
Full-Text Search in PostgreSQL

A Gentle Introduction

Oleg Bartunov
Moscow University

oleg@sai.msu.su
Moscow
Russia

Teodor Sigaev
Moscow University

teodor@sigaev.ru
Moscow
Russia

Full-Text Search in PostgreSQL: A Gentle Introduction
by Oleg Bartunov and Teodor Sigaev

Copyright © 2001-2007 Oleg Bartunov, Teodor Sigaev

Attention: Patch is under development, so the syntax of SQL commands will changed. Please, wait for the final release
!

This document is a gentle introduction to the full-text search in ORDBMS PostgreSQL (version 8.3+). It covers basic
features and contains reference of SQL commands, related to the FTS.

Brave and smart can play with the new FTS - patch for the CVS HEAD is available tsearch_core-0.52.gz1.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover texts, and with no Back-Cover Texts. A
copy of the license is included in the section entitled "GNU Free Documentation License".

1. http://www.sigaev.ru/misc/tsearch_core-0.52.gz

Table of Contents
1. FTS Introduction ...1

1.1. Full Text Search in databases..1
1.1.1. What is adocument?...1

1.2. FTS Overview...1
1.2.1. Tsquery and tsvector...2
1.2.2. FTS operator...4

1.3. Basic operations..4
1.3.1. Obtaining tsvector..4
1.3.2. Obtaining tsquery...6
1.3.3. Ranking search results..6
1.3.4. Getting results...8
1.3.5. Dictionaries...8
1.3.6. Stop words..9

1.4. FTS features..10
1.5. FTS Limitations..10
1.6. A Brief History of FTS in PostgreSQL...10

1.6.1. Pre-tsearch..11
1.6.2. Tsearch v1..11
1.6.3. Tsearch v2..11
1.6.4. FTS current...12

1.7. Links..12
1.8. FTS Todo...12
1.9. Acknowledgements...13

2. FTS Operators and Functions..14

2.1. FTS operator...14
2.2. Vector Operations..15
2.3. Query Operations..16

2.3.1. Query rewriting...18
2.3.2. Operators for tsquery..19
2.3.3. Index for tsquery...20

2.4. Parser functions...20
2.5. Ranking...21
2.6. Headline..22
2.7. Full-text indexes..22
2.8. Dictionaries...24

2.8.1. Simple dictionary..25
2.8.2. Ispell dictionary..25
2.8.3. Snowball stemming dictionary...27
2.8.4. Synonym dictionary..27
2.8.5. Thesaurus dictionary..28

2.8.5.1. Thesaurus configuration...29
2.8.5.2. Thesaurus examples...29

2.9. FTS Configuration...30
2.10. Debugging...31
2.11. Psql support...32

iii

I. FTS Reference..1

I. SQL Commands..2
CREATE FULLTEXT CONFIGURATION...3
DROP FULLTEXT CONFIGURATION...6
ALTER FULLTEXT CONFIGURATION...7
CREATE FULLTEXT DICTIONARY...9
DROP FULLTEXT DICTIONARY...11
ALTER FULLTEXT DICTIONARY ...12
CREATE FULLTEXT MAPPING...13
ALTER FULLTEXT MAPPING..15
DROP FULLTEXT MAPPING..17
CREATE FULLTEXT PARSER..18
DROP FULLTEXT PARSER...20
ALTER FULLTEXT PARSER...21
ALTER FULLTEXT ... OWNER...22
COMMENT ON FULLTEXT..23

II. Appendixes ..24

A. FTS Complete Tutorial..25
B. FTS Parser Example..28

B.1. Parser sources..29
C. FTS Dictionary Example...33

Index..37

iv

Chapter 1. FTS Introduction

1.1. Full Text Search in databases
Full-Text Search (FTS) is a search for the documents, which satisfyquery and, optionally, return them in
someorder . Most usual case is to find documents containing allquery terms and return them in order
of their similarity to thequery . Notions ofquery andsimilarity are very flexible and depend on
specific applications. The simplest search machine considersquery as a set of words andsimilarity -
as how frequent are query words in the document.

Ordinary full text search engines operate with collection of documents where document is considered as
a "bag of words", i.e., there is a minimal knowledge about the document structure and its metadata. Big
search machines make use of sophisticated heuristics to get some metadata, such astitle, author(s),

modification date , but their knowledge is limited by web site owner policy. But, even if you have a
full access to the documents, very often, document itself, as it shown to the visitor, depends on many
factors, which makes indexing of such dynamical documents practically impossible and actually, search
engines fail here ("The Hidden Web"phenomena). Moreover, modern information systems are all database
driven and there is a need in IR (Information Retrieval) style full text search inside database withfull
conformanceto the database principles (ACID). That’s why, many databases have built-in full text search
engines, which allow to combine text searching and additional metadata, stored in various tables and
available through powerful and standard SQL language.

1.1.1. What is a document ?
Document, in usual meaning, is a text file, that one could open, read and modify. Search machines parse
text files and store associations of lexemes (words) with their parent document. Later, these associations
used to search documents, which contain query words. In databases, notion of document is much complex,
it could be any textual attribute or their combination (concatenation), which in turn may be stored in
various tables or obtained on-fly. In other words, document looks as it were constructed from different
pieces (of various importance) for a moment of indexing and it might be not existed as a whole. For
example,

SELECT title || ’ ’ || author || ’ ’ || abstract || ’ ’ || body as document
FROM messages
WHERE mid = 12;

SELECT m.title || ’ ’ || m.author || ’ ’ || m.abstract || ’ ’ || d.body as document
FROM messages m, docs d
WHERE mid = did and mid = 12;

Document can be ordinary file, stored in filesystem, but accessible through database. In that case, database
used as a storage for full text index and executor for searches. Document processed outside of database
using external programs. In any cases, it’s important, that document must be somehowuniquelyidentified.

Actually, in previous examples we should usecoalesce function to prevent document to beNULLif some
of its part isNULL.

1

Chapter 1. FTS Introduction

1.2. FTS Overview
Text search operators in database existed for years. PostgreSQL has~,~*, LIKE, ILIKE operators for
textual datatypes, but they lack many essential properties required for modern information system:

• there is no linguistic support, even in english, regular expressions are not enough -satisfies ->

satisfy , for example. You may miss documents, which contains wordsatisfies , although certainly
would love to find them when search forsatisfy . It is possible to useORto searchanyof them, but
it’s boring and ineffective (some words could have several thousands of derivatives).

• they provide no ordering (ranking) of search results, which makes them a bit useless, unless there are
only a few documents found.

• they tends to be slow, since they process all documents every time and there is no index support.

Theimprovementsto the FTS came from the idea topreprocessdocument at index time to save time later,
at a search stage. Preprocessing includes:

Parsing document to lexemes. It’s useful to distinguish various kinds of lexemes, for example,digits,

words, complex words, email address , since different types of lexemes can be processed dif-
ferent. It’s useless to attempt normalizeemail address using morphological dictionary of russian
language, but looks reasonable to pick outdomain name and be able to search fordomain name . In
principle, actual types of lexemes depend on specific applications, but for plain search it’s desirable to
have predefined common types of lexemes.

Applying linguistic rulesto normalize lexeme to theirinfinitive form, so one should not bother enter-
ing search word in specific form. Taking into account type of lexeme obtained before provides rich
possibilities for normalization.

Storepreprocessed document in a way, optimized for searching, for example, represent document as a
sorted array of lexemes. Along with lexemes itself it’s desirable to store positional information to use
it for proximity ranking , so that document which contains more "dense" region with query words
assigned a higher rank than one with query words scattered all over.

PostgreSQL is an extendable database, so it’s natural to introduce a new data types (Section 1.2.1)
tsvector for storing preprocessed document andtsquery for textual queries. Also, full-text search
operator (FTS)@@is defined for these data types (Section 1.2.2). FTS operator can be accelerated using
indices (Section 2.7).

1.2.1. Tsquery and tsvector

tsvector

tsvector is a data type, which represents document, and optimized for FTS. In simple phrase,
tsvector is a sorted list of lexemes, so even without index support full text search should performs
better than standard~,LIKE operators.

=# select ’a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

2

Chapter 1. FTS Introduction

--
’a’ ’on’ ’and’ ’ate’ ’cat’ ’fat’ ’mat’ ’rat’ ’sat’

Notice, thatspace is also lexeme !

=# select ’space ” ” is a lexeme’::tsvector;
tsvector

’a’ ’is’ ’ ’ ’space’ ’lexeme’

Each lexeme, optionally, could have positional information, which used forproximity ranking .

=# select ’a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

’a’:1,6,10 ’on’:5 ’and’:8 ’ate’:9 ’cat’:3 ’fat’:2,11 ’mat’:7 ’rat’:12 ’sat’:4

Each position of a lexeme can be labeled by one of ’A’,’B’,’C’,’D’, where ’D’ is default. These labels
can be used to indicate group membership of lexeme with differentimportanceor rank, for example,
reflect document structure. Actually, labels are just a way to differentiate lexemes. Actual values will
be assigned at search time and used for calculation of document rank. This is very convenient to
control and tune search machine.

Concatenation operator -tsvector || tsvector "constructs" document from several parts.
The order is important iftsvector contains positional information. Of course, usingSQL join

operator, it is possible to "build" document using different tables.

=# select ’fat:1 cat:2’::tsvector || ’fat:1 rat:2’::tsvector;
?column?

’cat’:2 ’fat’:1,3 ’rat’:4

=# select ’fat:1 rat:2’::tsvector || ’fat:1 cat:2’::tsvector;
?column?

’cat’:4 ’fat’:1,3 ’rat’:2

tsquery

Tsquery is a data type for textual queries with support of boolean operators -& (AND), | (OR),

parenthesis . Tsquery consists of lexemes (optionally labeled by letter[s]) with boolean operators
between.

=# select ’fat & cat’::tsquery;
tsquery

’fat’ & ’cat’

=# select ’fat:ab & cat’::tsquery;
tsquery

’fat’:AB & ’cat’

Labels could be used to restrict search region, which allows to develop different search engines using
the same full text index.

tsqueries could be concatenated using&& (AND-ed) and|| (OR-ed) operators.

test=# select ’a & b’::tsquery && ’c|d’::tsquery;
?column?

3

Chapter 1. FTS Introduction

’a’ & ’b’ & (’c’ | ’d’)
test=# select ’a & b’::tsquery || ’c|d’::tsquery;

?column?

’a’ & ’b’ | (’c’ | ’d’)

1.2.2. FTS operator
FTS in PostgreSQL provides operator@@for the two data types -tsquery and tsvector , which rep-
resents, correspondingly, document and query. Also, FTS operator has support ofTEXT,VARCHARdata
types, which allows to setup simple full-text search, but without ranking support.

tsvector @@ tsquery
tsquery @@ tsvector
text|varchar @@ text|tsquery

Full text search operator@@returnsTRUEif tsvector containstsquery .

=# select ’cat & rat’:: tsquery @@ ’a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

t

=# select ’fat & cow’:: tsquery @@ ’a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

f

1.3. Basic operations
To implement full-text search engine we need some functions to obtaintsvector from a document and
tsquery from user’s query. Also, we need to return results in some order, i.e., we need a function which
compare documents in respect to their relevance to thetsquery . FTS in PostgreSQL provides support of
all of these functions, introduced in this section.

1.3.1. Obtaining tsvector
FTS in PostgreSQL provides functionto_tsvector , which transforms document totsvector data
type. More details is available inSection 2.2, but for now we consider a simple example.

=# select to_tsvector(’english’, ’a fat cat sat on a mat - it ate a fat rats’);
to_tsvector

’ate’:9 ’cat’:3 ’fat’:2,11 ’mat’:7 ’rat’:12 ’sat’:4

4

Chapter 1. FTS Introduction

In the example above we see, that resultedtsvector does not containsa,on,it , word rats became
rat and punctuation sign- was ignored.

to_tsvector function internally calls parser function which breaks document (a fat cat sat on a

mat - it ate a fat rats) on words and corresponding type. Default parser recognizes 23 types, see
Section 2.4for details. Each word, depending on its type, comes through a stack of dictionaries (Section
1.3.5). At the end of this step we obtain what we call alexeme. For example,rats becamerat , because
one of the dictionaries recognized that wordrats is a plural form ofrat . Some words are treated as a
"stop-word" (Section 1.3.6) and ignored, since they are too frequent and have no informational value. In
our example these area,on,it . Punctuation sign- was also ignored, because it’s type (Space symbols)
was forbidden for indexing. All information about the parser, dictionaries and what types of lexemes to
index contains in the full-text configuration (Section 2.9). It’s possible to have many configurations and
actually, many predefined system configurations are available for different languages. In our example we
used default configurationenglish for english language.

To make things clear, below is an output fromts_debug function (Section 2.10), which show all details
of FTS machinery.

=# select * from ts_debug(’english’,’a fat cat sat on a mat - it ate a fat rats’);
Alias | Description | Token | Dicts list | Lexized token

-------+---------------+-------+----------------------+---------------------------
lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | |
lword | Latin word | fat | {pg_catalog.en_stem} | pg_catalog.en_stem: {fat}
blank | Space symbols | | |
lword | Latin word | cat | {pg_catalog.en_stem} | pg_catalog.en_stem: {cat}
blank | Space symbols | | |
lword | Latin word | sat | {pg_catalog.en_stem} | pg_catalog.en_stem: {sat}
blank | Space symbols | | |
lword | Latin word | on | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | |
lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | |
lword | Latin word | mat | {pg_catalog.en_stem} | pg_catalog.en_stem: {mat}
blank | Space symbols | | |
blank | Space symbols | - | |
lword | Latin word | it | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | |
lword | Latin word | ate | {pg_catalog.en_stem} | pg_catalog.en_stem: {ate}
blank | Space symbols | | |
lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | |
lword | Latin word | fat | {pg_catalog.en_stem} | pg_catalog.en_stem: {fat}
blank | Space symbols | | |
lword | Latin word | rats | {pg_catalog.en_stem} | pg_catalog.en_stem: {rat}

(24 rows)

Functionsetweight() is used to labeltsvector . The typical usage of this is to mark out the different
parts of document (say, importance). Later, this can be used for ranking of search results in addition to the

5

Chapter 1. FTS Introduction

positional information (distance between query terms). If no ranking is required, positional information
can be removed fromtsvector usingstrip() function to save some space.

