
Information technology — Database
languages — SQL Technical Reports —
Part 6:
SQL support for JavaScript Object
Notation (JSON)
Technologies de l’information — Langages de base de données — SQL
rapport techniques —
Partie 6: Support de SQL pour JavaScript Object Notation (JSON)

TECHNICAL
REPORT

ISO/IEC TR
19075-6

First edition
2017-03

Reference number
ISO/IEC TR 19075-6:2017(E)

© ISO/IEC 2017

﻿

ii� © ISO/IEC 2017 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC TR 19075-6:2017(E)

Contents Page

Foreword. ix

Introduction. x

1 Scope. 1

2 Normative references. 3
2.1 ISO and IEC standards. 3

2.2 Other international standards. 3

3 JavaScript Object Notation (JSON). 5
3.1 What is JSON?. 5

3.2 Representations of JSON data. 6

3.2.1 Avro. 6

3.2.2 BSON. 7

3.3 Schemas. 7

3.3.1 JSON schemata and validity. 7

3.3.2 Avro schemata. 8

3.3.3 BSON schemata. 8

3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?. 9

3.5 JSON terminology. 10

3.6 Use cases for JSON support in SQL. 11

3.6.1 JSON data ingestion and storage. 11

3.6.2 JSON data generation from relational data. 12

3.6.3 Querying JSON as persistent semi-structured data model instances. 12

3.7 What features address those use cases?. 12

3.7.1 Storing JSON data in an SQL table. 12

3.7.2 Generating JSON in an SQL query. 13

3.7.3 Querying JSON data in SQL tables using SQL. 13

4 The SQL/JSON data model. 15
4.1 SQL/JSON items. 16

4.1.1 Atomic values. 17

4.1.2 SQL/JSON arrays. 18

4.1.3 SQL/JSON objects. 18

4.2 SQL/JSON sequences. 19

4.3 Parsing JSON. 19

4.4 Serializing JSON. 19

5 SQL/JSON functions. 21
5.1 Handle JSON using built-in functions. 21

©ISO/IEC 2017 – All rights reserved Contents iii

ISO/IEC TR 19075-6:2017(E)

