were introduced with a performance study

to demonstrate their efficacy. [GG98] also surveys a number of comparative studies of mul-
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tidimensional indexes, and attempts to unify the results into a partial ordering of quality;

this is complicated by the variance in the workloads that the studies examine.

Most of the studies in the literature do not analyze performance results beyond com-

paring the number of page accesses on a given workload. Some studies provide analyses

or intuitions of varying complexity to justify the page access measurements, often with

domain- and workload-specific arguments. As an example, [BKSS90] explains (and visu-

ally illustrates) the efficacy of their node split technique with arguments about the virtues

of square bounding boxes, which are not clearly translatable to other data domains, or to

workloads of queries with high aspect ratio.

There is also a body of work on describing or predicting multidimensional index per-

formance using formal models ([FK94, PSW95] are two examples). These papers provide

insight into the performance of different indexing techniques on various synthetic work-

loads of queries and data. They often make rather strict assumptions about the workloads

they model (e.g., many study only square queries). These models shed light on the chal-

lenges of multidimensional indexing in general, but are not necessarily helpful to a user

studying a particular workload of queries and data. Mapping from a user’s workload to one

of these models is not generally possible.

5.4.2 Index Visualization and Animation

To our knowledge, amdb is the first tool of its kind to allow index developers to de-

bug and analyze their implementations. Naturally, its various visualization and debugging
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components have precedents in the literature. Amdb significantly extends many of these

approaches, and unifies them into a single framework for index development.

There are a number of tools for visualizing and animating search tree data structures

and algorithms; a compendium of references is maintained on the World-Wide Web [CCA].

Most of these tools focus on displaying tree structures, typically in a “nodes and arrows”

visualization. This is useful only for pedagogical purposes, since such diagrams do not

scale to the size of database indexes.

Brabec and Samet provide a suite of Java applets for a variety of 2-dimensional spatial

database search trees, including R-trees and a host of quad-tree variants [BS98]. The visu-

alizations focus on a geographic, 2-dimensional view of thedata domain, akin to amdb’s

“node view” but spanning all nodes of one or more levels. Users may observe SPs and

data items during insertion, deletion and splitting, with a large but fixed set of split algo-

rithms. Some simple domain-specific statistics are displayed per level. Again, the focus of

these tools seems to be pedagogic; the authors note that the visualizations do not scale to

the fanouts typical in most trees. DEVise [LRB+97] is a general-purpose data exploration

and visualization system, which has been demonstrated to be effective in helping R-tree

development and debugging. As in the work of Brabec and Samet, DEVise was used in

this scenario to visualize a 2-dimensional space containing data points and bounding rect-

angles. DEVise itself provides no facility for animating index algorithms or characterizing

performance.
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5.5 Conclusion

This chapter presents an analysis framework for tree-structured balanced AMs that can

be used to evaluate the page access performance of user-defined query workloads. The

framework is independent of the particular type of data to index or the nature of the queries.

It only requires as input the data and tracing information gathered during query execution

and the tree. The performance metrics it produces reflect actual performance loss, obtained

by comparing the observed performance against that of an assumed optimal tree structure.

The loss numbers are further decomposed to reflect the three fundamental structural per-

formance factors: clustering, page utilization and the subtree predicates.

The AM design toolamdb incorporates the analysis framework as well as other features

that support the design of GiST-compliant AMs.Amdb lets the user single-step through

individual index operations and set breakpoints on events of interest. The visualization

features allow navigation and inspection of the tree structure and the data contained in tree

nodes. The latter is user-extensible, so that the visualization is not tied to a fixed set of data

types. To facilitate the analysis process,amdb gathers the required tracing information

during workload execution and displays the computed performance metrics both visually

and textually.

In amdb, the analysis framework is combined with tree and data visualization and ani-

mation functionality to create a powerful design tool for access methods. The analysis pro-

cess begins with the inspection of performance metrics to locate sources of deficiencies.