Sinceto_tsvector (NULL) producesNULL, it is recomended to usecoalesce to avoid unexpected re-
sults. Here is the safe method of obtainingtsvector of structured document.

test=# update tt set ti=\
test=# setweight(to_tsvector(coalesce(title,”)), ’A’) || ’ ’ ||\
test=# setweight(to_tsvector(coalesce(keyword,”)), ’B’) || ’ ’ ||\
test=# setweight(to_tsvector(coalesce(abstract,”)), ’C’) || ’ ’ ||\
test=# setweight(to_tsvector(coalesce(body,”)), ’D’);

1.3.2. Obtaining tsquery
FTS provides two functions for obtainingtsquery - to_tsquery and plainto_tsquery (Section
2.3.2).

=# select to_tsquery(’english’, ’fat & rats’);
to_tsquery

’fat’ & ’rat’

=# select plainto_tsquery(’english’, ’fat rats’);
plainto_tsquery

’fat’ & ’rat’

Tsquery data type obtained at search time and the same way astsvector (Section 1.3.1).

There is a powerful technique to rewrite query online, calledQuery Rewriting (Section 2.3.1). It
allows to manage searches on the assumption of application semantics. Typical usage is a synonym exten-
sion or changing query to direct search in the necessary direction. The nice feature ofQuery Rewriting

is that it doesn’t require reindexing in contrast of usingthesaurus dictionary (Section 2.8.5). Also,
Query Rewriting is table-driven, so it can be configured online.

1.3.3. Ranking search results
Ranking of search results is de-facto standard feature of all search engines and PostgreSQL FTS provides
two predefined ranking functions, which attempt to produce a measure of how a document is relevant
to the query. In spite of that the concept of relevancy is vague and is very application specific, these
functions try to take into account lexical, proximity and structural information. Detailed description is
available (Section 2.5). Different application may require an additional information to rank, for example,
document modification time.

Lexical part of ranking reflects how often are query terms in the document, proximity - how close in
document query terms are and structural - in what part of document they occur.

6

Chapter 1. FTS Introduction

Since longer document has a bigger chance to contain a query, it is reasonable to take into account the
document size. FTS provides several options for that.

It is important to notice, that ranking functions does not use any global information, so, it is impossible
to produce a fair normalization to 1 or 100%, as sometimes required. However, a simple technique, like
rank/(rank+1) can be applied. Of course, this is just a cosmetic change, i.e., ordering of search results
will not changed.

Several examples are shown below. Notice, that second example used normalized rank.

=# select title, rank_cd(’{0.1, 0.2, 0.4, 1.0}’,fts, query) as rnk
from apod, to_tsquery(’neutrino|(dark & matter)’) query
where query @@ fts order by rnk desc limit 10;

title | rnk
---+----------

Neutrinos in the Sun | 3.1
The Sudbury Neutrino Detector | 2.4
A MACHO View of Galactic Dark Matter | 2.01317
Hot Gas and Dark Matter | 1.91171
The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
Rafting for Solar Neutrinos | 1.9
NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for Cosmic Neutrinos | 1.6
Weak Lensing Distorts the Universe | 0.818218

=# select title, rank_cd(’{0.1, 0.2, 0.4, 1.0}’,fts, query)/
(rank_cd(’{0.1, 0.2, 0.4, 1.0}’,fts, query) + 1) as rnk from

apod, to_tsquery(’neutrino|(dark & matter)’) query where
query @@ fts order by rnk desc limit 10;

title | rnk
---+-------------------

Neutrinos in the Sun | 0.756097569485493
The Sudbury Neutrino Detector | 0.705882361190954
A MACHO View of Galactic Dark Matter | 0.668123210574724
Hot Gas and Dark Matter | 0.65655958650282
The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
Rafting for Solar Neutrinos | 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
Hot Gas and Dark Matter | 0.617195790024749
Ice Fishing for Cosmic Neutrinos | 0.615384618911517
Weak Lensing Distorts the Universe | 0.450010798361481

First argument inrank_cd (’{0.1, 0.2, 0.4, 1.0}’) is an optional parameter, which specifies
actual weights for labelsD,C,B,A , used in functionsetweight . These default values show that lexemes
labeled asA are 10 times important than one with labelD.

Ranking could be expensive, since it requires consultingtsvector of all found documents, which is IO
bound and slow. Unfortunately, it is almost impossible to avoid, since FTS in databases should works
without index, moreover, index could be lossy (GiST index, for example), so it requires to check docu-
ments to avoid false hits. External search engines doesn’t suffer from this, because ranking information
usually contain in the index itself and it is not needed to read documents.

7

Chapter 1. FTS Introduction

1.3.4. Getting results
To present search results it is desirable to show part(s) of documents which somehow identify its context
and how it is related to the query. Usually, search engines show fragments of documents with marked
search terms. FTS provides functionheadline() (see details inSection 2.6) for this. It uses original
document, nottsvector , so it is rather slow and should be used with care. Typical mistake is to call
headline() for all found documents, while usually one need only 10 or so documents to show. SQL
subselects help here. Below is an example of that.

SELECT id,headline(body,q),rank
FROM (SELECT id,body,q, rank_cd (ti,q) AS rank FROM apod, to_tsquery(’stars’) q
WHERE ti @@ q ORDER BY rank DESC LIMIT 10) AS foo;

1.3.5. Dictionaries
Dictionary is aprogram, which accepts lexeme(s) on input and returns:

• array of lexeme(s) if input lexeme is known to the dictionary
• void array - dictionary knows lexeme, but it’s stop word.
• NULL - dictionary doesn’t recognized input lexeme

WARNING:Data files, used by dictionaries, should be inserver_encoding to avoid possible problems
!

Usually, dictionaries used for normalization of words and allows user to not bother which word form use
in query. Also, normalization can reduce a size oftsvector . Normalization not always has linguistic
meaning and usually depends on application semantics.

Some examples of normalization:

• Linguistic - ispell dictionaries try to reduce input word to its infinitive, stemmer dictionaries remove
word ending.

• All URL-s are equivalent to the http server:
• http://www.pgsql.ru/db/mw/index.html
• http://www.pgsql.ru/db/mw/
• http://www.pgsql.ru/db/../db/mw/index.html

• Colour names substituted by their hexadecimal values -red,green,blue, magenta -> FF0000,

00FF00, 0000FF, FF00FF

• Cut fractional part to reduce the number of possible numbers, so3.14159265359,3.1415926,3.14will
be the same after normalization, if leave only two numbers after period. See dictionary for integers
(Appendix C) for more details.

FTS provides several predefined dictionaries (Section 2.8), available for many languages, and SQL com-
mands to manipulate them online (Part I). Besides this, it is possible to develop custom dictionaries using
API, see dictionary for integersAppendix C, for example.

8

Chapter 1. FTS Introduction

CREATE FULLTEXT MAPPINGcommand (CREATE FULLTEXT MAPPING) binds specific type of
lexeme and a set of dictionaries to process it. Lexeme come through a stack of dictionaries until some
dictionary identify it as a known word or found it is a stop-word. If no dictionary will recognize a lexeme,
than it will be discarded and not indexed. A general rule for configuring stack of dictionaries is to place
at first place the most narrow, most specific dictionary, then more general dictionary and finish it with
very general dictionary, like snowball stemmer or simple, which recognize everything. For example, for
astronomy specific search (astro_en configuration) one could bindlword (latin word) with synonym
dictionary of astronomical terms, general english dictionary and snowball english stemmer.

=# CREATE FULLTEXT MAPPING ON astro_en FOR lword WITH astrosyn, en_ispell, en_stem;

Functionlexize can be used to test dictionary, for example:

=# select lexize(’en_stem’, ’stars’);
lexize

{star}

(1 row)

Also, ts_debug function (Section 2.10) is very useful.

1.3.6. Stop words
Stop words are the words, which are too popular and appear almost in every document and have no
discrimination value, so they could be ignored in full-text index. For example, every english text contains
worda and it is useless to have it in index. However, stop words does affect to the positions intsvector ,
which in turn, does affect ranking.

=# select to_tsvector(’english’,’in the list of stop words’);
to_tsvector

’list’:3 ’stop’:5 ’word’:6

The gaps between positions 1-3 and 3-5 are because of stop words, so ranks, calculated for document
with/without stop words, are quite different !

=# select rank_cd (’{1,1,1,1}’, to_tsvector(’english’,’in the list of stop words’), to_tsquery(’list & stop’));
rank_cd

0.5

postgres=# select rank_cd (’{1,1,1,1}’, to_tsvector(’english’,’list stop words’), to_tsquery(’list & stop’));
rank_cd

1

9

Chapter 1. FTS Introduction

It is up to the specific dictionary, how to treat stop-words. For example,ispell dictionaries first normal-
ized word and then lookups it in the list of stop words, whilestemmers first lookups input word in stop
words. The reason for such different behaviour is an attempt to decrease a possible noise.

1.4. FTS features
Full text search engine in PostgreSQL is fully integrated into the database core. Its main features are:

• It is mature, more than 5 years of development
• Supports multiple configurations, which could be managed using a set of SQL commands.
• Flexible and rich linguistic support using pluggable user-defined dictionaries with stop words supports.

Several predefined templates, including ispell, snowball,Thesaurus andsynonym dictionaries, are
supplied.

• Full multibyte support, UTF-8 as well
• Sophisticated ranking functions with support of proximity and structure information allow ordering of

search results according their similarity to the query.
• Index support withconcurrencyandrecoverysupport
• Rich query language with query rewriting support

1.5. FTS Limitations
Current implementation of FTS has some limitations.

• Length of lexeme < 2K
• Length of tsvector (lexemes + positions) < 1Mb
• The number of lexemes < 432

• 0< Positional information < 16383
• No more than 256 positions per lexeme
• The number of nodes (lexemes + operations) in tsquery < 32768

For comparison, PostgreSQL 8.1 documentation consists of 10441 unique words, total 335420 words and
most frequent word ’postgresql’ mentioned 6127 times in 655 documents.

Another example - PostgreSQL mailing list archive consists of 910989 unique words, total 57,491,343
lexemes in 461020 messages.

10

Chapter 1. FTS Introduction

1.6. A Brief History of FTS in PostgreSQL
This is a historical notes about full-text search in PostgreSQL by authors of FTS Oleg Bartunov and
Teodor Sigaev.

1.6.1. Pre-tsearch
Development of full-text search in PostgreSQL began from OpenFTS1 in 2000 after realizing that we need
a search engine optimized foronline updates with access to metadata from the database. This is essential
for online news agencies, web portals, digital libraries, etc. Most search engines available at that time
utilize an inverted index which is very fast for searching but very slow for online updates. Incremental
updates of an inverted index is a complex engineering task while we needed something light, free and
with the ability to access metadata from the database. The last requirement was very important because
in a real life search application should always consult metadata (topic, permissions, date range, version,
etc.).

We extensively use PostgreSQL as a database backend and have no intention to move from it, so the prob-
lem was to find a data structure and a fast way to access it. PostgreSQL has rather unique data type for
storing sets (think about words) -arrays , but lacks index access to them. During our research we found a
paper of Joseph Hellerstein, who introduced an interesting data structure suitable for sets - RD-tree (Rus-
sian Doll tree). Further research lead us to the idea to use GiST for implementing RD-tree, but at that time
the GiST code was untouched for a long time and contained several bugs. After work on improving GiST
for version 7.0.3 of PostgreSQL was done, we were able to implement RD-Tree and use it for index ac-
cess to arrays of integers. This implementation was ideally suited for small arrays and eliminated complex
joins, but was practically useless for indexing large arrays. The next improvement came from an idea to
represent a document by a single bit-signature, a so-called superimposed signature (see "Index Structures
for Databases Containing Data Items with Set-valued Attributes", 1997, Sven Helmer for details). We
developed the contrib/intarray module and used it for full text indexing.

1.6.2. Tsearch v1
It was inconvenient to use integer id’s instead of words, so we introduced a new data typetxtidx - a
searchable data type (textual) with indexed access. This was a first step of our work on an implementation
of a built-in PostgreSQL full-text search engine. Even thoughtsearch v1 had many features of a search
engine it lacked configuration support and relevance ranking. People were encouraged to use OpenFTS,
which provided relevance ranking based on positional information and flexible configuration. OpenFTS
v.0.34 was the last version based on tsearch v1.

1.6.3. Tsearch v2
People recognized tsearch as a powerful tool for full text searching and insisted on adding ranking support,
better configurability, etc. We already thought about moving most of the features of OpenFTS to tsearch,
and in the early 2003 we decided to work on a new version of tsearch. We abandoned auxiliary index
tables,used by OpenFTS to store positional information, and modified thetxtidx type to store them

1. http://openfts.sourceforge.net

11

Chapter 1. FTS Introduction

internally. We added table-driven configuration, support of ispell dictionaries, snowball stemmers and the
ability to specify which types of lexemes to index. Now, it’s possible to generate headlines of documents
with highlighted search terms. These changes make tsearch user friendly and turn it into a really powerful
full text search engine. For consistency, tsearch functions were renamed,txtidx type becametsvector .
To allow users of tsearch v1 smooth upgrade, we named the module as tsearch2. Since version 0.35
OpenFTS uses tsearch2.

PostgreSQL version 8.2 contains a major upgrade of tsearch v2 - multibyte and GIN (A Generalized
Inverted Index) support. Multibyte support provides full UTF-8 support and GIN scales tsearch v2 to mil-
lions of documents. Both indices (GiST and GiN) are concurrent and recoverable. All these improvements
bring out FTS to enterprise level.

1.6.4. FTS current
Since PostgreSQL 8.3 release, there is no need to compile and install contrib/tsearch2 module, it’s already
installed in your system with PostgreSQL. Most important new features are:

• A set of SQL commands, which controls creation, modification and dropping of FTS objects. This
allow to keep dependencies and correct dumping and dropping.