5.2 JSON API common syntax. 21

5.2.1 JSON value expression. 22

5.2.2 Path expression. 22

5.2.3 PASSING clause. 22

5.2.4 JSON output clause. 23

5.2.5 ON ERROR and ON EMPTY syntax. 23

5.3 Query functions. 24

5.3.1 JSON_EXISTS. 24

5.3.2 JSON_VALUE. 27

5.3.3 JSON_QUERY. 32

5.3.4 JSON_TABLE. 35

5.3.4.1 COLUMNS clause that is not nested. 36

5.3.4.2 Nested COLUMNS clause. 39

5.3.4.3 PLAN clause. 40

5.3.5 Conformance features for query operators. 44

5.4 Constructor functions and IS JSON predicate. 46

5.4.1 JSON_OBJECT. 47

5.4.2 JSON_OBJECTAGG. 48

5.4.3 JSON_ARRAY. 50

5.4.4 JSON_ARRAYAGG. 50

5.4.5 IS JSON predicate. 52

5.4.6 Handling of JSON nulls and SQL nulls. 53

5.4.7 Conformance features for constructor functions. 53

6 SQL/JSON path language. 55
6.1 Overview of SQL/JSON path language. 55

6.2 Objectives for the SQL/JSON path language. 57

6.3 Modes. 58

6.3.1 Example of strict vs lax. 59

6.4 Lexical issues. 61

6.5 Syntax summary. 62

6.6 Formal semantics. 63

6.6.1 Notational conventions. 63

6.7 Primitive operations. 64

6.7.1 Concatenation. 64

6.7.2 unwrap(). 64

6.7.3 wrap(). 65

6.8 Mode declaration. 65

6.9 <JSON path primary>. 66

6.9.1 Literals. 66

6.9.2 Variables. 67

6.9.3 Parentheses. 68

6.10 Accessors. 68

6.10.1 Member accessor. 69

iv SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

6.10.2 Member wildcard accessor. 72

6.10.3 Element accessor. 73

6.10.4 Element wildcard accessor. 75

6.10.5 Sequence semantics of the accessors. 76

6.11 Item methods. 77

6.11.1 type(). 77

6.11.2 size(). 78

6.11.3 Numeric item methods (double, ceiling, floor, abs). 78

6.11.4 datetime(). 78

6.11.5 keyvalue(). 79

6.12 Arithmetic expressions. 80

6.12.1 Unary plus and minus. 81

6.12.2 Binary operations. 82

6.13 Filter expression. 82

6.13.1 true/false and True/False. 83

6.13.2 null and Unknown. 83

6.13.3 Error handling in filters. 83

6.13.4 Truth tables. 86

6.13.5 Comparison predicates. 87

6.13.6 like_regex predicate. 89

6.13.7 starts with predicate. 90

6.13.8 exists predicate. 90

6.13.9 is unknown predicate. 92

6.14 Conformance features for SQL/JSON path language. 93

Bibliography. 95

Index. 97

©ISO/IEC 2017 – All rights reserved Contents v

ISO/IEC TR 19075-6:2017(E)

Tables

Table Page

1 Terms and definitions. 10
2 JSON, SQL/JSON, and SQL (other than SQL/JSON values and counterparts). 15
3 Parallels between JSON text and SQL/JSON data model. 19
4 JSON_EXISTS sample data. 24
5 Result of the sample query. 25
6 Accessor example. 26
7 Result 1. 28
8 Result 2. 29
9 Result 3. 29
10 Result 4. 30
11 Result 5. 31
12 Result 6. 31
13 Comparison of wrapper options. 35
14 JSON_TABLE sample data in a book recommendation table. 36
15 Query result. 38
16 Query result. 39
17 Query result. 42
18 Query result. 42
19 Query result. 44
20 DEPTS table. 46
21 JOBS table. 47
22 EMPLOYEES table. 47
23 The JSON object returned. 48
24 Returned JSON object with the corresponding job sequence number. 49
25 Query result. 51
26 Query Results. 51
27 Query Results. 52
28 Three aspects of path evaluation governed by modes. 58
29 Example of strict vs lax. 59
30 Features of the SQL/JSON path language. 62
31 Data used by unwrap() example. 64
32 Data used by wrap() example. 65
33 Examples of atomic values in the SQL/JSON path language . 66
34 Examples of the escaping rules. 66
35 Evaluation of '$.phones.type' in lax mode. 70
36 Intermediate step. 70
37 Evaluation of'$.phones[*].type' . 71
38 Evaluation of '$.phones[*] ? (exists (@.type)).type'. 71
39 Evaluation of '$.phones.*' in lax mode. 72
40 Evaluation of '$.phones[*].*'. 73
41 Evaluation of 'lax $.sensors.*[0, last, 2]'. 75
42 The step in the evaluation . 76
43 Result of the query with the sample data . 80

vi SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

44 Evaluation of lax -$.readings.floor(). 81
45 Evaluation of 'lax (-$.readings).floor()'. 81
46 Table T with two rows . 84
47 Computation on row K=102 . 84
48 Modified table T . 85
49 Computation on row K=102 in modified table T. 85
50 Computation of 'lax $? (@.hours > 9)' on row K=102 . 86
51 Computation of 'strict $? (@.hours > 9)' in strict mode . 86
52 Result of &&. 87
53 Result of ||. 87
54 Result of !. 87
55 Supported comparisons . 88
56 Final result . 89
57 A table with JSON column . 91
58 Evaluation of 'strict $? (exists (@.name)).name' on row K=201. 91
59 Evaluation of 'strict $? (exists (@.name)).name' on row K=202. 91

©ISO/IEC 2017 – All rights reserved Contents vii

ISO/IEC TR 19075-6:2017(E)

Figures

Figure Page

1 Relationships between “JSON” and “SQL/JSON”. 15
2 The SQL/JSON path language architecture. 55

viii SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of
information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types
of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/
IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:
www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 32, Data management and interchange.

A list of all parts in the ISO/IEC 19075 series can be found on the ISO website.

NOTE 1 — The individual parts of multi-part technical reports are not necessarily published together. New editions of one or more
parts can be published without publication of new editions of other parts.