Unlike data-dependent measures, these metrics objectively reflect access method perfor-
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mance. The visualization and animation functionality then enable users to investigate those

sources of performance loss and gain an understanding of how domain-specific properties

affect performance. Based on this understanding, the designer incorporates improvements

into the design and repeats the analysis process to evaluate their efficacy. This methodol-

ogy was employed in several projects at U.C. Berkeley, in which amdb was an indisposable

tool that allowed effective fine-tuning of AMs, showing significant improvements in a short

amount of time.

There are several questions that could be investigated in more detail in the future. Sec-

tion 5.3 mentions that for the hypergraph partitioning to produce “good” clusters—those

that reflect semantic proximity of the data items—the queries in the workload must not only

be representative, but also cover the entire data set to a sufficient degree. What the required

number and shape of queries in a workload should be needs to be established more clearly.

We also plan on extending the analysis framework to other, more exotic tree-structured ac-

cess methods (such as non-balanced trees or key-transforming trees, such as R+-trees) and

hash-based access methods. The main challenge will be the construction of optimal struc-

tures for these AMs. Furthermore, we want to add functionality to amdb that allows it to

compute user-defined metrics for queries, nodes and the split and insertion strategies. The

metrics would express properties of the data and their organization within the tree that the

designer believes to affect performance (for example, “small minimum-bounding rectangle

overlap in R-trees results in good performance”). Comparing the user-defined metrics with

those produced by our framework lets the designer verify the accuracy of his intuition and
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forces him to revise it, if necessary.
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Chapter 6

Conclusion

This dissertation explores a number of issues related to the design and implementation

of non-traditional access methods. This chapter summarizes the contributions and gives an

outline of unfinished areas of work that would benefit from future exploration.

6.1 Summary of Contributions

Chapter 3 extends the original GiST interface to address its functionality and perfor-

mance deficiencies and reports on experiences with a GiST-based AM extensibility archi-

tecture implemented in IDS/UDO. The original GiST interface provides an abstraction of

the indexed data domain and the specific operational properties of the AM, such as the

split and insertion strategies. The extended GiST interface also provides an abstraction of

the index pages themselves, which allows the AM developer to take full control over the

internal layout of index pages. Additionally, it consolidates the call-per-entry extension
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functions of the original interface into call-per-page functions, thereby reducing the UDF

calling overhead substantially. The experiences with the IDS/UDO implementation of a

GiST-based AM extension architecture validate the superiority of this approach to the tra-

ditional iterator-style mechanisms: B-trees and R-trees were implemented and debugged

in a matter of days, rather than weeks or months, and each of these AMs requires only a

fraction of the code necessary for a full implementation. Moreover, the performance tests

showed that the flexibility and functionality of a GiST-based AM extension architecture

does not compromise performance when compared to built-in, datatype-extensible AMs;

in fact, the GiST-based R-tree exhibited better performance than its built-in counterpart.

Chapter 4 presents algorithms for physical concurrency control, transaction isolation

and recovery in the GiST framework. Although concurrency control techniques have been

studied extensively for B-trees, their application in the context of the more general GiST

framework is often not possible. The reasons are the lack of a defined ordering and semantic

information about the data in the GiST abstraction, as well as the lack of a partitioning

of the data space. The proposed latching protocol that controls concurrent operations in

GiSTs was derived from the B-link tree protocol and enhanced to avoid any references

to the data stored in the index; its salient features are its deadlock freedom and that it

does not hold any latches during I/Os, resulting in a degree of concurrency that should

match that of the best B-tree concurrency control techniques. The proposed transaction

isolation mechanism is a combination of 2-phase locking of existing data items and a node-

local form of predicate locking, which is responsible for phantom protection. This hybrid
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locking mechanism retains the accuracy and concurrency of pure predicate locking, but

at the same time allows search operations of different isolation levels to be mixed freely

and reduces runtime overhead by only requiring insertion operations to participate in the

protocol. A simplification of this approach leads to a node-locking protocol, with lower

implementation and runtime cost but also a lower degree of concurrency. Recoverability in

the GiST framework is ensured by adapting a popular and effective B-tree logging protocol,

which separates structure modifications from key insertions and deletions and which can

be implemented in a standard write-ahead logging environment.

