
Implementation of Extended Indexes in POSTGRES

Paul M. Aoki1

Computer Science Division, Department of EECS
University of California

Berkeley, CA 94720-0001

Abstract

The vaunted ‘‘Spartan simplicity’’ of the relational
model can limit the usefulness of the relational database
management system (RDBMS) for non-traditional appli-
cations. For example, there is no natural way to model a
keyword index for bibliographic informational retrieval
(IR), or any other index whose key values are computed
from column values, in a standard RDBMS. The
extended indexing proposed in [LYNC88a] is intended
to support applications that require indexes on computed
values. This paper reports on an implementation of this
type of indexing using the POSTGRES extensible data-
base management system [STON86a], focusing on two
issues: general problems, and the features in
POSTGRES that proved helpful in the solution of these
problems.

1. Introduction
Standard RDBMS technology does not ade-

quately meet the needs of certain non-traditional applica-
tions. Consequently, some new approaches have been
proposed to increase DBMS expressive power and
efficiency in these cases. One such approach, the exten-
sible database management system (exemplified by
EXODUS [CARE86] and POSTGRES [STON86a]),
allows the user to define new operators, types and access
methods without significant modification of the underly-
ing database system. However, some extensions do not
fit precisely into the extensibility models provided by
these systems since they involve changes more complex
or more fundamental than the addition of a new access
method.

This paper is a case study of the implementation
of one such extension, extended indexing, in
POSTGRES. Section 2 describes extended indexing as
it was originally proposed in [LYNC88a], including a
discussion of its advantages over other solutions and
some implementation difficulties that it presents. Sec-
tion 3 gives an overview of the extensibility features of
POSTGRES. Section 4 provides details of an imple-
mentation of this type of indexing under POSTGRES,
such as the modifications made to the original proposal
and extensions made to POSTGRES beyond those
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Author’s present address: USS Merrill (DD 976), FPO San Francisco, CA 96672-1214.

normally supported by the system. Finally, Section 5
summarizes the experience gained from the implementa-
tion.

2. Relational Systems for Information
Retrieval

Information retrieval and database management
systems2, as divergent as they often are as research
areas, still share a great deal at the practitioner’s level.
IR applications, such as online library catalogs, are fre-
quently written on top of commercial DBMS software.

There are two common choices of platforms on
which to build production IR systems — inverted-file
systems such as ADABAS [SOFT82] are commonly
used for textual database applications, whereas relational
systems are less often used. Inverted-file and relational
systems differ in the data model presented to the
user/programmer. Inverted-file systems store collections
of records in an ordered data structure that is visible to
the user. To benefit from the ordered structure (i.e.,
speed up database queries), the user must generate code
or queries that make specific use of its properties. Rela-
tional systems present collections of records as tables
(relations) in which records form the rows and record
fields form the columns. Records are accessed using
queries that are independent of the physical storage or
access method actually used.

Relational systems have advantages over
inverted-file systems. The data independence described
above is one of the most commonly-cited advantages of
relational systems. Users need not (and often cannot)
formulate their queries with the aim of optimizing the
use of the underlying physical storage structure; instead,
the DBMS attempts to hide the storage structure and per-
form all query optimization. This reduces programmer
effort greatly, since (1) the computer (rather than the
programmer) searches for the best method of performing
the query, and (2) the application itself need not contain
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 Readers unfamiliar with DBMS concepts, particularly
those of relational systems, should consult one of the standard
introductions to the subject (e.g., [DATE90]). More experi-
enced readers may find [STON88] useful, as it provides a selec-
tion of papers that tend to focus on the kind of implementation
issues to which we allude in this paper.

assumptions about the physical storage of the data and
so need not be rewritten when the storage method is
changed. Relational systems are typically implemented
on top of what closely resembles (and sometimes is) an
inverted-file system, with user interface and query
optimization modules layered over the base query pro-
cessing and data storage/retrieval module. Conse-
quently, there is no reason why a RDBMS with a well-
tuned query optimizer should perform significantly
worse than an inverted-file system. If this last point
makes it appear as if a relational interface is useless
overhead, note that the user interface associated with
information retrieval systems often resemble relational
query languages in their use of logic predicates and that
the code needed to turn these queries into inverted-file
access calls is essentially a specialized query optimizer.