• Many FTS configurations already predefined for different languages with snowball stemmers are avail-
able.

• FTS objects now have ownership and namespace support like other postgresql’s objects.
• Current FTS configuration could be defined usingGUCvariabletsearch_conf_name .
• Default FTS configuration is now schema specific.

1.7. Links

Tsearch22

An Official Home page of Tsearch2.

Tsearch Wiki3

Tsearch2 Wiki contains many informations, work in progress.

OpenFTS4

OpenFTS search engine

OpenFTS mailing list5

OpenFTS-general mailing list used for discussion about OpenFTS itself and FTS in PostgreSQL.

2. http://wwww.sai.msu.su/~megera/postgres/gist/tsearch/V2
3. http://www.sai.msu.su/~megera/wiki/Tsearch2
4. http://openfts.sourceforge.net
5. http://lists.sourceforge.net/lists/listinfo/openfts-general

12

Chapter 1. FTS Introduction

1.8. FTS Todo
This place reserved for FTS development plan.

1.9. Acknowledgements
The work on developing of FTS in PostgreSQL was supported by several companies and authors are glad
to express their gratitude to the University of Mannheim, jfg:networks, Georgia Public Library Service
and LibLime Inc., Enterprisedb PostgreSQL Development Fund, Russian Foundation for Basic Research,
Rambler Internet Holding.

13

Chapter 2. FTS Operators and Functions
Vectors and queries both store lexemes, but for different purposes. Atsvector stores the lexemes of the
words that are parsed out of a document, and can also remember the position of each word. Atsquery

specifies a boolean condition among lexemes.

Any of the following functions with a configuration argument can use either an integer id or textual
ts_name to select a configuration; if the option is omitted, then the current configuration is used. For
more information on the current configuration, read the next section onSection 2.9.

2.1. FTS operator

TSQUERY @@ TSVECTOR
TSVECTOR @@ TSQUERY

ReturnsTRUEif TSQUERYcontained inTSVECTORandFALSEotherwise.

=# select ’cat & rat’:: tsquery @@ ’a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

t
=# select ’fat & cow’:: tsquery @@ ’a fat cat sat on a mat and ate a fat rat’::tsvector;

?column?

f

TEXT @@ TSQUERY
VARCHAR @@ TSQUERY

ReturnsTRUEif TSQUERYcontained inTEXT/VARCHARandFALSEotherwise.

=# select ’a fat cat sat on a mat and ate a fat rat’::text @@ ’cat & rat’:: tsquery;
?column?

t

=# select ’a fat cat sat on a mat and ate a fat rat’::text @@ ’cat & cow’:: tsquery;
?column?

f

TEXT @@ TEXT
VARCHAR @@ TEXT

ReturnsTRUEif TEXTcontained inTEXT/VARCHARandFALSEotherwise.

postgres=# select ’a fat cat sat on a mat and ate a fat rat’ @@ ’cat rat’;
?column?

t

postgres=# select ’a fat cat sat on a mat and ate a fat rat’ @@ ’cat cow’;
?column?

14

Chapter 2. FTS Operators and Functions

f

For index support of FTS operator consultSection 2.7.

2.2. Vector Operations

to_tsvector([configuration ,] document TEXT) RETURNS TSVECTOR

Parses a document into tokens, reduces the tokens to lexemes, and returns atsvector which lists
the lexemes together with their positions in the document in lexicographic order.

strip(vector TSVECTOR) RETURNS TSVECTOR

Return a vector which lists the same lexemes as the given vector, but which lacks any information
about where in the document each lexeme appeared. While the returned vector is thus useless for
relevance ranking, it will usually be much smaller.

setweight(vector TSVECTOR, letter) RETURNS TSVECTOR

This function returns a copy of the input vector in which every location has been labeled with either
the letter’A’ , ’B’ , or ’C’ , or the default label’D’ (which is the default with which new vectors
are created, and as such is usually not displayed). These labels are retained when vectors are con-
catenated, allowing words from different parts of a document to be weighted differently by ranking
functions.

vector1 || vector2

concat(vector1 TSVECTOR, vector2 TSVECTOR) RETURNS TSVECTOR

Returns a vector which combines the lexemes and position information in the two vectors given as
arguments. Position weight labels (described in the previous paragraph) are retained intact during the
concatenation. This has at least two uses. First, if some sections of your document need be parsed
with different configurations than others, you can parse them separately and concatenate the resulting
vectors into one. Second, you can weight words from some sections of you document more heavily
than those from others by: parsing the sections into separate vectors; assigning the vectors different
position labels with thesetweight() function; concatenating them into a single vector; and then
providing a weights argument to therank() function that assigns different weights to positions with
different labels.

length(vector TSVECTOR) RETURNS INT4

Returns the number of lexemes stored in the vector.

text ::TSVECTOR RETURNS TSVECTOR

Directly castingtext to a tsvector allows you to directly inject lexemes into a vector, with what-
ever positions and position weights you choose to specify. The text should be formatted like the
vector would be printed by the output of aSELECT.

tsearch(vector_column_name [, (my_filter_name | text_column_name1) [...]], text_column_nameN)

tsearch() trigger used to automatically update vector_column_name,my_filter_name is
the function name to preprocesstext_column_name . There are can be many functions and

15

Chapter 2. FTS Operators and Functions

text columns specified intsearch() trigger. The following rule used: function applied to all
subsequent text columns until next function occurs. Example, functiondropatsymbol replaces all
entries of@sign by space.

CREATE FUNCTION dropatsymbol(text) RETURNS text
AS ’select replace($1, ”@”, ” ”);’
LANGUAGE SQL;

CREATE TRIGGER tsvectorupdate BEFORE UPDATE OR INSERT
ON tblMessages FOR EACH ROW EXECUTE PROCEDURE
tsearch(tsvector_column,dropatsymbol, strMessage);

stat(sqlquery text [, weight text]) RETURNS SETOF statinfo

Herestatinfo is a type, defined as

CREATE TYPE statinfo as (word text, ndoc int4, nentry int4);

andsqlquery is a query, which returns columntsvector . This returns statistics (the number of
documents ndoc and total number nentry of word in the collection) about column vectortsvector .
Useful to check how good is your configuration and to find stop-words candidates.For example, find
top 10 most frequent words:

=# select * from stat(’select vector from apod’) order by ndoc desc, nentry desc,word limit 10;

Optionally, one can specifyweight to obtain statistics about words with specificweight .

=# select * from stat(’select vector from apod’,’a’) order by ndoc desc, nentry desc,word limit 10;

TSVECTOR < TSVECTOR
TSVECTOR <= TSVECTOR
TSVECTOR = TSVECTOR
TSVECTOR >= TSVECTOR
TSVECTOR > TSVECTOR

All btree operations defined fortsvector type. tsvectors compares with each other usinglexico-
graphicalorder.

2.3. Query Operations

to_tsquery([configuration ,] querytext text) RETURNS TSQUERY

Acceptsquerytext , which should be a single tokens separated by the boolean operators& and,|
or, and! not, which can be grouped using parenthesis. In other words,to_tsquery expects already
parsed text. Each token is reduced to a lexeme using the current or specified configuration. Weight
class can be assigned to each lexeme entry to restrict search region (seesetweight for explanation),
for example

’fat:a & rats’

to_tsquery function could accepttext string . In this casequerytext should be quoted. This
may be useful, for example, to use with thesaurus dictionary. In example below, thesaurus contains
rule supernovae stars : sn .

=# select to_tsquery(”’supernovae stars” & !crab’);
to_tsquery

16

Chapter 2. FTS Operators and Functions

’sn’ & !’crab’

Without quotesto_tsquery will complain about syntax error.

plainto_tsquery([configuration ,] querytext text) RETURNS TSQUERY

Transforms unformatted textquerytext to tsquery . It is the same asto_tsquery , but accepts
text and will call parser to break it onto tokens.plainto_tsquery assumes& boolean operator
between words and doesn’t recognizes weight classes.

querytree(query TSQUERY) RETURNS text

This returns a query which actually used in searching in index. It could be used to test for an empty
query. Select below returns ’T’, which corresponds to empty query, since GIN index doesn’t supports
negate query and full index scan is very ineffective.

=# select querytree(to_tsquery(’!defined’));
querytree

T

text ::TSQUERY RETURNS TSQUERY

Directly castingtext to atsquery allows you to directly inject lexemes into a query, with whatever
positions and position weight flags you choose to specify. The text should be formatted like the query
would be printed by the output of a SELECT.

numnode(query TSQUERY) RETURNS INTEGER

This returns the number of nodes in query tree. This function could be used to resolve ifquery is
meaningful (returns> 0) , or contains only stop-words (returns 0).

=# select numnode(plainto_tsquery(’the any’));
NOTICE: query contains only stopword(s) or doesn’t contain lexeme(s),
ignored

numnode

0
=# select numnode(plainto_tsquery(’the table’));

numnode

1
=# select numnode(plainto_tsquery(’long table’));

numnode

3

TSQUERY && TSQUERY RETURNS TSQUERY

ReturnsAND-ed TSQUERY

TSQUERY || TSQUERY RETURNS TSQUERY

ReturnsOR-ed TSQUERY

17

Chapter 2. FTS Operators and Functions

!! TSQUERY RETURNS TSQUERY

negation of TSQUERY

TSQUERY < TSQUERY
TSQUERY <= TSQUERY
TSQUERY = TSQUERY
TSQUERY >= TSQUERY
TSQUERY > TSQUERY

All btree operations defined fortsquery type. tsqueries compares with each other usinglexico-
graphicalorder.

2.3.1. Query rewriting
Query rewriting is a set of functions and operators fortsquery type. It allows to control search atquery
timewithout reindexing (opposite to thesaurus), for example, expand search using synonyms (new york,

big apple, nyc, gotham) or narrow search directing user to some hot topic. Notice, that rewriting
rules can be added online.

rewrite() function changes original query by replacing part of the query by sample string of type
tsquery , as it defined by rewrite rule. Arguments ofrewrite() function can be column names of type
tsquery .

CREATE TABLE aliases (t TSQUERY primary key, s TSQUERY);
INSERT INTO aliases values(’a’, ’c’);

rewrite (query TSQUERY, target TSQUERY, sample TSQUERY) RETURNS TSQUERY

=# select rewrite(’a & b’::TSQUERY, ’a’::TSQUERY, ’c’::TSQUERY);
rewrite

’b’ & ’c’

rewrite (ARRAY[query TSQUERY, target TSQUERY, sample TSQUERY]) RETURNS TSQUERY

=# select rewrite(ARRAY[’a & b’::TSQUERY, t,s]) from aliases;
rewrite

’b’ & ’c’

rewrite (query TSQUERY, ’select target ,sample from test’ ::text) RETURNS TSQUERY

=# select rewrite(’a & b’::TSQUERY, ’select t,s from aliases’);
rewrite

’b’ & ’c’

What if there are several variants of rewriting ? For example, query’a & b’ can be rewritten as’b &

c’ and’cc’ .

=# select * from aliases;
t | s

18

Chapter 2. FTS Operators and Functions

-----------+------
’a’ | ’c’
’x’ | ’z’
’a’ & ’b’ | ’cc’

This ambiguity can be resolved specifying sort order.

=# select rewrite(’a & b’, ’select t,s from aliases order by t desc’);
rewrite

’cc’

=# select rewrite(’a & b’, ’select t,s from aliases order by t asc’);
rewrite

’b’ & ’c’

Let’s consider real-life astronomical example. We’ll expand querysupernovae using table-driven rewrit-
ing rules.

=# create table aliases (t tsquery primary key, s tsquery);
=# insert into aliases values(to_tsquery(’supernovae’), to_tsquery(’supernovae|sn’));
=# select rewrite(to_tsquery(’supernovae’), ’select * from aliases’) && to_tsquery(’crab’);

?column?

(’supernova’ | ’sn’) & ’crab’

Notice, that we can change rewriting rule online !

=# update aliases set s=to_tsquery(’supernovae|sn&!nebulae’) where t=to_tsquery(’supernovae’);
=# select rewrite(to_tsquery(’supernovae’), ’select * from aliases’) && to_tsquery(’crab’);

?column?

(’supernova’ | ’sn’ & !’nebula’) & ’crab’

2.3.2. Operators for tsquery
Rewriting can be slow in case of many rewriting rules, since it checks every rule for possible hit. To filter
out obvious non-candidate rules there are containment operators fortsquery type. In example below, we
select only those rules, which might contains in the original query.

=# select rewrite(ARRAY[’a & b’::TSQUERY, t,s]) from aliases where ’a&b’ @> t;
rewrite

’b’ & ’c’

Two operators defined fortsquery type:

19

Chapter 2. FTS Operators and Functions

TSQUERY @> TSQUERY

ReturnsTRUEif right agrument might contained in left argument.

TSQUERY <@ TSQUERY

ReturnsTRUEif left agrument might contained in right argument.

2.3.3. Index for tsquery
To speed up operators<@,@>for tsquery one can use GiST index withtsquery_ops opclass.

create index t_idx on aliases using gist (t tsquery_ops);

2.4. Parser functions

CREATE FUNCTION parse(parser , document TEXT) RETURNS SETOFtokenout

Parses the givendocument and returns a series of records, one for each token produced by parsing.
Each record includes atokid giving its type and atoken which gives its content.

postgres=# select * from parse(’default’,’123 - a number’);
tokid | token

-------+--------
22 | 123
12 |
12 | -

1 | a
12 |

1 | number

CREATE FUNCTION token_type(parser) RETURNS SETOFtokentype

Returns a table which defines and describes each kind of token theparser may produce as output.
For each token type the table gives thetokid which theparser will label eachtoken of that type,
thealias which names the token type, and a shortdescription for the user to read.

postgres=# select * from token_type(’default’);
tokid | alias | description

-------+--------------+-----------------------------------
1 | lword | Latin word
2 | nlword | Non-latin word
3 | word | Word
4 | email | Email
5 | url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | VERSION

20

Chapter 2. FTS Operators and Functions

9 | part_hword | Part of hyphenated word
10 | nlpart_hword | Non-latin part of hyphenated word
11 | lpart_hword | Latin part of hyphenated word
12 | blank | Space symbols
13 | tag | HTML Tag
14 | protocol | Protocol head
15 | hword | Hyphenated word
16 | lhword | Latin hyphenated word
17 | nlhword | Non-latin hyphenated word
18 | uri | URI
19 | file | File or path name
20 | float | Decimal notation
21 | int | Signed integer
22 | uint | Unsigned integer
23 | entity | HTML Entity

2.5. Ranking
Ranking attempts to measure how relevant documents are to particular queries by inspecting the number
of times each search word appears in the document, and whether different search terms occur near each
other. Note that this information is only available in unstripped vectors -- ranking functions will only
return a useful result for a tsvector which still has position information!