The extensions and techniques presented in Chapters 3 and 4 complete the original

GiST design and turn it into a viable alternative to custom AM development in commercial

environments, where performance and robustness are crucial. The experience gained with

the GiST-based AM extensibility architecture implemented in IDS/UDO confirms that this

approach is not merely of academic interest, but resulted in substantial time savings during

AM implementation and generally a very high level of performance.

Chapter 5 presents an analysis framework for AMs that conform to the GiST model.

The framework characterizes the I/O performance of an AM in the context of a given query

workload. The central idea of this framework is the comparison of actual observed perfor-

mance with performance in a workload-optimal tree, which leads to metrics that express

performance loss. These loss metrics have a number of advantages over traditional perfor-

mance metrics, such as aggregate runtime or I/O numbers or data-specific properties of the

tree: they indicate the potential for future performance improvement, they present a fixed
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point of reference and thereby allow an AM design to be assessed on its own, and they

are not application or data specific. The workload-optimal tree can be partially determined

by modeling the workload as a hypergraph and mapping the optimal clustering problem

into a minimum-cut hypergraph partitioning problem. The latter is NP-complete, but can

be approximated with sufficient quality. The availability of an (approximated) workload-

optimal index leaf level also makes it possible to formulate a test for unindexability of a

dataset under a given query workload. Using this test, it is possible to show that several

data/workload combinations, that are popular for performance evaluations in the research

literature, are in fact unindexable. The tool amdb combines the analysis framework with

a visualization environment for the tree structure and contents, which allows the AM de-

veloper to recognize performance deficiencies in the tree structure and identify particularly

badly performing queries. The effectiveness of this tool and the underlying framework has

been confirmed in a number of AM design projects, where amdb was instrumental in fo-

cusing the developers’ attention on the most substantial performance deficiencies and in

measuring and clarifying the effect of design changes.

6.2 Future Work

The work presented in this dissertation has also led to a better understanding of addi-

tional research opportunities related to the design and implementation of non-traditional

AMs. I will first discuss remaining problems concerning the GiST data structure and then
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challenges regarding AM evaluation and automated design.

6.2.1 GiST Extensions

While it is clear that a template AM such as the GiST is necessary in order to integrate

new AMs into DBMSs at reasonable cost and effort, it is less self-evident whether the

abstraction offered by GiST will be sufficient to capture a wide enough range of AMs. The

experience gained with the IDS/UDO implementation suggests that at least an extension

to deal with multi-entry objects (such as documents, which are represented in a keyword

index with multiple entries) would be beneficial.

6.2.2 AM Concurrency Control and Recovery

Out of the various subtopics that comprise the general area of AM concurrency control

and recovery, transactional isolation appears to be the one that still lacks a satisfying so-

lution. The latching and logging protocols guarantee a high degree of concurrency, while

introducing little runtime overhead or implementation complexity. This is not true of the

proposed transactional isolation mechanisms, which present a clear tradeoff between com-

plexity and runtime overhead on one hand and concurrency on the other. Fortunately, this

problem is less pressing than that of physical concurrency control, and in practice seems to

be handled by sacrificing isolation for concurrency; i.e., applications are willing to lower

their isolation levels to obtain higher concurrency. Nonetheless, a solution that offered high

degrees of concurrencyand isolation would certainly be preferable. Specific questions for
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future research are:

• Can the simple node locking protocol provide a high enough degree of concurrency,

or does the more complex hybrid protocol offer significant advantages? This proba-

bly depends on the application scenario and the workload, but a characterization of

which workloads are amenable to the simple node locking protocol would be useful.