In DBMS terminology, an index is a physical
storage structure used to speed access to the data
records. For example, one might extract the values of a
particular field from each record in a table (i.e., the con-
tents of an entire column in a relation) and store them in
a lookup table along with pointers that describe the loca-
tion of the record from which any particular value came.
Searching the lookup table (which is smaller than the
base table and arranged for quick access to a given field
value) and following the pointers is generally faster than
performing an item-by-item search of the base table.

The arrangement of the field values in the index is
critical and amounts to a precomputed partition of the
data records. One may think of B-trees [BAYE72] as a
precomputed record ordering, hash indexes (e.g., linear
hashing indexes [LITW80]) as precomputed record
hash-partitioning, and so on. In most systems, this
precomputed information is based on partitioning infor-
mation and operator/access method relationships that are
hardwired into the query processor. In addition, the
precomputed information can only be taken directly
from the column values. By this we mean that one can
build an index over the column ‘‘emp.salary’’ but not
over values computed from the column, such as
‘‘taxable_income(emp.salary)’’. This limits the useful-
ness of indexes to certain applications.

2.1. Extended Indexing
Extended indexing as defined in [STON86b] is

one approach by which a user can add new index access
methods to a DBMS. It is particularly helpful when
used with a system in which new data types and opera-
tors can be defined and used with the new access
methods (existing access methods usually suffice for the
basic data types, such as integers). When a new access
method is defined, the access method and the operators
usable with it must be associated with an
ordering/partitioning class. The class information is
used by the query optimizer to match the operators used
in the query with access methods that can be used for
efficient access to a column. Take the example of an
abstract data type (ADT), BOX, that corresponds to
two-dimensional boxes. One might construct a set of
binary Boolean operators that compare boxes by their
areas in a manner analogous to the integer comparison

operators < <= = => >. Since the box-area com-
parison operators define an ordering on BOX columns,
the box-area operators could then be associated with a
new ‘‘box-area-operations’’ class. Finally, by associat-
ing the B-tree access method with the ‘‘box-area-
operations’’ class, B-trees could then be used as secon-
dary indexes over BOX columns. That is, the query
optimizer can consider a B-tree index when it sees a
query that uses the ‘‘box-area-operations’’ operators
because of the class association between the index and
operators. Of course, the B-tree code must be flexible
enough to handle arbitrary comparison functions and
data types.

The point here is that all of the class information
is stored in system catalogs (relations reserved for inter-
nal use) rather than being hardwired. That is, the names
and properties of the different types, operators and
access methods are placed in relations rather than in the
DBMS code. Because new information can be added
easily to the catalogs, this approach not only allows the
user to define and use new types, operators and access
methods, it can allow their definition and use on the fly
(i.e., without recompilation of the system). As will be
seen, POSTGRES permits this.

As defined above, extended indexing still limits
the user to access methods and operators that order or
partition tuples based only the index key values. For
example, whenever the ‘‘box-area-operations’’ operators
are used, the areas of the BOX operands are recomputed
with every comparison because the box area is not stored
anywhere. It would be better to compute the area of a
given box only once, in effect caching the values for
later queries to use. Extended indexing as defined in
[LYNC88a] does this, allowing indexing on functions of
column values as well as on the column values them-
selves.

For an example where this is useful, consider the
BOX scenario described above. If an index exists over
the (computed) areas of each BOX in a column, the
query ‘‘find the BOXes with area less than 5’’ can be
executed as a scan of a small part of the box area index
instead of a sequential scan of the entire relation.

As a more realistic example, consider the problem
of bibliographic information retrieval using a RDBMS.
Bibliographic searches typically involve predicates on
keywords which are extracted from titles, abstracts or
body text. There are many ways in which these searches
can be implemented, and [LYNC88a] surveys many of
the alternatives (e.g., pattern-matching operators, set-
valued columns, and nested relations). We describe
three methods (chosen more for their illustrative value
than their practical value) below, comparing their
strengths and weaknesses.