Notice, that ranking functions supplied are just an examples and doesn’t belong to the FTS core, you can
write your very own ranking function and/or combine additional factors to fit your specific interest.

The two ranking functions currently available are:

CREATE FUNCTION rank([weights float4[],] vector TSVECTOR, query TSQUERY, [normalization int4]) RETURNS float4

This is the ranking function from the old version of OpenFTS, and offers the ability to weight word
instances more heavily depending on how you have classified them. The weights specify how heavily
to weight each category of word:

{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Often weights are used to mark words from special areas of the document, like the title or an initial
abstract, and make them more or less important than words in the document body.

CREATE FUNCTION rank_cd([weights float4[],] vector TSVECTOR, query TSQUERY, [normalization int4]) RETURNS float4

This function computes thecover densityranking for the given document vector and query, as de-
scribed in Clarke, Cormack, and Tudhope’s "Relevance Ranking for One to Three Term Queries" in
the 1999 Information Processing and Management.

Both of these ranking functions take an integernormalization option that specifies whether a docu-
ment’s length should impact its rank. This is often desirable, since a hundred-word document with five
instances of a search word is probably more relevant than a thousand-word document with five instances.
The option can have the values, which could be combined using| (for example,2|4) to take into account
several factors:

21

Chapter 2. FTS Operators and Functions

• 0 (the default) ignores document length.
• 1 divides the rank by the 1 + logarithm of the document length
• 2 divides the rank by the length itself.
• 4 divides the rank by the mean harmonic distance between extents
• 8 divides the rank by the number of unique words in document
• 16 divides the rank by 1 + logarithm of the number of unique words in document

2.6. Headline

CREATE FUNCTION headline([id int4, | ts_name text,] document text, query TSQUERY, [options text]) RETURNS text

Every form of the theheadline() function accepts a document along with a query, and returns one
or more ellipse-separated excerpts from the document in which terms from the query are highlighted.
The configuration with which to parse the document can be specified by either itsid or ts_name ; if
none is specified that the current configuration is used instead.

An options string if provided should be a comma-separated list of one or more ’option=value’ pairs.
The available options are:

• StartSel, StopSel -- the strings with which query words appearing in the document should be
delimited to distinguish them from other excerpted words.

• MaxWords, MinWords -- limits on the shortest and longest headlines you will accept.
• ShortWord -- this prevents your headline from beginning or ending with a word which has this many

characters or less. The default value of 3 should eliminate most English conjunctions and articles.
• HighlightAll -- boolean flag, ifTRUE, than the whole document will be highlighted.

Any unspecified options receive these defaults:

StartSel= , StopSel= , MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE

Notice, that cascade dropping ofheadline function cause dropping ofparser , used in fulltext configu-
ration tsname .

select headline(’a b c’, ’c’::tsquery);
headline

a b c

=# select headline(’a b c’, ’c’::tsquery, ’StartSel=<,StopSel=>’);
headline

a b <c>

22

Chapter 2. FTS Operators and Functions

2.7. Full-text indexes
There are two kinds of indexes which can be used to speedup FTS operator (Section 2.1). Notice, indexes
are not mandatory for FTS !

CREATE INDEXname ON table USING gist(column);

Creates GiST (The Generalized Search Tree) based index.

CREATE INDEXname ON table USING gin(column);

Creates GIN (The Generalized Inverted Index) based index.column is one of theTSVECTOR, or
TEXT, or VARCHARtypes.

GiST index islossy , which means its’ required to consultheap to check results for false hits. Post-
greSQL does this automatically,Filter: in an example below.

=# explain select * from apod where fts @@ to_tsquery(’supernovae’);
QUERY PLAN

Index Scan using fts_gidx on apod (cost=0.00..12.29 rows=2 width=1469)

Index Cond: (fts @@ ”’supernova”’::tsquery)
Filter: (fts @@ ”’supernova”’::tsquery)

Lossiness is the result of two factors - we represent a document by its fixed-length signature. We obtain
signature in the following way - we hash (crc32) each word into random bit in a n-bit length strings and
their superposition produces n-bit document signature. Because of hashing, there is a chance, that some
words hashed to the same position and it could be resulted in false hit. Signatures, calculated for each
document in collection, are stored inRD-tree (Russian Doll tree), invented by Hellerstein, which is an
adaptation of theR-tree to sets. In our case transitive containment relation realized with superimposed
coding (Knuth,1973) of signatures - parent is ’OR’-ed bit-strings of all children. This is a second factor of
lossiness. It’s clear, that parents tend to be full of ’1’ (degenerates) and become quite useless because of it’s
little selectivity. Searching performs as a bit comparison of a signature represented query andRD-tree

entry. If all ’1’ of both signatures are in the same position we say that this branch probably contains
query, but if there is even one discrepancy we could definitely reject this branch. Lossiness causes serious
performance degradation, since random accessing ofheap records is slow and limits applicability of GiST
index. Probability of false drops is depends on several factors and the number of unique words is one of
them, so using dictionaries to reduce this number is practically mandatory.

Actually, it’s not the whole story. GiST index has optimization for storing small tsvectors (<
TOAST_INDEX_TARGETbytes, 512 bytes). On leaf pages small tsvectors stored as is, while longer one
are represented by their signatures, which introduce some losiness. Unfortunately, existing index API
doesn’t allow to say index that it found an exact values (tsvector) or results need to be checked. That’s
why GiST index currently is marked as lossy. We hope in future to overcome this issue.

Contrary, GIN index isn’t lossy and it’s performance depends logarithmically on the number of unique
words.

There is one side-effect of "non-lossiness" of GIN index and using queries with lexemes and weights,
like ’supernovae:a’ . Since information about these labels stored inheap only and GIN index is not
lossy, there is no necessity to access heap, one should use special FTS operator@@@, which forces using

23

Chapter 2. FTS Operators and Functions

of heap to get information about labels. GiST index is lossy, so it readsheap anyway and there is no need
in special operator. In example below,fts_idx is a GIN index.

=# explain select * from apod where fts @@@ to_tsquery(’supernovae:a’);
QUERY PLAN

--
Index Scan using fts_idx on apod (cost=0.00..12.30 rows=2 width=1469)

Index Cond: (fts @@@ ”’supernova”:A’::tsquery)
Filter: (fts @@@ ”’supernova”:A’::tsquery)

Experiments lead to the following observations:

• creation time - GiN takes 3x time to build than GiST
• size of index - GiN is 2-3 times bigger than GiST
• search time - GiN is 3 times faster than GiST
• update time - GiN is about 10 times slower than GiST

Overall, GiST index is very good for online update and fast for collections with the number of unique
words about 100,000, but is not as scalable as Gin index, which in turn isn’t good for updates. Both
indexes supportconcurrencyandrecovery.

Partitioning of big collections and proper use of GiST and GIN indexes allow implementation of very
fast search with online update. Partitioning can be done on database level using table inheritance and
Constraint Exclusion, or distributing documents over servers and collecting search results using
contrib/dblink extension module. The latter is possible, because ranking functions use only local
information.

2.8. Dictionaries

CREATE FUNCTION lexize([oid , | dict_name text, lexeme text) RETURNS text[]]

Returns an array of lexemes if inputlexeme is known to the dictionarydictname , or void array if
a lexeme is known to the dictionary, but it is a stop-word, orNULL if it is unknown word.

=# select lexize(’en_stem’, ’stars’);
lexize

{star}

=# select lexize(’en_stem’, ’a’);
lexize

{}

Note: lexize function expects lexeme , not text ! Below is a didactical example:

apod=# select lexize(’tz_astro’,’supernovae stars’) is null;
?column?

24

Chapter 2. FTS Operators and Functions

t

Thesaurus dictionary tz_astro does know what is a supernovae stars , but lexize fails, since it does
not parse input text and considers it as a single lexeme. Use plainto_tsquery, to_tsvector to test
thesaurus dictionaries.

apod=# select plainto_tsquery(’supernovae stars’);
plainto_tsquery

’sn’

There are several predefined dictionaries and templates. Templates used to create new dictionaries overrid-
ing default values of parameters. FTS ReferencePart Icontains description of SQL commands (CREATE
FULLTEXT DICTIONARY, DROP FULLTEXT DICTIONARY, ALTER FULLTEXT DICTIONARY)
for managing of dictionaries.

2.8.1. Simple dictionary
This dictionary returns lowercased input word orNULL if it is a stop-word. Example of how to specify
location of file with stop-words.

=# CREATE FULLTEXT DICTIONARY public.my_simple
OPTION ’english.stop’

LIKE pg_catalog.simple;

Relative paths inOPTIONresolved respective to$PGROOT/share . Now we could test our dictionary:

=# select lexize(’public.my_simple’,’YeS’);
lexize

{yes}

=# select lexize(’public.my_simple’,’The’);
lexize

{}

2.8.2. Ispell dictionary
Ispell template dictionary for FTS allows creation of morphological dictionaries, based on Ispell1, which
has support for a large number of languages. This dictionary try to reduce an input word to its infinitive

1. http://ficus-www.cs.ucla.edu/geoff/ispell.html

25

Chapter 2. FTS Operators and Functions

form. Also, more modern spelling dictionaries are supported - MySpell2 (OO < 2.0.1) and Hunspell3 (OO
>= 2.0.2). A big list of dictionaries is available on OpenOffice Wiki4.

Ispell dictionary allow search without bothering about different linguistic forms of a word. For example, a
search onbank would return hits to all declensions and conjugations of the search termbank - banking,

banked, banks, banks’ and bank’s etc.

=# select lexize(’en_ispell’,’banking’);
lexize

{bank}

=# select lexize(’en_ispell’,’bank”s’);
lexize

{bank}

=# select lexize(’en_ispell’,’banked’);
lexize

{bank}

To create ispell dictionary one should use built-inispell_template dictionary and specify several
parameters.

CREATE FULLTEXT DICTIONARY en_ispell
OPTION ’DictFile="/usr/local/share/dicts/ispell/english.dict",

AffFile="/usr/local/share/dicts/ispell/english.aff",
StopFile="/usr/local/share/dicts/ispell/english.stop"’

LIKE ispell_template;

Here,DictFile, AffFile, StopFile are location of dictionary files and file with stop words.

Relative paths inOPTIONresolved respective to$PGROOT/share/dicts_data .

CREATE FULLTEXT DICTIONARY en_ispell
OPTION ’DictFile="ispell/english.dict",

AffFile="ispell/english.aff",
StopFile="english.stop"’

LIKE ispell_template;

Ispell dictionary usually recognizes a restricted set of words, so it should be used in conjunction with
another "broader" dictionary, for example, stemming dictionary, which recognizes "everything".

Ispell dictionary has support for splitting compound words based on an ispell dictionary. This is a nice
feature and FTS in PostgreSQL supports it. Notice, that affix file should specify special flag with the
compoundwords controlled statement, which used in dictionary to mark words participated in com-
pound formation.

compoundwords controlled z

2. http://en.wikipedia.org/wiki/MySpell
3. http://sourceforge.net/projects/hunspell
4. http://wiki.services.openoffice.org/wiki/Dictionaries

26

Chapter 2. FTS Operators and Functions

Several examples for Norwegian language:

=# select lexize(’norwegian_ispell’,’overbuljongterningpakkmesterassistent’);
{over,buljong,terning,pakk,mester,assistent}

=# select lexize(’norwegian_ispell’,’sjokoladefabrikk’);
{sjokoladefabrikk,sjokolade,fabrikk}

Note: MySpell doesn’t supports compound words, Hunspell has sophisticated support of compound
words. At present, FTS implements only basic compound word operations of Hunspell.

2.8.3. Snowball stemming dictionary
Snowball template dictionary is based on the project of Martin Porter, an inventor of popular Porter’s
stemming algorithm for English language, and now supported many languages (see Snowball site5 for
more information). FTS contains a large number of stemmers for many languages. The only option, which
accepts snowball stemmer is a location of a file with stop words. It can be defined usingALTER FULLTEXT

DICTIONARYcommand.

ALTER FULLTEXT DICTIONARY en_stem
OPTION ’/usr/local/share/dicts/ispell/english-utf8.stop’;

Relative paths inOPTIONresolved respective to$PGROOT/share/dicts/data .

ALTER FULLTEXT DICTIONARY en_stem OPTION ’english.stop’;

Snowball dictionary recognizes everything, so the best practice of usage is to place it at the end of the
dictionary stack. It it uselessness to have it before any dictionary, because a lexeme will not pass through
a stemmer.

2.8.4. Synonym dictionary
This dictionary template is used to create dictionaries which replaces one word by synonym word. Phrases
are not supported, use thesaurus dictionary (Section 2.8.5) if you need them. Synonym dictionary can be
used to overcome linguistic problems, for example, to avoid reducing of word ’Paris’ by a english stemmer
dictionary to ’pari’. In that case, it’s enough to haveParis paris line in synonym dictionary and put it
before en_stemm dictionary.