• Assuming that the simple node locking protocol is not sufficient in all cases, is there

a technique that does not require a concurrency versus implementation complex-

ity/runtime overhead tradeoff? In practice, high concurrency is crucial in most high-

throughput web-driven application, and even the degree of concurrency attainable

with a predicate-based locking scheme may be too low. The popularity of products

that employ transient versioning to improve concurrency (e.g., Oracle), which elim-

inates read-write conflicts and waits, might be an indication that future research on

transaction isolation should investigate versioning instead of locking.

6.2.3 AM Design and Evaluation

While the implementation of AMs has been studied for some time, the same is not

true for a rigorous approach to design and evaluation, and many questions remain in this

area. The analysis framework of Chapter 5 gives the designer a usable procedure for the

evaluation of static index trees, but leaves open questions regarding workload construction,

evaluation of dynamic index trees and automated index repair. More specifically:
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• What is the appropriate number of queries in a workload? The analysis framework

introduced in Chapter 5 requires as part of the input a query workload, which is cru-

cial to the significance of the analysis: if the workload does not “cover” the data set

sufficiently, the effectiveness of the hypergraph partitioning is compromised (uncov-

ered items are assigned randomly to clusters) and the performance metrics would

present a distorted view. Currently, there are no guidelines to evaluate whether a

workload’s coverage is sufficient.

• How can a trace-gathered workload be reduced in size? Workloads derived from

traces that are gathered from production databases tend to be very large, which makes

the analysis process prohibitively time consuming. The challenge is to reduce the

data set and workload to make them more manageable, while at the same time pre-

serving the performance-relevant properties of the workload, such as the overlap

between result sets.

• How can the framework be extended toexplainperformance rather than just assess

it? The analysis framework presents a performance picture of a static version of an

index tree, but it does not tell the developer how performance changes as the tree

evolves dynamically. A straight-forward way to achieve this would be to re-evaluate

the workload after each update operation, but this seems problematic for two rea-

sons: first, the runtime overhead this introduces would be prohibitive for all but the

smallest workloads; second, the content of the tree changes, while the workload stays
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static, which means that the workload will not be able to cover the tree to the same

extent during the entire evaluation. A more feasible alternative could focus on user-

defined metrics, which reflect data semantics and could therefore be computed more

cheaply from the contents of the tree nodes. A chronological record of the user-

defined metrics in response to tree updates would let the designer trace back and

explain the formation of performance deficiencies in the tree structure. Of course,

metrics reflecting data semantics are only useful if they are correlated with observed

performance, which could be established using amdb’s standard performance met-

rics.

• Can the performance metrics be used to guide an automated index “repair” process?

Given an insight into the causes of performance deficiencies, it would be interesting

to investigate the extent to which these can be rectified automatically by an online

index repair algorithm. This algorithm would (1) monitor the performance of search

operations in the tree and (2) rebuild parts of the tree structure, triggered by ob-

served performance deterioration. Rebuilding the tree structure should be performed

without unduly restricting concurrency and would consist of two separate tasks: re-

organization of subtrees to improve clustering and page utilization, and automatic

SP refinement to reduce excess coverage loss. The former could be accomplished

with the tree bulk-loading algorithm presented in [VdBSW97]; the latter could be

achieved by employing thepick split() extension function to compute a composite

SP for a page, consisting of the left and right SP of a “virtual page split”, thereby in-
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creasing the amount of descriptive information recorded for a page. Monitoring the

performance of search operations and detecting performance deterioration could be

based on the analysis framework, whose benchmark numbers for clustering (ratio of

accessed to retrieved data), page utilization and excess coverage could be used to cal-

ibrate trigger thresholds during runtime. The design of such a repair algorithm in the

GiST context is particularly challenging if the introduction of additional extension

functions is to be avoided: using the same extension function that led to the perfor-

mance deficiencies in the first place to rectify those deficiencies may not always be

successful.
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