Consider a relation reports that includes a unique
report-identifier field, id, as well as a text field, abstract,
from which subject keywords are extracted. The user of
a vanilla RDBMS can extract keywords from the base
relation and store each of them in individual tuples of a
second base relation, keywords, thereby creating an ad
hoc keyword ‘‘index’’ that can be accessed with queries

hh

reports id title abstract text keywords id keywordsii iiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 Implementation.. The vaunted.. Standard.. 1 databaseiii iiiiiiiiiiiiiiiiiii

c
c
c
c

2 c
c
c

Extended.. c
c
c

A number.. c
c
c

Information.. c
c
c

1 POSTGRESiii iiiiiiiiiiiiiiiiiii
1 bibliographiciiiiiiiiiiiiiiiiiii
2 bibliographiciiiiiiiiiiiiiiiiiii
2 relationaliiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

select title
from reports, keywords
where reports.id = keywords.id and keywords.word = "database"

Figure 1. A solution to the keywords problem in a standard RDBMS.
hh

select title
from reports
where reports.abstract ?? "database"

Figure 2. A solution involving user-defined operators.
hh

create index keywords
on report
ordering keyword-ops
operator extract

select title
from reports
where extract(reports.abstract) = "database"

Figure 3. A solution using the syntax from [LYNC88a].
hh

such as that shown in Figure 1. A number of efficient
access paths can be generated by a query optimizer for
keyword-based retrievals by indexing the reports and
keywords relations on the id column and indexing the
keywords relation on the word column. Although the
keyword computation cost is only paid once, as desired,
this approach has several obvious problems. First, the
query is clumsy. Second, joining the two id columns
and index-scanning the inner relation is less efficient
than using a true keyword index. More complex queries
compound this problem, since n+1 joins are required to
evaluate the conjunction of n keywords in a SQL query.
Finally, the ‘‘index’’ relation keywords is not updated
when the base relation is updated because it is part of a
user schema rather than a true index.

The query clumsiness problem is easy to solve. If
the RDBMS allows user-defined functions and opera-
tors, the user can construct keyword extraction and con-
tainment functions and then run them over the base rela-
tion. In this case, we can eliminate the pseudo-index
keywords from the schema described in the previous
example. The example shown in Figure 2 assumes that
the operator ‘‘??’’ has been defined as keyword extrac-
tion and containment — i.e., extract the keywords from
the left-hand (text) argument and check to see if the
right-hand (keyword) argument is one of them. The

query in Figure 2 is certainly simpler than the non-
intuitive join shown in Figure 1. Furthermore, there is
no problem with update inconsistencies. However, in
practice, keyword-extraction algorithms are fairly com-
plicated and tend to be executed on large text objects.
Recomputing the keyword extraction function for every
tuple in every query would be prohibitively expensive
and wasteful in an on-line library catalog system on the
scale of the University of California’s MELVYL
[DLA87], which contains over 13,000,000 records.

Extended indexing combines the best features of
both approaches, since simple queries can be used for
efficient retrieval and an update to the base relation
results in correctly-updated indexes. In this approach, a
secondary index is constructed from the return values of
a function applied to each of the column values and then
accessed by queries which appear to the user to be on
the results of the function. The functional results may be
either a system type (e.g., ‘‘Keyword’’ in the case we
are describing), or a list of items of a system type (e.g.,
‘‘KeywordList’’ would be the appropriate return-type of
the keyword extraction function since any given text
item may contain multiple keywords). Sample queries
for creating a functional index and using it are shown in
Figure 3. The ‘‘=’’ operator is keyword equality and the
‘‘extract’’ function is just the keyword extraction

function. The equality operator, which compares Key-
words to Keywords, is a member of the operator class
‘‘keyword-ops’’ that is used to order the tuples of the
keywords index.

3. Extensibility in POSTGRES
The POSTGRES database management system

[KEMN91, STON86a] allows the user to extend the sys-
tem in many different ways. The user may easily imple-
ment and insert into the system new abstract data types,
functions, operators, and access methods. For example,
one can define a BOX type usable in the columns of any
base relation, a ‘‘box_equality’’ function, a box-equality
operator ‘‘=’’ that calls the function ‘‘box_equality’’,
and a R-tree access method [GUTT84] for efficient
access to tuples containing BOXes. Operators and
access methods are assigned to classes when they are
defined and are matched together at runtime by the
table-driven query optimizer and query processor.
Operator names can be overloaded, argument and
return-value types being used in the parser to determine
which function to apply (e.g., resolve whether the opera-
tor ‘‘<’’ means ‘‘integer_equality’’ or ‘‘box_equality’’).