©ISO/IEC 2017 – All rights reserved Foreword ix

ISO/IEC TR 19075-6:2017(E)

Introduction

The organization of this part of ISO/IEC 19075 is as follows:

1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 19075.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this part of
ISO/IEC 19075, constitute provisions of this part of ISO/IEC 19075.

3) Clause 3, “JavaScript Object Notation (JSON)”, introduces what is JSON.

4) Clause 4, “The SQL/JSON data model”, introduces the data model that is used by the SQL/JSON functions
and the SQL/JSON path language.

5) Clause 5, “SQL/JSON functions”, introduces the SQL/JSON functions to query and construct JSON.

6) Clause 6, “SQL/JSON path language”, introduces the SQL/JSON path language.

x SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

TECHNICAL REPORT ISO/IEC TR19075-6:2017(E)

Information technology — Database languages — SQL Technical Reports —

Part 6:
SQL support for JavaScript Object Notation (JSON)

1 Scope

This Technical Report describes the support in SQL for JavaScript Object Notation.

This Technical Report discusses the following features of the SQL language:

— Storing JSON data.

— Publishing JSON data.

— Querying JSON data.

— SQL/JSON data model and path language.

©ISO/IEC 2017 – All rights reserved Scope 1

(Blank page)

2 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 ISO and IEC standards

[ISO9075-2] ISO/IEC 9075-2:2016, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation)

2.2 Other international standards

[ECMAscript] ISO/IEC 16262:2011, Information technology — Programming languages, their environments
and system software interfaces — ECMAScript language specification; also available as ECMAScript
Language Specification,
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

[Unicode] The Unicode Standard,
http://unicode.org

[RFC7159] Internet Engineering Task Force, RFC 7159, The JavaScript Object Notation (JSON) Data
Interchange Format, March 2014,
https://tools.ietf.org/rfc/rfc7159.txt

©ISO/IEC 2017 – All rights reserved Normative references 3

ISO/IEC TR 19075-6:2017(E)
2.1 ISO and IEC standards

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://unicode.org
https://tools.ietf.org/rfc/rfc7159.txt

(Blank page)

4 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

3 JavaScript Object Notation (JSON)

3.1 What is JSON?

JSON (an acronym for “JavaScript Object Notation”) is both a notation (that is, a syntax) for representing data
and an implied data model. JSON is not an object-oriented data model; that is, it does not define sets of classes
and methods, type inheritance, or data abstraction. Instead, JSON “objects” are simple data structures, including
arrays. [RFC7159] says that JSON is a text format for the serialization of structured data. Its initial intended
use was as a data transfer syntax.

The complete syntax of JSON is specified in [RFC7159].

The first-class components of the JSON data model are JSON values. A JSON value is one of the following:
JSON object, JSON array, JSON string, JSON number, or one of the JSON literals: true, false, and null. A
JSON object is zero or more name-value pairs and is enclosed in curly braces — { }. A JSON array is an
ordered sequence of zero or more values and is enclosed in square brackets — [].

Here is an example of a JSON object:

{ "Name" : "Isaac Newton",
 "Weight" : 80,
 "Famous" : true,
 "Phone" : null }

The name-value pairs are separated by commas, and the names are separated from the values by colons. The
names are always strings and are enclosed in (double) quotation marks.

Here is an example of a JSON array:

["Robert J. Oppenheimer", 98, false, "Beechwood 45789"]

In a JSON array, the values are separated by commas. JSON arrays and objects are fully nestable. That is, values
in both JSON objects and JSON arrays may be JSON strings, JSON numbers, JSON Booleans (represented by
the JSON literals true and false), JSON nulls (represented by the JSON literal null), JSON objects, or JSON
arrays.

JSON can be used to represent associative arrays — arrays whose elements are addressed by content, not by
position. An associative array can be represented in JSON as a JSON object whose members are name-value
pairs; the name is used as the “index” into the “array” — that is, to locate the appropriate member in the object
— and the value is used as the content of the appropriate member. Here is such an associative array:

{ "Isaac Newton" : "apple harvester" ,
 "Robert J. Oppenheimer": "security risk" ,
 "Albert Einstein" : "patent clerk" ,
 "Stephen Hawking" : "inspiration" }

An extremely important part of JSON’s design is that it is inherently schema-less. Any JSON object can be
modified by adding new name-value pairs, even with names that were never considered when the object was

©ISO/IEC 2017 – All rights reserved JavaScript Object Notation (JSON) 5

ISO/IEC TR 19075-6:2017(E)
3.1 What is JSON?

initially created or designed. Similarly, any JSON array can be modified by changing the number of values in
the array.