=# select * from ts_debug(’english’,’Paris’);
Alias | Description | Token | Dicts list | Lexized token

-------+-------------+-------+----------------------+----------------------------

5. http://snowball.tartarus.net

27

Chapter 2. FTS Operators and Functions

lword | Latin word | Paris | {pg_catalog.en_stem} | pg_catalog.en_stem: {pari}
(1 row)
=# alter fulltext mapping on english for lword with synonym,en_stem;
ALTER FULLTEXT MAPPING
Time: 340.867 ms
postgres=# select * from ts_debug(’english’,’Paris’);

Alias | Description | Token | Dicts list | Lexized token
-------+-------------+-------+---+-----------------------------

lword | Latin word | Paris | {pg_catalog.synonym,pg_catalog.en_stem} | pg_catalog.synonym: {paris}
(1 row)

2.8.5. Thesaurus dictionary
Thesaurus - is a collection of words with included information about the relationships of words and
phrases, i.e., broader terms (BT), narrower terms (NT), preferred terms, non-preferred, related terms,etc.

Basically,thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally, pre-
serves them for indexing. Thesaurus used when indexing, so any changes in thesaurusrequire reindexing.
Current realization of thesaurus dictionary (TZ) is an extension of synonym dictionary withphrasesup-
port. Thesaurus is a plain file of the following format:

this is a comment
sample word(s) : indexed word(s)
...............................

where colon (:) symbol is a delimiter.

TZ usessubdictionary(should be defined FTS configuration) to normalize thesaurus text. It’s possible to
define only one dictionary. Notice, thatsubdictionaryproduces an error, if it couldn’t recognize word. In
that case, you should remove definition line with this word or teachsubdictionaryto know it. Use asterisk
(*) at the beginning of indexed word to skip subdictionary. It’s still required, that sample words should be
known.

Thesaurus dictionary looks for the most longest match.

Stop-words recognized by subdictionary replaced by ’stop-word placeholder’, i.e., important only their
position. To break possible ties thesaurus applies the last definition. To illustrate this, consider thesaurus
(with simple subdictionary) rules with pattern ’swsw, where ’s’ designates any stop-word and ’w’ - any
known word:

a one the two : swsw
the one a two : swsw2

Words ’a’ and ’the’ are stop-words defined in the configuration of a subdictionary. Thesaurus considers
texts’the one the two’ and’that one then two’ as equal and will use definition ’swsw2’.

As a normal dictionary, it should be assigned to the specific lexeme types. Since TZ has a capability
to recognize phrases it must remember its state and interact with parser. TZ use these assignments to
check if it should handle next word or stop accumulation. Compiler of TZ should take care about proper

28

Chapter 2. FTS Operators and Functions

configuration to avoid confusion. For example, if TZ is assigned to handle onlylword lexeme, then TZ
definition like ’ one 1:11’ will not works, since lexeme typedigit doesn’t assigned to the TZ.

2.8.5.1. Thesaurus configuration

To define new thesaurus dictionary one can use thesaurus template, for example:

CREATE FULLTEXT DICTIONARY tz_simple
OPTION ’DictFile="dicts_data/thesaurus.txt.sample", Dictionary="en_stem"’
LIKE thesaurus_template;

Here:

• tz_simple - is the thesaurus dictionary name
• DictFile="/path/to/tz_simple.txt" - is the location of thesaurus file
• Dictionary="en_stem" defines dictionary (snowball english stemmer) to use for thesaurus normal-

ization. Notice, that en_stem dictionary has it’s own configuration (stop-words, for example).

Now, it’s possible to bind thesaurus dictionarytz_simple and selectedtokens , for example:

ALTER FULLTEXT MAPPING ON russian_utf8 FOR lword,lhword,lpart_hword WITH tz_simple;

2.8.5.2. Thesaurus examples

Let’s consider simple astronomical thesaurustz_astro , which contains some astronomical
word-combinations:

supernovae stars : sn
crab nebulae : crab

Below, we create dictionary and bind some types of tokens with astronomical thesaurus and english stem-
mmer.

=# CREATE FULLTEXT DICTIONARY tz_astro OPTION
’DictFile="dicts_data/tz_astro.txt", Dictionary="en_stem"’

LIKE thesaurus_template;
=# ALTER FULLTEXT MAPPING ON russian_utf8 FOR lword,lhword,lpart_hword

WITH tz_astro,en_stem;

Now, we could see how it works. Notice, thatlexize couldn’t use for testing (see description oflexize)
thesaurus, so we could useplainto_tsquery and to_tsvector functions, which accepttext argu-
ment, not alexeme .

=# select plainto_tsquery(’supernova star’);
plainto_tsquery

29

Chapter 2. FTS Operators and Functions

’sn’
=# select to_tsvector(’supernova star’);

to_tsvector

’sn’:1

In principle, one can useto_tsquery if quote argument.

=# select to_tsquery(”’supernova star”’);
to_tsquery

’sn’

Notice, that supernova star matchessupernovae stars in tz_astro , because we specified
en_stem stemmer in thesaurus definition.

To keep an original phrase in full-text index just add it to the right part of definition:

supernovae stars : sn supernovae stars

=# select plainto_tsquery(’supernova star’);

plainto_tsquery

’sn’ & ’supernova’ & ’star’

2.9. FTS Configuration
A FTS configuration specifies all of the equipment necessary to transform a document into atsvector :
the parser that breaks its text into tokens, and the dictionaries, which then transform each token into a
lexeme. Every call toto_tsvector() , to_tsquery() uses a configuration to perform its processing.
Default FTS configurations contain in 4 tables inpg_catalog schema, namely,pg_ts_cfg ,
pg_ts_parser , pg_ts_dict , pg_ts_cfgmap .

To facilitate management of FTS objects a set of SQL commands, described in FTS ReferencePart I, is
available. This is a recommended way.

Predefined system FTS objects are available inpg_catalog schema. If you need a custom configuration
you can create a new FTS object and modify it using SQL commands, described in FTS ReferencePart
I. For example, to customize parser, create full-text configuration and change the value of thePARSER

parameter.

=# CREATE FULLTEXT CONFIGURATION public.testcfg LIKE russian_utf8 WITH MAP;
=# ALTER FULLTEXT CONFIGURATION public.testcfg SET PARSER htmlparser;

New FTS objects created in the current schema on default, usually, inpublic schema, but schema-
qualified name could be used to create object in the specified schema. It owned by the current user and can
be changed usingALTER FULLTEXT ... OWNERSQL command. Visibility of FTS objects conforms to
the standard PostgreSQL rule and defined bysearch_path variable, see example inALTER FULLTEXT

30

Chapter 2. FTS Operators and Functions

... OWNER. By default, the first visible schema is thepg_catalog , so that system FTS objects always
mask users. To change that, explicitly specifypg_catalog in thesearch_path variable.

GUC variabletsearch_conf_name (optionally schema-qualified) defines the name of thecurrent active
configuration. It can be defined inpostgresql.conf or using SQL command.

Notice, thatpg_catalog schema, if not explicitly specified in thesearch_path , implicitly placed as
the first schema to browse.

=# alter fulltext configuration public.russian_utf8 SET AS DEFAULT;
ALTER FULLTEXT CONFIGURATION

=# \dF *.russ*utf8
List of fulltext configurations

Schema | Name | Locale | Default | Description
------------+--------------+-------------+---------+---

pg_catalog | russian_utf8 | ru_RU.UTF-8 | Y | default configuration for Russian/UTF-8
public | russian_utf8 | ru_RU.UTF-8 | Y |

(2 rows)

=# show tsearch_conf_name;
tsearch_conf_name

pg_catalog.russian_utf8

(1 row)

=# set search_path=public, pg_catalog;
SET
=# show tsearch_conf_name;

tsearch_conf_name

public.russian_utf8

There are several psql commands, which display various information about FTS objects (Section 2.11).

2.10. Debugging
Functionts_debug allows easy testing your full-text configuration.

ts_debug([cfgname | oid], document TEXT) RETURNS SETOF tsdebug

It displays information about every token fromdocument as they produced by a parser and processed by
dictionaries as it was defined in configuration, specified bycfgname or oid .

tsdebug type defined as

CREATE TYPE tsdebug AS (
"Alias" text,
"Description" text,
"Token" text,

31

Chapter 2. FTS Operators and Functions

"Dicts list" text[],
"Lexized token" text

For demonstration of how functionts_debug works we first createpublic.english configuration and
ispell dictionary for english language. You may skip test step and play with standardenglish configura-
tion.

CREATE FULLTEXT CONFIGURATION public.english LIKE pg_catalog.english WITH MAP AS DEFAULT;
CREATE FULLTEXT DICTIONARY en_ispell
OPTION ’DictFile="/usr/local/share/dicts/ispell/english-utf8.dict",

AffFile="/usr/local/share/dicts/ispell/english-utf8.aff",
StopFile="/usr/local/share/dicts/english.stop"’

LIKE ispell_template;
ALTER FULLTEXT MAPPING ON public.english FOR lword WITH en_ispell,en_stem;

=# select * from ts_debug(’public.english’,’The Brightest supernovaes’);
Alias | Description | Token | Dicts list | Lexized token

-------+---------------+-------------+---------------------------------------+---------------------------------
lword | Latin word | The | {public.en_ispell,pg_catalog.en_stem} | public.en_ispell: {}
blank | Space symbols | | |
lword | Latin word | Brightest | {public.en_ispell,pg_catalog.en_stem} | public.en_ispell: {bright}
blank | Space symbols | | |
lword | Latin word | supernovaes | {public.en_ispell,pg_catalog.en_stem} | pg_catalog.en_stem: {supernova}

(5 rows)

In this example, the word ’Brightest’ was recognized by a parser as aLatin word (alias lword) and
came through a dictionariespublic.en_ispell,pg_catalog.en_stem . It was recognized by
public.en_ispell , which reduced it to the nounbright . Word supernovaes is unknown for
public.en_ispell dictionary, so it was passed to the next dictionary, and, fortunately, was recognized
(in fact, public.en_stem is a stemming dictionary and recognizes everything, that is why it placed at
the end the dictionary stack).

The wordThe was recognized bypublic.en_ispell dictionary as a stop-word (Section 1.3.6) and will
not indexed.

You can always explicitly specify what columns you want to see

=# select "Alias", "Token", "Lexized token"
from ts_debug(’public.english’,’The Brightest supernovaes’);

Alias | Token | Lexized token
-------+-------------+---------------------------------

lword | The | public.en_ispell: {}
blank | |
lword | Brightest | public.en_ispell: {bright}
blank | |
lword | supernovaes | pg_catalog.en_stem: {supernova}

(5 rows)

32

Chapter 2. FTS Operators and Functions

2.11. Psql support
Information about FTS objects can be obtained inpsql using a set of commands

\dF{,d,p}[+] [PATTERN]

Optional+ used to produce more details.

Optional parameterPATTERNis a name (can be schema-qualified) of the FTS object. IfPATTERNis not
specified, then information aboutdefault object (configuration, parser, dictionaries) will be displayed.
Visibility of FTS objects conforms PostgreSQL rule.PATTERNcan be a regular expression and should
applyseparatelyto schema name and object name. Following examples illustrate this.

=# \dF *fts*
List of fulltext configurations

Schema | Name | Locale | Description
--------+---------+-------------+-------------

public | fts_cfg | ru_RU.UTF-8 |

=# \dF *.fts*
List of fulltext configurations

Schema | Name | Locale | Description
--------+---------+-------------+-------------

fts | fts_cfg | ru_RU.UTF-8 |
public | fts_cfg | ru_RU.UTF-8 |

\dF[+] [PATTERN]

List full-text configurations (add "+" for more detail)

By default (withoutPATTERN), information about allvisible full-text configurations will be dis-
played.

=# \dF russian_utf8
List of fulltext configurations

Schema | Name | Locale | Default | Description
------------+--------------+-------------+---------+---

pg_catalog | russian_utf8 | ru_RU.UTF-8 | Y | default configuration for Russian/UTF-8

=# \dF+ russian_utf8
Configuration "pg_catalog.russian_utf8"
Parser name: "pg_catalog.default"
Locale: ’ru_RU.UTF-8’ (default)

Token | Dictionaries
--------------+-------------------------

email | pg_catalog.simple
file | pg_catalog.simple
float | pg_catalog.simple
host | pg_catalog.simple
hword | pg_catalog.ru_stem_utf8
int | pg_catalog.simple
lhword | public.tz_simple
lpart_hword | public.tz_simple

33

Chapter 2. FTS Operators and Functions

lword | public.tz_simple
nlhword | pg_catalog.ru_stem_utf8
nlpart_hword | pg_catalog.ru_stem_utf8
nlword | pg_catalog.ru_stem_utf8
part_hword | pg_catalog.simple
sfloat | pg_catalog.simple
uint | pg_catalog.simple
uri | pg_catalog.simple
url | pg_catalog.simple
version | pg_catalog.simple
word | pg_catalog.ru_stem_utf8

\dFd[+] [PATTERN]

List full-text dictionaries (add "+" for more detail).