These extensibility features have obvious applica-
tions to information retrieval research. The user-defined
access methods, operators and functions and the table-
driven query optimizer and processor give POSTGRES
potential as a testbed for information retrieval research,
especially for work aimed at linking IR and relational
systems (e.g., [LYNC87, LYNC88a, LYNC88b]). The
flexibility gained by being able to experiment with new
storage and retrieval methods without changing the
application interface (both code and user queries) is a
powerful argument for choosing a relational system over
one that exposes its internal structure to the user and pro-
grammer. The user-defined ADTs, operators and func-
tions are ideally suited for supporting multimedia infor-
mation retrieval research. For example, POSTGRES
applications have been storing and displaying large text
objects (news articles) and images (X Window System
bitmaps) since 1987.

Unlike users of other extensible systems (e.g.,
EXODUS [CARE86]), the POSTGRES user need not
stop the system and recompile it every time new code is
added. In POSTGRES, the query optimizer and query
processor are table-driven and all user-defined exten-
sions used in a query may be loaded into a POSTGRES
server process at runtime. That is, the types and func-
tions need only be defined in the system catalogs before
use; the user does not have to change the POSTGRES
executable. Dynamically-loaded routines incur a small
one-time link-and-load cost per server process when
they are first invoked. The ability to add extensions by
simply checking them into the catalogs has several obvi-
ous advantages:

g Binary images only include the extensions that
the user has actually used.

g The user can do this alone, without the interven-
tion of a database implementor (DBI) who
manages the construction of server executables.

g The debugging turnaround time is potentially
much lower. Rather than a

think —> recompile extension —> rebuild server —> run

debugging cycle, there is a

think —> recompile extension —> run

cycle. This is advantageous if rebuilding the
server is a lengthy process3.

Note that POSTGRES has been designed so that a DBI
can easily incorporate new code (such as a new access
method) directly into the DBMS should this prove to be
desirable. Both dynamically-loaded and statically-
loaded code must be registered in the catalogs in order
for the parser, query optimizer and query processor to
use them, so whether or not a piece of object code is
compiled-in or not is invisible to the user. In general,
then, the POSTGRES approach gains flexibility and ease
of debugging during development (due to the dynamic
loader) while retaining the ability to compile production
code into the server.

In upcoming sections, one should note how the
two major features — table-driven extensibility and
dynamic loading — affected the implementation. In
general, the fact that POSTGRES already supports the
form of extended indexing described in [STON86b]
made matters much easier.

4. The Implementation
The prototype implementation of extended index-

ing in POSTGRES consisted of three stages:

1. type-function-operator definition
2. access method implementation
3. modification of POSTGRES internals

The implementation reported here was performed on the
‘‘1.0 Beta’’ release of POSTGRES, written in C and
Franz LISP Opus 43.4 However, the ideas presented here
do not rely on any particular internal features of that
release.

There are two points worth noting immediately.
First, the interface described for extended indexing is a
general mechanism and is not restricted to the particular
access method and datatypes used as the example.
Second, while the primary goal was to make things
work, another (only slightly less important) goal was to
minimize the number of changes required to the base
POSTGRES system. Both goals took precedence over
making things ‘‘pretty.’’ The effects of this will be seen
below.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 For example, the 1987 POSTGRES server prototype

took an hour to link and load, not counting the time required to
generate the individual object-code modules. This is no longer
true, as the code has been completely rewritten and reorganized
since, but it represents an extreme case.

4 Franz LISP is a trademark of Franz, Inc.

4.1. Type/Function/Operator Definition
The initial implementation of the keyword data

type and functions was trivial. Because this code was to
be used to debug the access method code and
modifications to the base POSTGRES system, it was
kept as simple as possible. However, there were still a
few non-obvious aspects to the implementation. First,
the Keyword and KeywordList types were defined with
the same internal representation (i.e., an object of type
‘‘Keyword’’ was stored as a single-element list). The
motivation for this will be explained below. Second, the
keyword extraction function was defined to always
return a list. This is a simplification of the proposal for
extended indexing in [LYNC88a], which permits the
extraction function to return no elements (null), single
elements, or lists of two or more elements, thereby forc-
ing all functions which operate on the result of an extrac-
tion function to deal with all three types. Simply having
the extraction function return a list of zero or more ele-
ments appears to be semantically equivalent and
involves less work for implementors.

4.2. Access Method Implementation
Because the B-tree provides all of the functional-

ity required for keyword-based extended indexing, a
‘‘functional B-tree’’ (henceforth referred to as ‘‘FB-
tree’’) access method can be created from it. The fol-
lowing section demonstrates how this particular access
method was implemented in POSTGRES.