3.2 Representations of JSON data

Before delving much deeper into the primary topic of this Technical Report, readers should understand that
JSON data can be represented in several widely-acknowledged and -used forms. The most obvious and most
easily recognizable is its “character string” representation, in which JSON data is represented in Unicode
characters as plain text. More specifically, explicit characters such as the left square brace, comma, right curly
brace, quotation mark, and letters and digits are all used in their native Unicode representation (UTF-8, UTF-
16, UTF-32).

However, for a variety of reasons, JSON data is sometimes stored and exchanged in one of several binary rep-
resentations. For example, a binary representation of JSON data may be significantly smaller (fewer octets)
than the character representation of the same data, so a reduction in network bandwidth and or storage media
can be achieved by transferring or storing that data in a binary representation.

Readers should note that there are no published standards, either from traditional de jure standards organizations
nor from consortia or other de facto standards groups, for any binary representations of JSON. The two described
in this Technical Report are frequently used and may be representative of binary JSON representations generally.
The following discussion is intended only to illustrate the use of and issues with binary serializations of JSON.
The SQL standard leaves it implementation-defined whether or not such representations are supported in any
particular implementation.

3.2.1 Avro

Avro [Avro] is described as a “data serialization system”. As such, its use is not limited to a binary representation
or as a compression representation of JSON data. However, a number of JSON environments have chosen Avro
as their preferred binary, compressed representation.

Avro has a number of important characteristics that affect its choice as a JSON representation.

— Data is represented in a variable-length, “shortest” form; e.g., the integer 2 and the integer 2000 occupy a
different number of octets in an Avro string.

— Numbers are represented using a rather arcane “zig-zag” encoding (this notation “moves” the sign bit from
its normal position as the first bit to the last bit; doing so permits removing leading zeros from the numbers,
thus making their representation occupy fewer octets).

— There is not a one-to-one mapping between JSON atomic types and Avro atomic types.

— Avro data is always associated with an Avro schema. An Avro schema describes the physical structure of
the corresponding Avro data and is needed merely to “unpack” Avro data because of the variable-length
fields and the various encoding rules. An Avro schema may accompany each individual Avro data string,
or it may be specified separately and applied to all Avro data strings in, say, an Avro data file. Avro schemas
tell almost nothing about the data other than how it is packed into a data string.

— Avro strings can be encoded using JSON notation (which sort of contradicts its use as a different represen-
tation for JSON data) or using a binary notation.

6 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
3.1 What is JSON?

Readers should recognize that Avro is not a different kind of data at all. It is, instead, merely another way of
representing the same data that the JSON character string format represents. (It should be noted that not all
possible Avro strings can be treated as JSON data; similarly, not every character string is a valid bit of JSON
data.) In this Technical Report, Avro is referenced as one possible serialization of JSON data; the character
string format is another serialization of the same data.

3.2.2 BSON

BSON [BSON] (variously pronounced as though it were spelled “bison” or as “beeson”) is another data serial-
ization system. [BSON] says that it is “a binary format in which zero or more key/value pairs are stored as a
single entity,” called a “document.” BSON is used by — and apparently was created for — a specific commercial
product.

BSON strings are no less difficult for human beings to read than Avro strings are, but the design of BSON is
significantly different than Avro’s. A BSON document is roughly a sequence of elements, each of which is
introduced by a single-octet code (for example, the hexadecimal value ‘01’ identifies the element as a double
precision floating point value, which is always eight octets in length, and ‘0D’ identifies the element as a string
containing JavaScript code), followed by an optional element name, followed by the (mandatory) element
value.

BSON, like Avro, is not a different kind of data, but merely provides yet another way of representing JSON
data. (Also like Avro, not all BSON strings represent valid JSON data.)