By default (withoutPATTERN), information about allvisibledictionaries will be displayed.

postgres=# \dFd
List of fulltext dictionaries

Schema | Name | Description
------------+-----------------------+---

pg_catalog | danish_iso_8859_1 | Snowball stemmer
pg_catalog | danish_utf_8 | Snowball stemmer
pg_catalog | dutch_iso_8859_1 | Snowball stemmer
pg_catalog | dutch_utf_8 | Snowball stemmer
pg_catalog | en_stem | English stemmer. Snowball.
pg_catalog | finnish_iso_8859_1 | Snowball stemmer
pg_catalog | finnish_utf_8 | Snowball stemmer
pg_catalog | french_iso_8859_1 | Snowball stemmer
pg_catalog | french_utf_8 | Snowball stemmer
pg_catalog | german_iso_8859_1 | Snowball stemmer
pg_catalog | german_utf_8 | Snowball stemmer
pg_catalog | hungarian_iso_8859_1 | Snowball stemmer
pg_catalog | hungarian_utf_8 | Snowball stemmer
pg_catalog | ispell_template | Ispell dictionary template
pg_catalog | italian_iso_8859_1 | Snowball stemmer
pg_catalog | italian_utf_8 | Snowball stemmer
pg_catalog | norwegian_iso_8859_1 | Snowball stemmer
pg_catalog | norwegian_utf_8 | Snowball stemmer
pg_catalog | portuguese_iso_8859_1 | Snowball stemmer
pg_catalog | portuguese_utf_8 | Snowball stemmer
pg_catalog | ru_stem_koi8 | KOI-8 russian stemmer. Snowball.
pg_catalog | ru_stem_utf8 | UTF-8 russian stemmer. Snowball.
pg_catalog | ru_stem_win1251 | WIN1251 russian stemmer. Snowball.
pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | spanish_iso_8859_1 | Snowball stemmer
pg_catalog | spanish_utf_8 | Snowball stemmer

...
pg_catalog | synonym | synonym dictionary: replace word by its synonym
pg_catalog | thesaurus_template | Thesaurus template. Phrase by phrase substitution

34

Chapter 2. FTS Operators and Functions

\dFp[+] [PATTERN]

List full-text parsers (add "+" for more detail)

By default (withoutPATTERN), information about allvisiblefull-text parsers will be displayed.

postgres=# \dFp
List of fulltext parsers

Schema | Name | Description
------------+---------+---------------------

pg_catalog | default | default word parser
(1 row)
postgres=# \dFp+

Fulltext parser "pg_catalog.default"
Method | Function | Description

-------------------+---------------------------+-------------
Start parse | pg_catalog.prsd_start |
Get next token | pg_catalog.prsd_nexttoken |
End parse | pg_catalog.prsd_end |
Get headline | pg_catalog.prsd_headline |
Get lexeme’s type | pg_catalog.prsd_lextype |

Token’s types for parser "pg_catalog.default"
Token name | Description

--------------+-----------------------------------
blank | Space symbols
email | Email
entity | HTML Entity
file | File or path name
float | Decimal notation
host | Host
hword | Hyphenated word
int | Signed integer
lhword | Latin hyphenated word
lpart_hword | Latin part of hyphenated word
lword | Latin word
nlhword | Non-latin hyphenated word
nlpart_hword | Non-latin part of hyphenated word
nlword | Non-latin word
part_hword | Part of hyphenated word
protocol | Protocol head
sfloat | Scientific notation
tag | HTML Tag
uint | Unsigned integer
uri | URI
url | URL
version | VERSION
word | Word

(23 rows)

35

I. FTS Reference

I. SQL Commands
This part contains reference information for the SQL commands related to the full-text search (FTS),
supported by PostgreSQL.

CREATE FULLTEXT CONFIGURATION

Name
CREATE FULLTEXT CONFIGURATION— create full-text configuration

Synopsis

CREATE FULLTEXT CONFIGURATIONcfgname

PARSER prsname [LOCALE localename]
[AS DEFAULT];

CREATE FULLTEXT CONFIGURATIONcfgname

[{ PARSER prsname | LOCALE localename } [...]]
LIKE template_cfg [WITH MAP]
[AS DEFAULT];

Description
CREATE FULLTEXT CONFIGURATIONwill create a new FTS configuration. The new configuration will
be owned by the user issuing the command.

If a schema name is given (for example,CREATE FULLTEXT CONFIGURATIONmyschema.cfgname

...) then the configuration is created in the specified schema. Otherwise it is created in the current
schema.

Parameters

cfgname

The name (optionally schema-qualified) of the full-text configuration to be created.

PARSER

psrname is the name (optionally schema-qualified) of the parser.

LOCALE

localename is the name of the locale. It should match server’s locale (lc_ctype) to identify full-
text configuration used by default.

LIKE

Existing full-text configurationtemplate_cfg (optionally schema-qualified) will be used to create
new configuration. Values ofPARSER, LOCALEparameters, if defined, will substitute default values
of the template configuration.

3

CREATE FULLTEXT CONFIGURATION

WITH MAP

If specified, then full-text mapping of template configuration is copied to the new configuration.

AS DEFAULT

Setdefault flag for the configuration, which used to identify if this configuration is selectable on
default (seeLOCALEdescription above). It is possible to havemaximum oneconfiguration with the
same locale and in the same schema with this flag enabled.

Examples
Create new configurationtest with default parser andru_RU.UTF-8 locale.

=# CREATE FULLTEXT CONFIGURATION test PARSER default LOCALE ’ru_RU.UTF-8’;
=# \dF+ test
Configuration "public.test"
Parser name: "pg_catalog.default"
Locale: ’ru_RU.UTF-8’

Token | Dictionaries
-------+--------------

Now we create configuration usingenglish configuration (parser and full-text mapping) but with
ru_RU.UTF-8 locale.

=# CREATE FULLTEXT CONFIGURATION test LOCALE ’ru_RU.UTF-8’ LIKE english WITH MAP;
CREATE FULLTEXT CONFIGURATION
=# \dF+ test

Configuration "public.test"
Parser name: "pg_catalog.default"
Locale: ’ru_RU.UTF-8’

Token | Dictionaries
--------------+--------------------

email | pg_catalog.simple
file | pg_catalog.simple
float | pg_catalog.simple
host | pg_catalog.simple
hword | pg_catalog.simple
int | pg_catalog.simple
lhword | pg_catalog.en_stem
lpart_hword | pg_catalog.en_stem
lword | pg_catalog.en_stem
nlhword | pg_catalog.simple
nlpart_hword | pg_catalog.simple
nlword | pg_catalog.simple
part_hword | pg_catalog.simple
sfloat | pg_catalog.simple
uint | pg_catalog.simple
uri | pg_catalog.simple
url | pg_catalog.simple
version | pg_catalog.simple

4

CREATE FULLTEXT CONFIGURATION

word | pg_catalog.simple

In the example below we first createtest configuration (inpublic schema by default) withdefault flag
enabled using system configurationpg_catalog.russian_utf8 as template. Then, we create another
configuration with the same parameters as earlier and show thatdefault flag was removed fromtest

configuration.

=# CREATE FULLTEXT CONFIGURATION test LIKE pg_catalog.russian_utf8 AS DEFAULT;
CREATE FULLTEXT CONFIGURATION
=# \dF public.test

List of fulltext configurations
Schema | Name | Locale | Default | Description

--------+------+-------------+---------+-------------
public | test | ru_RU.UTF-8 | Y |

=# CREATE FULLTEXT CONFIGURATION test2 LIKE pg_catalog.russian_utf8 AS DEFAULT;
NOTICE: drop default flag for fulltext configuration "public.test"
=# \dF public.test*

List of fulltext configurations
Schema | Name | Locale | Default | Description

--------+-------+-------------+---------+-------------
public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | Y |

=# ALTER FULLTEXT CONFIGURATION test2 DROP DEFAULT;
ALTER FULLTEXT CONFIGURATION
=# \dF public.test*

List of fulltext configurations
Schema | Name | Locale | Default | Description

--------+-------+-------------+---------+-------------
public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | |

See Also
DROP FULLTEXT CONFIGURATION, ALTER FULLTEXT CONFIGURATION

5

DROP FULLTEXT CONFIGURATION

Name
DROP FULLTEXT CONFIGURATION— remove a full-text configuration

Synopsis

DROP FULLTEXT CONFIGURATION [IF EXISTS]cfgname [CASCADE | RESTRICT];

Description
DROP FULLTEXT CONFIGURATIONremoves full-text configuration from the database. Only its owner
may destroy a configuration.

To drop a configuration and all FTS objects, which depends on it,CASCADEmust be specified.

Parameters

IF EXISTS

Do not throw an error if the configuration does not exist. A notice is issued in this case.

cfgname

The name (optionally schema-qualified) of the configuration to drop.

CASCADE

Automatically drop FTS objects that depend on the configuration

RESTRICT

Refuse to drop the configuration if any objects depend on it. This is the default.

See Also
CREATE FULLTEXT CONFIGURATION

6

ALTER FULLTEXT CONFIGURATION

Name
ALTER FULLTEXT CONFIGURATION— change a full-text configuration

Synopsis

ALTER FULLTEXT CONFIGURATIONcfgname RENAME TOnewcfgname ;

ALTER FULLTEXT CONFIGURATIONcfgname SET { LOCALE localename | PARSER prsname } [, ...];

ALTER FULLTEXT CONFIGURATIONcfgname { SET AS | DROP } DEFAULT;

Description
ALTER FULLTEXT CONFIGURATIONchanges an existing full-text configuration.

Parameters

cfgname

The name (optionally schema-qualified) of the configuration to rename.

RENAME TO

newcfgname is the new name of the configuration. Notice, that schema cannot be changed.

SET

Values ofLOCALE, PARSERparameters, if defined, will substitute current values.

SET AS DEFAULT

Setdefault flag for the configuration.

DROP DEFAULT

Removedefault flag for the configuration.

Examples
There are could be maximum one configuration withDEFAULTflag defined in the same schema and with
the same locale.

=# \dF public.test*
List of fulltext configurations

Schema | Name | Locale | Default | Description
--------+-------+-------------+---------+-------------

7

ALTER FULLTEXT CONFIGURATION

public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | Y |

=# ALTER FULLTEXT CONFIGURATION test2 DROP DEFAULT;
ALTER FULLTEXT CONFIGURATION
=# \dF public.test*

List of fulltext configurations
Schema | Name | Locale | Default | Description

--------+-------+-------------+---------+-------------
public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | |

=# ALTER FULLTEXT CONFIGURATION test2 SET AS DEFAULT;
ALTER FULLTEXT CONFIGURATION
Time: 1.629 ms
postgres=# \dF public.test*

List of fulltext configurations
Schema | Name | Locale | Default | Description

--------+-------+-------------+---------+-------------
public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | Y |

See Also
CREATE FULLTEXT CONFIGURATION

8

CREATE FULLTEXT DICTIONARY

Name
CREATE FULLTEXT DICTIONARY— create a dictionary for full-text search

Synopsis

CREATE FULLTEXT DICTIONARYdictname

LEXIZE lexize_function

[INIT init_function]
[OPTION opt_text]

;

CREATE FULLTEXT DICTIONARYdictname

[{ INIT init_function

| LEXIZE lexize_function

| OPTION opt_text }
[...]] LIKE template_dictname ;

Description
CREATE FULLTEXT DICTIONARYwill create a new dictionary used to transform input word to a lexeme.

If a schema name is given (for example,CREATE FULLTEXT DICTIONARYmyschema.dictname ...)
then the dictionary is created in the specified schema. Otherwise it is created in the current schema.

Parameters

dictname

The name (optionally schema-qualified) of the new dictionary.

LEXIZE

lexize_function is the name of the function, which does transformation of input word.

INIT

init_function is the name of the function, which initialize dictionary.

OPTION

opt_text is the meaning of theopt_text varies among dictionaries. Usually, it stores various
options required for the dictionary, for example, location of stop words file. Relative paths are defined
with regard toPGROOT/share/dicts_data directory.

9

CREATE FULLTEXT DICTIONARY

LIKE

template_dictname is the name (optionally schema-qualified) of existing full-text dictionary used
as a template. Values ofINIT, LEXIZE, OPTION parameters, if defined, will substitute default
values of the template dictionary.

Examples
Create dictionarypublic.my_simple in public schema, which uses functions defined for system
pg_catalog.simple dictionary. We specify location of stop-word file.

=# CREATE FULLTEXT DICTIONARY public.my_simple LEXIZE dsimple_lexize INIT dsimple_init OPTION ’/usr/local/share/dicts/english.stop’;
=# select lexize(’public.my_simple’,’YeS’);

lexize

{yes}
=# select lexize(’public.my_simple’,’The’);

lexize

{}

This could be done easier using template.

=# CREATE FULLTEXT DICTIONARY public.my_simple OPTION ’/usr/local/share/dicts/english.stop’ LIKE pg_catalog.simple;
=# select lexize(’public.my_simple’,’YeS’);

lexize

{yes}
=# select lexize(’public.my_simple’,’The’);

lexize

{}

See Also
DROP FULLTEXT DICTIONARY, ALTER FULLTEXT DICTIONARY

10

DROP FULLTEXT DICTIONARY

Name
DROP FULLTEXT DICTIONARY— remove a full-text dictionary

Synopsis

DROP FULLTEXT DICTIONARY [IF EXISTS] dictname [CASCADE | RESTRICT];

Description
DROP FULLTEXT DICTIONARYremoves full-text dictionary from the database. Only its owner may de-
stroy a configuration.

To drop a dictionary and all FTS objects, which depends on it,CASCADEmust be specified.

Parameters

IF EXISTS

Do not throw an error if the dictionary does not exist. A notice is issued in this case.

dictname

The name (optionally schema-qualified) of the dictionary to drop.

CASCADE

Automatically drop FTS objects that depend on the dictionary.

RESTRICT

Refuse to drop the dictionary if any objects depend on it. This is the default.

See Also
CREATE FULLTEXT DICTIONARY

11

ALTER FULLTEXT DICTIONARY

Name
ALTER FULLTEXT DICTIONARY— change a full-text dictionary

Synopsis

ALTER FULLTEXT DICTIONARYdictname RENAME TOnewdictname ;

ALTER FULLTEXT DICTIONARYdictname SET OPTION opt_text ;

Description
ALTER FULLTEXT DICTIONARYchange an existing full-text dictionary.

Parameters

dictname

The name (optionally schema-qualified) of the dictionary to rename.

newdictname

The new name of the dictionary. Notice, that schema cannot be changed.

SET OPTION

Define a new valueopt_text of the existing full-text dictionary.

See Also
CREATE FULLTEXT DICTIONARY

12

CREATE FULLTEXT MAPPING

Name
CREATE FULLTEXT MAPPING— binds tokens and dictionaries

Synopsis

CREATE FULLTEXT MAPPING ONcfgname FOR tokentypename [, ...] WITH dictname1 [, ...];

Description
CREATE FULLTEXT MAPPINGbind token of typelexemetypename and full-text dictionaries in given
configurationcfgname . The order of dictionaries is important, since lexeme processed inthat order.

Parameters

cfgname

The name (optionally schema-qualified) of the full-text configuration.

FOR

tokentypename is the type of token full-text mapping created for.

WITH

dictname1 is the name of full-text dictionary, which binds to thetokentypename .