We will first deal with the syntactic, or user-
interface, issues. Figure 4 shows examples of the syntax
used in this implementation for the definition and use of
a keyword FB-tree index. The top query in Figure 4 is
an example of a POSTQUEL ‘‘define index’’ query that
happens to define a keyword FB-tree index; the query
includes no extensions to the basic POSTQUEL syntax,
which has been constructed to allow this kind of flexibil-
ity. The first three lines simply name the index, its base
relation, the column over which the index is being con-
structed, and the operator class associated with the
column. The following four lines list some parameters
specific to keyword FB-trees. The ‘‘with’’ clause of the
‘‘define index’’ statement, used in POSTQUEL for

hh

define index keywords
on reports
using fbtree (abstract keyword-ops)
with (extract = kw_extract, /* keyword extraction */

count = kwlist_count, /* list length */
element = kwlist_element, /* list access */
listify = kw_listify) /* keyword -> list */

retrieve (reports.title)
where kw_extract(reports.abstract) @= "database"

Figure 4. A sample solution in POSTGRES requiring no extensions to POSTQUEL.
hh

access-method-specific parameters, here lists the names
of a number of functions that the access method needs to
know about in order to operate on lists of keywords.
The bottom query in Figure 4 shows a sample retrieval
query. Like the retrieval query in Figure 3, the
‘‘kw_extract’’ function returns a list of keywords; unlike
the query in Figure 3, the ‘‘@=’’ operator corresponds to
keyword containment.

How are these queries different from that shown
in Figure 3, SQL vs. POSTQUEL syntax aside? The
main difference in the index definition query is the list of
function specifications, ‘‘extract = kw_extract, ...’’.
These functions are used by the FB-tree access method
to perform certain actions needed to maintain the index,
such as form (‘‘listify = ...’’) and tear apart (‘‘element
= ...’’) lists of the base type. Similar functions are also
needed in [LYNC88a] but are assumed to be built into
the system or defined in a separate query; hence, this is
simply a syntactic difference, chosen for ease of imple-
mentation, and not an inherent part of either POSTGRES
or extended indexing. The main difference in the
retrieval query is the use of the keyword containment
operator, ‘‘@=’’. The original proposal uses a keyword
equality operator for the index qualification clause and
requires the implementor to modify the parser to under-
stand lists. Since the parser normally relies on type-
checking to resolve operator overloading, forcing the
parser to resolve overloading in this situation would
require additional information or some kind of arbitrary
restrictions. For example, the parser would not be able
to determine which of two operators to use if (1) they
had the same name and (2) one took a KeywordList and
a Keyword as arguments and the other took two Key-
words. The modified proposal uses a list-to-keyword
operator and thus does not present any type inconsisten-
cies to the parser. Furthermore, the original proposal
makes comparison of a list of items to a single item
equivalent to the logical OR of comparing each element
of the list to the single item. Using a different operator
means that the query processor does not have to be
modified to incorporate this change.

We now turn to the issues involved in coding.
The critical insight in the POSTGRES implementation
of FB-trees is that they can be implemented by adding a

layer between the table-driven query processor and the
generic B-tree access method. The system catalogs, and
thus the table-driven query processor, see the FB-tree
index as an index on the column values themselves that
is only usable when one argument to a specific set of
operators is a specific function (e.g., ‘‘kw_extract’’).
The FB-tree access method does all of the translation
necessary for this to happen, which is why so little
POSTGRES code has to be modified. When an update
or insertion occurs, the query processor calls the access
method insertion routine with the new index tuple as an
argument. The FB-tree insertion routine constructs a
number of single-keyword index tuples from the index
tuple it receives from the query processor and inserts
them into a standard B-tree. Retrievals with keyword
keys correspond to simple B-tree scans. The functions
needed to break down and reconstruct the various index
tuples are found through lookups in the system catalogs
as described below. In short, all of the magic is hidden
from both the query processor and B-tree code by this
in-between code, so neither the query processor nor the
base access method need to be changed at all.