3.3 Schemas

3.3.1 JSON schemata and validity

Neither [RFC7159] nor [ECMAscript] provide any mechanism by which JSON values can be tested for validity
other than strict syntactic validity.

JSON text is sufficiently “self-describing” that data encoded in JSON is easily parsed and can often be used in
application components that have no specific knowledge of the data contained therein. This last fact explains
why JSON is so successful in the broader data management community, in spite of the lack of a standard way
to document its structure.

There is at least one effort to define a schema for JSON [JSONschema] that would describe the structure of
JSON data to be considered “valid” for some given application. However, there does not appear to be any sig-
nificant amount of interest from the JSON community for the rapid development of a schema definition language
for JSON.

While a schema language for JSON data could be useful in some circumstances, it does not appear that such a
language is widely used, and [ISO9075-2] neither relies on nor creates such a language.

[ISO9075-2] uses the word “valid” to describe data instances that satisfy all JSON syntactic requirements.
[ISO9075-2] specifies a new SQL predicate, IS JSON, to test the (syntactic) validity of JSON data instances.

©ISO/IEC 2017 – All rights reserved JavaScript Object Notation (JSON) 7

ISO/IEC TR 19075-6:2017(E)
3.2 Representations of JSON data

3.3.2 Avro schemata

Because Avro is a representation in which each “field” (a bit of JSON data) occupies no more octets than is
required, using the particular encoding method for data of each type, it is not possible to simply index to a
specific field in each Avro string. In fact, because of the way that Avro encodes its fields, it is not possible to
scan an Avro string and identify the start of the second, third, or twenty-fifth field in that string.

Consequently, Avro specifies that each Avro value be described by an Avro schema. Avro schemata are
expressed in the character representation of JSON. The schema that represents an entire Avro string is composed
of “smaller” schemata that represent each field in the Avro string. The schema describes each field by its name,
data type, and (if not already unambiguous) length. Thus, an application wishing to access the fields in an Avro
string must first parse the schema of that string, then use that information to locate the desired fields in the
string and to “decode” the field contents into a value of a JSON data type.

Because each JSON text can be of a different size or contain different components, one might wish to provide
a different schema for each JSON text...a schema that uniquely describes that text and not (necessarily) any
other JSON text. This approach necessarily creates an increase in size of the JSON texts associated with those
schemata. For small JSON texts and/or JSON texts with a great many fields, the overhead (in octets) of providing
a schema for each such text in the Avro representation becomes unacceptable very quickly. For very large
JSON texts, particularly with small numbers of (very large) fields, the presence of a per-text schema may be
perfectly reasonable.

Avro does not require that a schema be provided along with each JSON text, individually. It does permit that
approach, but it also allows for a single schema to describe all of the Avro-represented JSON texts in a “container
file.” As long as all of the texts in that container file are sufficiently alike, a single schema is adequate — and,
of course, produces much-reduced overhead. In the context of this Technical Report, an entire column containing
the Avro representation of JSON texts acts as the “container file.” The Avro schema associated with such a
column is part of the metadata describing the column.

In the preceding paragraph, the phrase “sufficiently alike” was used. That phrase means that each object/array
in the rows of a column contain the same number of members/elements, each having the same name (for objects)
and data type. It also means that the lengths (number of octets) of each member/element must be respectively
the same, and that’s not always easy to ensure.

NOTE 2 — Therefore, the JSON objects “{ "name" : "Joe", "salary" : 85000 }” and “{ "name" : "Bob", "salary" : 78000 }”
are “sufficiently alike”, but “{ "name" : "Ann", "bonus" : 85000 }” is not.

3.3.3 BSON schemata

Because the BSON representation of JSON contains a one-octet code as the first octet of every field, it is pos-
sible to scan a BSON value and uniquely identify each field and its data type. Consequently, no sort of schema
is required for BSON-represented JSON data.

However, BSON — like Avro — uses variable-length fields, so that corresponding members/elements in dif-
ferent objects/arrays can have significantly different lengths. Scanning BSON strings to locate those field codes
(and thus the fields themselves) requires CPU cycles. BSON might benefit from having a schema capability
somewhat similar to Avro’s, but it is certainly not necessary.

8 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
3.3 Schemas

3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship
to NoSQL?