Examples
In example below, we first createtestcfg full-text configuration and then create mapping for token of
typeslword,lhword,lpart_hword .

=# CREATE FULLTEXT CONFIGURATION testcfg LOCALE ’testlocale’ LIKE russian_utf8;
CREATE FULLTEXT CONFIGURATION
=# CREATE FULLTEXT MAPPING ON testcfg FOR lword,lhword,lpart_hword WITH simple,en_stem;
CREATE FULLTEXT MAPPING
=# \dF+ testcfg
Configuration ’testcfg’
Parser name: ’default’
Locale: ’testlocale’

Token | Dictionaries
-------------+----------------

lhword | simple,en_stem

13

CREATE FULLTEXT MAPPING

lpart_hword | simple,en_stem
lword | simple,en_stem

See Also
ALTER FULLTEXT MAPPING

14

ALTER FULLTEXT MAPPING

Name
ALTER FULLTEXT MAPPING— change token binding with FTS dictionaries

Synopsis

ALTER FULLTEXT MAPPING ONcfgname FOR tokentypename [, ...] WITH dictname1 [, ...];
ALTER FULLTEXT MAPPING ONcfgname [FOR tokentypename [, ...]] REPLACE olddictname TO newdictname ;

Description
ALTER FULLTEXT MAPPINGchange binding of token oftokentypename or create one if binding
doesn’t exists.

Parameters

cfgname

The name (optionally schema-qualified) of the full-text configuration.

FOR

tokentypename is the type of token full-text mapping created for.

WITH

dictname1 is the name of full-text dictionary, which binds to thetokentypename .

REPLACE

olddictname is the name of full-text dictionary to be replaced by anewdictname .

TO

newdictname is the name of full-text dictionary, which replacesolddictname .

Examples

=# ALTER FULLTEXT MAPPING ON testcfg FOR lword WITH simple;
ALTER FULLTEXT MAPPING
=# ALTER FULLTEXT MAPPING ON testcfg FOR lhword WITH simple,en_stem;
ALTER FULLTEXT MAPPING
=# \dF+ testcfg

Configuration ’testcfg’
Parser name: ’default’
Locale: ’testlocale’

15

ALTER FULLTEXT MAPPING

Token | Dictionaries
--------+----------------

lhword | simple,en_stem
lword | simple

See Also
CREATE FULLTEXT MAPPING

16

DROP FULLTEXT MAPPING

Name
DROP FULLTEXT MAPPING— remove a binding between token and dictionaries

Synopsis

DROP FULLTEXT MAPPING [IF EXISTS] ON cfgname FOR tokentypename ;

Description
DROP FULLTEXT MAPPINGremove a full-text mapping in a given configuration for a token of a specific
type.

Parameters

IF EXISTS

Do not throw an error if the specified full-text mapping does not exist. A notice is issued in this case.

cfgname

The name (optionally schema-qualified) of the configuration.

tokentypename

A token type for which full-text mapping dropped.

See Also
CREATE FULLTEXT MAPPING

17

CREATE FULLTEXT PARSER

Name
CREATE FULLTEXT PARSER— create a parser for full-text search

Synopsis

CREATE FULLTEXT PARSERprsname

START= start_function

GETTOKEN gettoken_function

END end_function

LEXTYPES lextypes_function

[HEADLINE headline_function]
;

Description
CREATE FULLTEXT PARSERwill create a new parser used to break document onto lexemes.

If a schema name is given (for example,CREATE FULLTEXT PARSERmyschema.prsname ...) then the
parser is created in the specified schema. Otherwise it is created in the current schema.

More information about developing custom parser is available from thisAppendix B.

Parameters

prsname

The name (optionally schema-qualified) of the new parser.

START

start_function is the name of the function, that initialize a parser.

GETTOKEN

gettoken_function, is the name of the function, that returns a token.

END

end_function, is the name of the function, that called after parsing is finished.

LEXTYPES

lextypes_function, is the name of the function, that returns an array containing the id, alias and
the description of the tokens of a parser.

18

CREATE FULLTEXT PARSER

HEADLINE

headline_function, is the name of the function, that returns a representative piece of document.

See Also
DROP FULLTEXT PARSER, ALTER FULLTEXT PARSER

19

DROP FULLTEXT PARSER

Name
DROP FULLTEXT PARSER— remove a full-text parser

Synopsis

DROP FULLTEXT PARSER [IF EXISTS] prsname [CASCADE | RESTRICT];

Description
DROP FULLTEXT PARSERremoves full-text parser from the database. Only its owner may destroy a
parser.

To drop a parser and all FTS objects, which depends on it,CASCADEmust be specified.

Parameters

IF EXISTS

Do not throw an error if the parser does not exist. A notice is issued in this case.

prsname

The name (optionally schema-qualified) of the parser to drop.

CASCADE

Automatically drop FTS objects that depend on the parser.

RESTRICT

Refuse to drop the parser if any objects depend on it. This is the default.

See Also
CREATE FULLTEXT PARSER

20

ALTER FULLTEXT PARSER

Name
ALTER FULLTEXT PARSER— change a full-text parser

Synopsis

ALTER FULLTEXT PARSERprsname RENAME TOnewprsname ;

Description
ALTER FULLTEXT PARSERchanges an existing full-text parser.

Parameters

prsname

The name (optionally schema-qualified) of the parser to rename.

newprsname

The new name of the parser. Notice, that schema cannot be changed.

See Also
CREATE FULLTEXT PARSER

21

ALTER FULLTEXT ... OWNER

Name
ALTER FULLTEXT ... OWNER— change the owner of a full-text object

Synopsis

ALTER FULLTEXT { PARSER|DICTIONARY|CONFIGURATION }name OWNER TOnewowner ;

Description
ALTER FULLTEXT ... OWNERchanges the owner of an existing full-text object.

Parameters

name

The name (optionally schema-qualified) of the full-text object.

newowner

The new owner of the full-text object.

Examples
In this example we want to create new dictionary in schematest using predefined dictionary from system
catalog. Then we change owner of the new dictionary. To demonstrate visibility rule we use the name of
the dictionary without schema but setting the propersearch_path . The name of the new dictionary is
the same by intent.

=# CREATE SCHEMA test;
=# CREATE FULLTEXT DICTIONARY test.synonym LIKE pg_catalog."synonym";
=# SHOW search_path;

search_path

"$user",public
=# SET search_path TO test,public;
=# ALTER FULLTEXT DICTIONARY synonym OWNER TO megera;

22

COMMENT ON FULLTEXT

Name
COMMENT ON FULLTEXT— define or change the comment of a full-text object

Synopsis

COMMENT ON FULLTEXT { CONFIGURATION | DICTIONARY | PARSER }objname IS text ;

Description
COMMENT ON FULLTEXTstores a comment about a full-text object (configuration, dictionary, parser).

To modify a comment, issue a newCOMMENT ON FULLTEXTcommand for the same full-text object.
Only one comment string is stored for each object. To remove a comment, writeNULL in place of the
text string. Comments are automatically dropped when the object is dropped.

Parameters

objname

The name (optionally schema-qualified) of the full-text object.

text

The new comment, written as a string literal; orNULL to drop the comment.

Examples

=# COMMENT ON FULLTEXT DICTIONARY intdict IS ’Dictionary for integers’;
=# \dFd+ intdict

List of fulltext dictionaries
Schema | Name | Init method | Lexize method | Init options | Description

--------+---------+---------------+-----------------+---------------------------+-------------------------
public | intdict | dinit_intdict | dlexize_intdict | MAXLEN=6,REJECTLONG=false | Dictionary for integers

23

II. Appendixes

24

Appendix A. FTS Complete Tutorial
This tutorial is about how to setup typical FTS application using PostgreSQL.

We create our configurationpg, which will be default for localeru_RU.UTF-8 . To be safe, we do this in
transaction.

begin;
CREATE FULLTEXT CONFIGURATION public.pg LOCALE ’ru_RU.UTF-8’ LIKE english WITH MAP AS DEFAULT;

We’ll use postgresql specific dictionary usingsynonym template dictionary and store it under
PG_ROOT/share/dicts_data directory. The dictionary looks like:

postgres pg
pgsql pg
postgresql pg

CREATE FULLTEXT DICTIONARY pg_dict OPTION ’pg_dict.txt’ LIKE synonym;

Register ispell dictionaryen_ispell usingispell_template template.

CREATE FULLTEXT DICTIONARY en_ispell
OPTION ’DictFile="english-utf8.dict",

AffFile="english-utf8.aff",
StopFile="english-utf8.stop"’

LIKE ispell_template;

Use the same stop-word list for snowball stemmeren_stem , which is available on default.

ALTER FULLTEXT DICTIONARY en_stem SET OPTION ’english-utf8.stop’;

Modify mappings for Latin words for configuration ’pg’

ALTER FULLTEXT MAPPING ON pg FOR lword,lhword,lpart_hword
WITH pg_dict,en_ispell,en_stem;

We won’t index/search some tokens

DROP FULLTEXT MAPPING ON pg FOR email, url, sfloat, uri, float;

Now, we could test our configuration.

select * from ts_debug(’public.pg’, ’
PostgreSQL, the highly scalable, SQL compliant, open source object-relational

25

Appendix A. FTS Complete Tutorial

database management system, is now undergoing beta testing of the next
version of our software: PostgreSQL 8.2.
’);

end;

We have a tablepgweb, which contains 11239 documents from PostgreSQL web site. Only relevant
columns are shown.

=# \d pgweb
Table "public.pgweb"

Column | Type | Modifiers
-----------+-------------------+-----------

tid | integer | not null
path | character varying | not null
body | character varying |
title | character varying |
dlm | integer |

First we should take care about default FTS configuration - we want ourpublic.pg to be default. To do
so, we need to redefinesearch_path , since we already have predefined default full-text configuration
(for ru_RU.UTF-8 locale) inpg_catalog .

=# \dF
pg_catalog | russian_utf8 | ru_RU.UTF-8 | Y
public | pg | ru_RU.UTF-8 | Y

=# show tsearch_conf_name;
tsearch_conf_name

pg_catalog.russian_utf8

=# SET search_path=public, pg_catalog;

=# show tsearch_conf_name;
tsearch_conf_name

public.pg

The very simple full-text search without ranking is already available here. Select top 10 fresh documents
(dlm is last-modified date in seconds since 1970), which contains querycreate table .

=# select title from pgweb where textcat(title,body) @@
plainto_tsquery(’create table’) order by dlm desc limit 10;

We can create index to speedup search.

26

Appendix A. FTS Complete Tutorial

=# create index pgweb_idx on pgweb using gin(textcat(title,body));

For clarity, we omitted herecoalesce function to prevent unwanted effect ofNULLconcatenation.

To implement FTS with ranking support we needtsvector column to store preprocessed document,
which is a concatenation oftitle andbody . We assign different labels to them to preserve information
about origin of every word.

=# alter table pgweb add column fts_index tsvector;
=# update pgweb set fts_index =

setweight(to_tsvector(coalesce (title,”)), ’A’) || ’ ’ ||
setweight(to_tsvector(coalesce (body,”)),’D’);

Then we create GIN index to speedup search.

=# create index fts_idx on pgweb using gin(fts_index);

After vacuuming, we are ready to perform full-text search.

=# select rank_cd(fts_index, q)as rank, title from pgweb,
plainto_tsquery(’create table’) q
where q @@ fts_index order by rank desc limit 10;

27

Appendix B. FTS Parser Example
SQL commandCREATE FULLTEXT PARSERcreates a parser for full-text search. In our example we will
implement a simple parser, which recognize space delimited words and has only two types (3, word, Word;
12, blank, Space symbols). Identifiers were chosen to keep compatibility with defaultheadline() , since
we won’t implement our version.

To implement parser one need to realize minimum four functions (CREATE FULLTEXT PARSER).

START = start_function

Initialize the parser. Arguments are a pointer to the parsed text and its length.

Returns a pointer to the internal structure of a parser. Note, it should be malloced or palloced in
TopMemoryContext . We name itParserState .

GETTOKEN =gettoken_function

Returns the next token. Arguments are(ParserState *),(char **), (int *) .

This procedure will be called so long as the procedure return token type = 0.

END = end_function ,

Void function, will be called after parsing is finished. We have to free our allocated resources in this
procedure (ParserState). Argument is(ParserState *) .

LEXTYPES = lextypes_function

Returns an array containing the id, alias and the description of the tokens of our parser. SeeLexDescr

in src/include/utils/ts_public.h

Source code of our test parser, organized as a contrib module, available in the next section.

Testing:

=# SELECT * FROM parse(’testparser’,’That”s my first own parser’);
tokid | token

-------+--------
3 | That’s

12 |
3 | my

12 |
3 | first

12 |
3 | own

12 |
3 | parser

=# SELECT to_tsvector(’testcfg’,’That”s my first own parser’);
to_tsvector

’my’:2 ’own’:4 ’first’:3 ’parser’:5 ’that”s’:1

=# SELECT headline(’testcfg’,’Supernovae stars are the brightest phenomena in galaxies’, to_tsquery(’testcfg’, ’star’));

28

Appendix B. FTS Parser Example

headline

Supernovae stars are the brightest phenomena in galaxies

B.1. Parser sources
Parser sources was adapted to 8.3 release from original tutorial by Valli parser HOWTO1.