Consider the following specific examples, again
using our keyword example. The most complicated
operation is tuple insertion (update). For each heap tuple
inserted into the base relation, the query processor forms
a B-tree index tuple that includes the text field from the
heap tuple (i.e., the abstract text). The FB-tree code
takes the index tuple, pulls out the field being indexed
(the abstract), looks up the extraction function in the sys-
tem catalogs, and then calls the extraction function with
the indexed field (abstract) as its argument. The extrac-
tion function returns a list of keywords contained in the
abstract; the FB-tree code forms individual B-tree tuples
for each of the keywords, and these keyword tuples are
inserted into the index relation. The query processor
thinks it has inserted a B-tree tuple containing the
abstract text, but what ends up in the index relation are
multiple B-tree tuples containing the keywords. Index
definition is simply a matter of running this insertion
procedure over all of the tuples currently in the heap
relation. Because the insertion process does all of the
precomputation (in this case, precomputation of the key-
word extraction function), retrieval queries are now
completely trivial. A probe of the functional index with
a given search key (keyword) is simply a B-tree probe
with that search key.

4.3. Modifications of POSTGRES Internals
POSTGRES provides a great deal of support for

user extensions, but this kind of indexing requires
modification to the query optimizer and catalog informa-
tion. No substantial changes were made, but in some
places identifying what to change and how to change it
required more than casual knowledge of the system’s
implementation.

4.3.1. System Catalog Modifications
Three slight changes were made to the catalogs as

defined in the base system.

First, two fields in the INDEX catalog relation,
which normally contains information on the schema of
each index relation, were modified to contain informa-
tion relating to the extraction function.

Second, the class and type inconsistencies men-
tioned in the previous section had to be resolved. A rela-
tively clean solution is to use a single representation for
a given type and list-of-type so that the same functions
can operate on them. That is, a Keyword is simply a sin-
gleton KeywordList. Thus, the same operator can be
used in sequential scans (where the keyword contain-
ment function is called upon to compare a KeywordList
and a Keyword) and also index scans (where the same
function is called on two Keywords). For this to work,
the ‘‘@=’’ operator must be a member of an operator
class that orders index elements (Keyword/Keyword
comparisons) and yet work as a restriction operator in
both types of queries (KeywordList/Keyword comparis-
ons for sequential scans and Keyword/Keyword com-
parisons for index scans). Hence, the operator argument
type declarations in the OPERATOR catalog relation
will be inconsistent with the actual application of the
operator, but no code needs to be changed to deal with
this inconsistency, unlike [LYNC88a], where the parser
and query processor must be modified to understand the
special list-to-singleton comparison semantics.

Third, a new ‘‘system’’ relation, FUNCINDEX,
was added to store the lists of functions that defined the
properties of the functional index. This relation is keyed
on the index relation object ID and contains the object
IDs of the functions listed in the index definition. In
principle this information could simply be part of the
INDEX relation, but it is not needed for most indexes.
In addition, if so implemented, a change to the existing
POSTGRES system catalogs would be required.

4.3.2. Other Modifications
The changes to the POSTGRES query optimizer

[FONG86] were minimal. All that was added was the
ability to recognize function clauses and consider the
appropriate index scans. This meant adding routines to
find qualification clauses of the appropriate form, per-
form FUNCINDEX catalog lookups, and change the for-
mat of the affected index scan qualifications. The net
difference was about 40 lines of code.

Because the FB-tree implementation is invisible
to the query processor, no changes to the query proces-
sor were required to support them.

5. Conclusions
There are some obvious, if cosmetic, areas for

continued work: the code requires a tremendous amount
of cleaning-up, a nicer syntax could be devised for the
index definition statement, a large database could be
loaded into POSTGRES and the relative performance of
extended user-defined access methods with varying
query optimizer options and queries could be evaluated,
and so on.

The following key points can be picked out from
the experience described above:

g The extended indexing defined in [LYNC88a] has
been implemented.

The ability to produce indexes over functions of
column values has use beyond bibliographic
information retrieval. Applications might include
image processing, computer vision, geographic
information systems, or any other field where
queries commonly require the repeated computa-
tion of expensive functions.

g A few modifications to the original proposal in
[LYNC88a] greatly simplified this implementation
without loss of expressive power.

Implementors should be prepared to make simpli-
fying changes, such as requiring extraction func-
tions to return lists and having comparison func-
tions operate on both lists and singletons. In
some cases, there aren’t any desirable implemen-
tation choices, and the implementor is left to
choose one kludge or another. For example, in
this implementation, the system type (Keyword)
was given the data representation of a singleton
list (KeywordList) in preference over performing
arbitrary modifications to the parser and query
language.

g The extensibility features in POSTGRES proved to
be useful and flexible in the course of this implemen-
tation.