It is unclear that JSON and SQL [ISO9075-2] have any inherent relationship, but it is equally clear that the
technical, business, and government worlds are increasingly using both kinds of data in their environments.
Individual applications are required to access and manipulate all of these kinds of data, often concurrently.
There are great benefits when a single data management system can concurrently handle all of the data. Among
the benefits are: reduced administrative costs, improved security and transaction management, better performance
and greater optimizability, better resource allocation, and increased developer productivity.

Incorporation of JSON into the SQL umbrella offers implementers and users alike the benefits described above.
That fact easily justifies the relatively small increase in size and complexity of the SQL standard, especially
when the approach described in this Technical Report is used.

NoSQL database systems [NoSQLDB] are generally characterized by the following attributes:

— They do not use the relational model (they also do not use a number of other data models).

— They tend to be focused on “big data” and on applications for which “approximate” answers are often
adequate.

— They are optimized for data retrieval, not for data creation or update, nor on the relationships between data.

— They usually do not use ACID [ACIDtxns] transactions; instead, they may offer transactional models that
result in “eventual consistency”.

— They tend to be designed using distributed, fault-tolerant, highly parallel hardware and software architectures.

NoSQL database systems come in a very wide variety of kinds, based on their targeted marketplaces, data
models, and application requirements. They have been crudely taxonomized into:

— Key-value stores

— “BigTable” stores

— Document stores

— Graph databases

Key-value stores provide exactly the capability that the name implies: applications provide a key and are given
a value in return. Key-value stores may manage only “flat” pairs, or they may manage hierarchical pairs.

BigTable stores implement multi-dimensional arrays such that applications provide one or more index values
(often strings used as key values, instead of numeric indexes) that together provide the location of a cell, the
value of which is returned to the application.

Document stores, contrary to what the name many suggest to many, do not necessarily store textual documents
such as books, specifications, or magazines; instead, they store data that may be traditional textual documents
or organized collections of structured (and semi-structured) data.

Graph databases provide a way to store data that is generally linked together into graphs (often directed graphs,
sometimes trees in particular).

Many, but hardly all, NoSQL database systems manage data represented in JSON, especially key-value stores
and document stores.

©ISO/IEC 2017 – All rights reserved JavaScript Object Notation (JSON) 9

ISO/IEC TR 19075-6:2017(E)
3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?

The rapidly increasing use of JSON to interchange data between Web applications has caught the attention of
academics, technologists, developers, and even enterprise management. SQL database implementers are
increasingly convinced that they must support JSON data “natively”. This Technical Report describes the
approach taken in [ISO9075-2], which allows such implementers to provide that support in a common manner.

3.5 JSON terminology

JSON is taken from JavaScript, which has been standardized under the name “ECMAScript” [ECMAscript].
[ECMAscript] defines the terminology for its objects, but [RFC7159] uses terminology that is significantly
different. Other specifications associated with JSON use still different terminology.

[ISO9075-2] and this Technical Report stick as closely as possible to the notation in [RFC7159]. The following
terms and their definitions are used:

Table 1 — Terms and definitions

DefinitionTerm

A sequence of tokens, which must be encoded in Unicode [Unicode] (UTF-8 by
default); insignificant white space may be used anywhere in JSON text except within
strings (where all white space is significant), numbers, and literals — note that JSON
text is a single object or array

JSON text

One of six structural characters (“{”, “}”, “[”, “]”, “:”, “,”), strings, numbers, and lit-
erals

Token

An object, array, number, string, or one of three literalsValue

A primitive type or a structured typeType

A string, a number, a Boolean, or a nullPrimitive type

A value that is a string, number, Boolean, or nullPrimitive value

An object or an arrayStructured type

A value that is an object or an arrayStructured value

A sequence of Unicode characters; some characters must be “escaped” by preceding
them with a reverse solidus (“\”), while any or all characters can be represented in
“Unicode notation” comprising the string “\u” followed by four hexadecimal digits
or two such strings representing the UTF-16 surrogate pairs representing characters
not on the Basic Multilingual Plane (strings are surrounded by double-quote characters,
which are not part of the value of the strings)

String

A sequence comprising an integer part, optionally followed by a fractional part and/or
an exponent part (non-numeric values, such as infinity and NaN are not permitted)

Number

The literal “true” or the literal “false”Boolean

10 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?