To compile an example just do

make
make install
psql regression < test_parser.sql

This is atest_parser.c

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

/*
* types
*/

/* self-defined type */
typedef struct {

char * buffer; /* text to parse */
int len; /* length of the text in buffer */
int pos; /* position of the parser */

} ParserState;

/* copy-paste from wparser.h of tsearch2 */
typedef struct {

int lexid;
char *alias;
char *descr;

} LexDescr;

/*
* prototypes
*/

PG_FUNCTION_INFO_V1(testprs_start);
Datum testprs_start(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(testprs_getlexeme);
Datum testprs_getlexeme(PG_FUNCTION_ARGS);

1. http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/docs/HOWTO-parser-tsearch2.html

29

Appendix B. FTS Parser Example

PG_FUNCTION_INFO_V1(testprs_end);
Datum testprs_end(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(testprs_lextype);
Datum testprs_lextype(PG_FUNCTION_ARGS);

/*
* functions
*/

Datum testprs_start(PG_FUNCTION_ARGS)
{

ParserState *pst = (ParserState *) palloc(sizeof(ParserState));
pst->buffer = (char *) PG_GETARG_POINTER(0);
pst->len = PG_GETARG_INT32(1);
pst->pos = 0;

PG_RETURN_POINTER(pst);
}

Datum testprs_getlexeme(PG_FUNCTION_ARGS)
{

ParserState *pst = (ParserState *) PG_GETARG_POINTER(0);
char **t = (char **) PG_GETARG_POINTER(1);
int *tlen = (int *) PG_GETARG_POINTER(2);
int type;

*tlen = pst->pos;
*t = pst->buffer + pst->pos;

if ((pst->buffer)[pst->pos] == ’ ’) {
/* blank type */
type = 12;
/* go to the next non-white-space character */
while (((pst->buffer)[pst->pos] == ’ ’) && (pst->pos < pst->len)) {

(pst->pos)++;
}

} else {
/* word type */
type = 3;
/* go to the next white-space character */
while (((pst->buffer)[pst->pos] != ’ ’) && (pst->pos < pst->len)) {

(pst->pos)++;
}

}

*tlen = pst->pos - *tlen;

/* we are finished if (*tlen == 0) */
if (*tlen == 0) type=0;

PG_RETURN_INT32(type);
}

30

Appendix B. FTS Parser Example

Datum testprs_end(PG_FUNCTION_ARGS)
{

ParserState *pst = (ParserState *) PG_GETARG_POINTER(0);
pfree(pst);
PG_RETURN_VOID();

}

Datum testprs_lextype(PG_FUNCTION_ARGS)
{

/*
Remarks:
- we have to return the blanks for headline reason
- we use the same lexids like Teodor in the default

word parser; in this way we can reuse the headline
function of the default word parser.

*/
LexDescr *descr = (LexDescr *) palloc(sizeof(LexDescr) * (2+1));

/* there are only two types in this parser */
descr[0].lexid = 3;
descr[0].alias = pstrdup("word");
descr[0].descr = pstrdup("Word");
descr[1].lexid = 12;
descr[1].alias = pstrdup("blank");
descr[1].descr = pstrdup("Space symbols");
descr[2].lexid = 0;

PG_RETURN_POINTER(descr);
}

This is aMakefile

override CPPFLAGS := -I. $(CPPFLAGS)

MODULE_big = test_parser
OBJS = test_parser.o

DATA_built = test_parser.sql
DATA =
DOCS = README.test_parser
REGRESS = test_parser

ifdef USE_PGXS
PGXS := $(shell pg_config --pgxs)
include $(PGXS)
else
subdir = contrib/test_parser
top_builddir = ../..
include $(top_builddir)/src/Makefile.global
include $(top_srcdir)/contrib/contrib-global.mk
endif

31

Appendix B. FTS Parser Example

This is atest_parser.sql.in

SET search_path = public;

BEGIN;

CREATE FUNCTION testprs_start(internal,int4)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE ’C’ with (isstrict);

CREATE FUNCTION testprs_getlexeme(internal,internal,internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE ’C’ with (isstrict);

CREATE FUNCTION testprs_end(internal)
RETURNS void
AS ’MODULE_PATHNAME’
LANGUAGE ’C’ with (isstrict);

CREATE FUNCTION testprs_lextype(internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE ’C’ with (isstrict);

CREATE FULLTEXT PARSER testparser
START ’testprs_start’
GETTOKEN ’testprs_getlexeme’
END ’testprs_end’
LEXTYPES ’testprs_lextype’

;

CREATE FULLTEXT CONFIGURATION testcfg PARSER ’testparser’ LOCALE NULL;
CREATE FULLTEXT MAPPING ON testcfg FOR word WITH simple;

END;

32

Appendix C. FTS Dictionary Example
Motivation for this dictionary is to control indexing of integers (signed and unsigned), and, consequently,
to minimize the number of unique words, which, in turn, greatly affects to performance of searching.

Dictionary accepts two init options:

• MAXLENparameter specifies maximum length of the number considered as a ’good’ integer. Default
value is 6.

• REJECTLONGparameter specifies if ’long’ integer should be indexed or treated as a stop-word. If
REJECTLONG=FALSE (default), than dictionary returns prefixed part of integer number with length
MAXLEN. If REJECTLONG=TRUE, than dictionary consider integer as a stop word.

Similar idea can be applied to the indexing of decimal numbers, for example,DecDict dictionary. Dic-
tionary accepts two init options:MAXLENFRACparameter specifies maximum length of the fraction part
considered as a ’good’ decimal, default value is 3.REJECTLONGparameter specifies if decimal number
with ’long’ fraction part should be indexed or treated as a stop word. IfREJECTLONG=FALSE (default),
than dictionary returns decimal number with length of fraction partMAXLEN. If REJECTLONG=TRUE, than
dictionary consider number as a stop word. Notice, thatREJECTLONG=FALSEallow indexing ’shortened’
numbers and search results will contain documents with original ’garbage’ numbers.

Examples:

=# select lexize(’intdict’, 11234567890);
lexize

{112345}

Now, we want to ignore long integers.

=# ALTER FULLTEXT DICTIONARY intdict SET OPTION ’MAXLEN=6, REJECTLONG=TRUE’;
=# select lexize(’intdict’, 11234567890);

lexize

{}

Create contrib/dict_intdict directory with filesdict_tmpl.c,Makefile,dict_intdict.sql.in ,
then

make && make install
psql DBNAME < dict_intdict.sql

33

Appendix C. FTS Dictionary Example

This is adict_tmpl.c file.

#include "postgres.h"
#include "utils/builtins.h"
#include "fmgr.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

#include "utils/ts_locale.h"
#include "utils/ts_public.h"
#include "utils/ts_utils.h"

typedef struct {
int maxlen;
bool rejectlong;

} DictInt;

PG_FUNCTION_INFO_V1(dinit_intdict);
Datum dinit_intdict(PG_FUNCTION_ARGS);

Datum
dinit_intdict(PG_FUNCTION_ARGS) {

DictInt *d = (DictInt*)malloc(sizeof(DictInt));
Map *cfg, *pcfg;
text *in;

if (!d)
elog(ERROR, "No memory");

memset(d,0,sizeof(DictInt));

/* Your INIT code */
/* defaults */

d->maxlen = 6;
d->rejectlong = false;

if (PG_ARGISNULL(0) || PG_GETARG_POINTER(0) == NULL) { /* no options */
PG_RETURN_POINTER(d);

}
in = PG_GETARG_TEXT_P(0);
parse_keyvalpairs(in,&cfg);
PG_FREE_IF_COPY(in, 0);
pcfg=cfg;

while (pcfg->key) {
if (strcasecmp("MAXLEN", pcfg->key) == 0) {

d->maxlen=atoi(pcfg->value);
} else if (strcasecmp("REJECTLONG", pcfg->key) == 0) {

if (strcasecmp("true", pcfg->value) == 0) {
d->rejectlong=true;

} else if (strcasecmp("false", pcfg->value) == 0) {

34

Appendix C. FTS Dictionary Example

d->rejectlong=false;
} else {

elog(ERROR,"Unknown value: %s => %s", pcfg->key,
pcfg->value);

}
} else {

elog(ERROR,"Unknown option: %s => %s", pcfg->key, pcfg->
value);

}
pfree(pcfg->key);
pfree(pcfg->value);
pcfg++;

}
pfree(cfg);

PG_RETURN_POINTER(d);
}

PG_FUNCTION_INFO_V1(dlexize_intdict);
Datum dlexize_intdict(PG_FUNCTION_ARGS);
Datum
dlexize_intdict(PG_FUNCTION_ARGS) {

DictInt *d = (DictInt*)PG_GETARG_POINTER(0);
char *in = (char*)PG_GETARG_POINTER(1);
char *txt = pnstrdup(in, PG_GETARG_INT32(2));
TSLexeme *res=palloc(sizeof(TSLexeme)*2);

/* Your INIT dictionary code */
res[1].lexeme = NULL;
if (PG_GETARG_INT32(2) > d->maxlen) {

if (d->rejectlong) { /* stop, return void array */
pfree(txt);
res[0].lexeme = NULL;

} else { /* cut integer */
txt[d->maxlen] = ’\0’;

res[0].lexeme = txt;
}

} else {
res[0].lexeme = txt;

}

PG_RETURN_POINTER(res);
}

This is aMakefile :

subdir = contrib/dict_intdict
top_builddir = ../..
include $(top_builddir)/src/Makefile.global

MODULE_big = dict_intdict
OBJS = dict_tmpl.o
DATA_built = dict_intdict.sql

35

Appendix C. FTS Dictionary Example

DOCS =

include $(top_srcdir)/contrib/contrib-global.mk

This is adict_intdict.sql.in :

SET search_path = public;
BEGIN;

CREATE OR REPLACE FUNCTION dinit_intdict(internal)
returns internal
as ’MODULE_PATHNAME’
language ’C’;

CREATE OR REPLACE FUNCTION dlexize_intdict(internal,internal,internal,internal)
returns internal
as ’MODULE_PATHNAME’
language ’C’
with (isstrict);

CREATE FULLTEXT DICTIONARY intdict
LEXIZE ’dlexize_intdict’ INIT ’dinit_intdict’
OPTION ’MAXLEN=6,REJECTLONG=false’

;

COMMENT ON FULLTEXT DICTIONARY intdict IS ’Dictionary for Integers’;

END;

36

Index

Symbols
!! TSQUERY, ?

A
ALTER FULLTEXT ... OWNER, ?

ALTER FULLTEXT CONFIGURATION, ?

ALTER FULLTEXT DICTIONARY, ?

ALTER FULLTEXT MAPPING, ?

ALTER FULLTEXT PARSER, ?

B
Btree operations for TSQUERY, ?

Btree operations for tsvector, ?

C
COMMENT ON FULLTEXT, ?

CREATE FULLTEXT CONFIGURATION, ?

CREATE FULLTEXT DICTIONARY, ?

CREATE FULLTEXT MAPPING, ?

CREATE FULLTEXT PARSER, ?

D
document, ?

DROP FULLTEXT CONFIGURATION, ?

DROP FULLTEXT DICTIONARY, ?

DROP FULLTEXT MAPPING, ?

DROP FULLTEXT PARSER, ?

F
FTS, ?

full-text index

GIN, ?

GIST, ?

H
headline, ?

I
index

full-text, ?

L
length(tsvector), ?

lexize, ?

N
numnode, ?

P
parse, ?

plainto_tsquery, ?

Q
querytree, ?

R
rank, ?

rank_cd, ?

rewrite - 1, ?

rewrite - 2, ?

rewrite - 3, ?

37

S
setweight, ?

stat, ?

strip, ?

T
TEXT @@ TEXT, ?

TEXT @@ TSQUERY, ?

text::tsquery casting, ?

text::tsvector, ?

token_type, ?

to_tsquery, ?

to_tsvector, ?

tsearch trigger, ?

tsquery, ?

TSQUERY && TSQUERY, ?

TSQUERY<@ TSQUERY, ?

TSQUERY @> TSQUERY, ?

TSQUERY @@ TSVECTOR, ?

TSQUERY || TSQUERY, ?

tsvector, ?

tsvector concatenation, ?

38

	FullText Search in PostgreSQL
	Table of Contents
	Chapter 1. FTS Introduction
	1.1. Full Text Search in databases
	1.1.1. What is a document?

	1.2. FTS Overview
	1.2.1. Tsquery and tsvector
	1.2.2. FTS operator

	1.3. Basic operations
	1.3.1. Obtaining tsvector
	1.3.2. Obtaining tsquery
	1.3.3. Ranking search results
	1.3.4. Getting results
	1.3.5. Dictionaries
	1.3.6. Stop words

	1.4. FTS features
	1.5. FTS Limitations
	1.6. A Brief History of FTS in PostgreSQL
	1.6.1. Pretsearch
	1.6.2. Tsearch v1
	1.6.3. Tsearch v2
	1.6.4. FTS current

	1.7. Links
	1.8. FTS Todo
	1.9. Acknowledgements

	Chapter 2. FTS Operators and Functions
	2.1. FTS operator
	2.2. Vector Operations
	2.3. Query Operations
	2.3.1. Query rewriting
	2.3.2. Operators for tsquery
	2.3.3. Index for tsquery

	2.4. Parser functions
	2.5. Ranking
	2.6. Headline
	2.7. Fulltext indexes
	2.8. Dictionaries
	2.8.1. Simple dictionary
	2.8.2. Ispell dictionary
	2.8.3. Snowball stemming dictionary
	2.8.4. Synonym dictionary
	2.8.5. Thesaurus dictionary
	2.8.5.1. Thesaurus configuration
	2.8.5.2. Thesaurus examples

	2.9. FTS Configuration
	2.10. Debugging
	2.11. Psql support

	I. FTS Reference
	I. SQL Commands
	CREATE FULLTEXT CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	DROP FULLTEXT CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	CREATE FULLTEXT DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	DROP FULLTEXT DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	See Also

	CREATE FULLTEXT MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	ALTER FULLTEXT MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	DROP FULLTEXT MAPPING
	Name
	Synopsis
	Description
	Parameters
	See Also

	CREATE FULLTEXT PARSER
	Name
	Synopsis
	Description
	Parameters
	See Also

	DROP FULLTEXT PARSER
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT PARSER
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT ... OWNER
	Name
	Synopsis
	Description
	Parameters
	Examples

	COMMENT ON FULLTEXT
	Name
	Synopsis
	Description
	Parameters
	Examples

	II. Appendixes
	Appendix A. FTS Complete Tutorial
	Appendix B. FTS Parser Example
	B.1. Parser sources

	Appendix C. FTS Dictionary Example
	Index
	Symbols
	A
	B
	C
	D
	F
	H
	I
	L
	N
	P
	Q
	R
	S
	T