This implementation effort did not call for access
method debugging, since the underlying B-tree
code was already debugged. Nevertheless,
dynamic loading proved very useful for the
access method/ADT integration. Initially,
dynamic loading was convenient because the time
to recompile and load the access method and
ADT code was insignificant compared to the time
to recompile the server. On the other hand, once
debugging became a matter of finding logic bugs
instead of core-dumping problems and the server
had to be run several times to track down a partic-
ular error, having the access method compiled-in
proved to be more useful since dynamically-
loaded routines cannot be easily traced (they are
not added to the executable’s symbol table, which
is used by the debugger). Hence, both dynamic
and static loading were useful at different times.

It is a tribute to the system design that an exten-
sion that was totally unforeseen at project inception
(indexing over the results of functions of column values)
could be incorporated with trivial changes to the base
system code and without changes to the query language.
A large factor in this is, of course, the table-driven query
processor architecture. For example, because the access
method internals are hidden from the query processor
and vice versa, a simple piece of ‘‘glue’’ code sufficed
to implement the FB-tree interface on top of the B-tree
code.

The ease with which the code was incorporated
into the base POSTGRES system can be summarized by
the fact that the actual implementation (coding) phase
took two weekends. The leverage that extensible

database management systems provide in rapid prototyp-
ing of major changes, even changes that change the
assumptions under which the system was originally
built, cannot be overemphasized. This leverage can be
of particular use to information retrieval researchers
looking for a testbed for their innovations.

References

[BAYE72] R. Bayer and E. McCreight, ‘‘Organization
and Maintenance of Large Ordered
Indexes’’, Acta Inf. 1, 3 (1972).

[CARE86] M. J. Carey, D. Frank, M. Muralkrishna, D.
J. DeWitt, G. Graefe, J. E. Richardson and
E. J. Shekita, ‘‘The Architecture of the
EXODUS Extensible DBMS’’, Proc. 1986
Int. Wksp. on Object-Oriented Database
Systems, Asilomar, CA, Sep. 1986.

[DLA87] DLA, MELVYL Online Catalog Reference
Manual, Division of Library Automation,
Univ. of California, Oakland, CA, 1987.

[DATE90] C. J. Date, An Introduction to Database
Systems, Volume I (5th Ed.), Addison
Wesley, Reading, MA, 1990.

[FONG86] Z. Fong, ‘‘The Design and Implementation
of the POSTGRES Query Optimizer’’, M.S.
Report, Univ. of California, Berkeley, CA,
Aug. 1986.

[GUTT84] A. Guttman, ‘‘R-Trees: A Dynamic Index
Structure for Spatial Searching’’, Proc.
1984 ACM-SIGMOD Conf. on Management
of Data, Boston, MA, June 1984.

[KEMN91] G. Kemnitz, editor. ‘‘The POSTGRES
Reference Manual, Version 2.1’’,
UCB/ERL Tech. Rep. M91/10, Univ. of
California, Berkeley, CA, Feb. 1991.

[LITW80] W. Litwin, ‘‘Linear Hashing: A New Tool
for File and Table Addressing’’, Proc. 6th
VLDB Conf., Montreal, Canada, Sep. 1980.

[LYNC87] C. A. Lynch, Extending Relational
Database Management Systems for
Information Retrieval Applications, Ph.D.
Thesis, Univ. of California, Berkeley, CA,
May 1987.

[LYNC88a] C. A. Lynch and M. Stonebraker,
‘‘Extended User-Defined Indexing with
Application to Textual Databases’’, Proc.
14th VLDB Conf., Los Angeles, CA, Aug.
1988.

[LYNC88b]C. A. Lynch, ‘‘Selectivity Estimation and
Query Optimization in Large Databases
with Highly Skewed Distributions of
Column Values’’, Proc. 14th VLDB Conf.,
Los Angeles, CA, Aug. 1988.

[SOFT82] Software AG, ADABAS Introduction
Manual, Software AG of North America,
Reston, VA, 1982.

[STON86a] M. R. Stonebraker and L. A. Rowe, ‘‘The
Design of POSTGRES’’, Proc. 1986 ACM-
SIGMOD Conf. on Management of Data,
Washington, DC, June 1986.

[STON86b] M. R. Stonebraker, ‘‘Inclusion of New
Types in Relational Data Base Systems’’,
Proc. 2nd IEEE Data Engineering Conf.,
Los Angeles, CA, Feb. 1986.

[STON88] M. Stonebraker, ed., Readings in Database
Systems, Morgan Kauffman, San Mateo,
CA, 1988.