DefinitionTerm

The literal “null”Null

A structure represented by a “{”, zero or more members separated by “,”, and “}”Object

A string followed by a colon followed by a value in an object (a member is also known
as a “name-value pair”; the name is sometimes called a “key” and the second value
is sometimes called a “bound value”)

Member

A structure represented by a “[”, zero or more elements separated by “,”, and “]”Array

A value in an arrayElement

A member in an object, an element in an array, a name in a member, or a value in a
member

Field

A definition of what kinds of data belong to a particular universe of discourse,
including the operations on those kinds of data

Data model (general)

The (implicit) data model associated with JSONJSON data model

The data model created for operating on JSON data within the SQL languageSQL/JSON data
model

3.6 Use cases for JSON support in SQL

There are three primary use cases:

— JSON data ingestion and storage

— JSON data generation from relational data

— Querying JSON as persistent semi-structured data model instances

The following sections discuss these use cases in greater detail.

3.6.1 JSON data ingestion and storage

Defining a new native data type is both costly to implement for SQLimplementations and costly to adopt by
database tools and applications alike. Thus, [ISO9075-2] took the approach to ingest JSON data as character
strings or binary strings that are then stored in ordinary SQL columns of some existing string type. When such
data is retrieved from those columns for use in JSON-based functions, it is transformed (parsed) into instances
of an internal SQL/JSON data model that is never directly exposed to the application author.

©ISO/IEC 2017 – All rights reserved JavaScript Object Notation (JSON) 11

ISO/IEC TR 19075-6:2017(E)
3.5 JSON terminology

3.6.2 JSON data generation from relational data

This use case asks “How can JSON data instances be (declaratively) generated from relational tables for data
export?” Applications that are based on JSON data not only want to store and retrieve such data upon demand,
but they typically want their queries against such data to provide results in the same form — JSON. Although
it is trivial to provide procedural mechanisms by which applications can laboriously (and with many likely
errors) construct JSON data, SQL’s declarative nature suggests that JSON objects and arrays should be generated
instead of potentially lengthy character strings that represent such objects and arrays. (Readers are cautioned
not to misinterpret this use case as requiring provision of a “bulk JSON data export” facility.)

[ISO9075-2] addresses this use case by providing several functions that transform the data stored in SQL tables
into instances of the internal SQL/JSON data model that can, if needed, be serialized back into character string
form. This Technical Report provides several examples for those functions.

3.6.3 Querying JSON as persistent semi-structured data model instances

This use case explores how JSON data that is stored directly in SQL tables can be queried. Direct mapping of
entire SQL tables into single (or, necessarily, multiple) JSON objects or arrays has not been specified in
[ISO9075-2], although support is provided for such mappings when needed by applications. Instead, JSON
data is stored within an opaque data type (specifically an SQL string or Large Object) that can be manipulated
through the functional interface specified in [ISO9075-2], as illustrated by examples in this Technical Report.

3.7 What features address those use cases?

The use cases are addressed as follows:

— SQL query expressions can access JSON data according to its structure (e.g., using the names of key-value
pairs in JSON objects, positions in JSON arrays, etc.).

— SQL queries can generate JSON data directly for return to invokers of those queries.

— SQL tables can store JSON data persistently.

In the next sections, each of these “macro-features” are explored in turn.

3.7.1 Storing JSON data in an SQL table

The approach taken by [ISO9075-2] and described in this Technical Report is to store JSON data into character
string columns or binary string columns that are defined within ordinary SQL tables. That permits those JSON
data to participate in SQL queries (and, importantly, SQL-transactions) in the same manner as the data stored
in other columns of the same tables. By choosing to use columns whose declared types are string types, the
standardization (and implementation) overhead of creating a new built-in SQL data type is avoided without
losing any significant advantages of a built-in type.

Applications, however, are not expected to provide detailed code to manipulate JSON data in those strings
directly in the form of character string operations. [ISO9075-2] provides a number of built-in SQL functions

12 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
3.6 Use cases for JSON support in SQL

that access (query) JSON data stored in such columns. These functions are described in Clause 5, “SQL/JSON
functions”.

3.7.2 Generating JSON in an SQL query

[ISO9075-2] provides built-in functions that generate JSON objects and JSON arrays as the results of SQL
queries, whether the source of the data queried is JSON data or ordinary SQL data. These functions are also
described in Clause 5, “SQL/JSON functions”.

3.7.3 Querying JSON data in SQL tables using SQL

Since there is no well-known, standardized, and universally accepted language that queries data represented in
the JSON data model, [ISO9075-2] defines the SQL/JSON path language, which is embedded in SQL operators
that address the use cases outlined in Subclause 3.6, “Use cases for JSON support in SQL”.

©ISO/IEC 2017 – All rights reserved JavaScript Object Notation (JSON) 13

ISO/IEC TR 19075-6:2017(E)
3.7 What features address those use cases?

(Blank page)

14 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

4 The SQL/JSON data model

The SQL/JSON data model used by SQL/JSON path language can be summarized as “sequences of items”.
The items are SQL scalar values with an additional SQL/JSON null value, and composite data structures using
JSON arrays and objects.

To clearly distinguish between JSON values “outside” the SQL-environment and their analogs “inside” the
SQL-environment, the following conventions are adopted:

— The modifier “JSON” refers to constructs within a character or binary string that conforms to [RFC7159].

— The modifier “SQL/JSON” refers to JSON constructs within the SQL-environment.

The relationship between “JSON” outside of and “SQL/JSON” within the SQL-environment is crudely illustrated
in Figure 1, “Relationships between “JSON” and “SQL/JSON””.

Figure 1 — Relationships between “JSON” and “SQL/JSON”

JSON data is parsed into SQL/JSON values, which can then be serialized back into JSON. All JSON data can
be parsed into SQL/JSON values; however, not all SQL/JSON values can be serialized into JSON data. Parsing
and serializing are addressed in more detail in Subclause 4.3, “Parsing JSON”, and Subclause 4.4, “Serializing
JSON”, respectively.

Table 2, “JSON, SQL/JSON, and SQL (other than SQL/JSON values and counterparts)”, lists various terms
used in [ISO9075-2] and this Technical Report related to JSON, SQL/JSON, and SQL (other than SQL/JSON
values and their corresponding counterparts).

Table 2 — JSON, SQL/JSON, and SQL (other than SQL/JSON values and counterparts)

SQL (other than SQL/JSON)SQL/JSONJSON

SQL/JSON arrayJSON array

SQL/JSON objectJSON object

©ISO/IEC 2017 – All rights reserved The SQL/JSON data model 15

ISO/IEC TR 19075-6:2017(E)

SQL (other than SQL/JSON)SQL/JSONJSON

SQL/JSON memberJSON member

typed nullsSQL/JSON nullJSON literal null

TrueTrueJSON literal true

FalseFalseJSON literal false

non-null numbernumberJSON number

non-null character stringcharacter stringJSON string

non-null datetimedatetime

SQL/JSON item

SQL/JSON sequence

NOTE 3 — SQL/JSON and SQL other than SQL/JSON have precisely the same value spaces in the case of non-null scalars of
boolean, numeric, string, or datetime types.

4.1 SQL/JSON items

An SQL/JSON item is defined recursively as any of the following:

1) An SQL/JSON scalar, defined as a non-null value of any of the following predefined (SQL) types: character
string with character set Unicode, numeric, boolean, or datetime.

2) An SQL/JSON null, defined as a value that is distinct from any value of any SQL type.

NOTE 4 — An SQL/JSON null is distinct from the null value of any SQL type.

3) An SQL/JSON array, defined as an ordered list of zero or more SQL/JSON items, called the SQL/JSON
elements of the SQL/JSON array.

4) An SQL/JSON object, defined as an unordered collection of zero or more SQL/JSON members, where an
SQL/JSON member is a pair whose first value is a character string with character set Unicode and whose
second value is an SQL/ JSON item. The first value of an SQL/JSON member is called the key and the
second value is called the bound value.

NOTE 5 — [RFC7159], section 2.2, “Objects”, says “The names within an object SHOULD be unique”. Thus, non-unique
keys are permitted but not advised. The user may use the WITH UNIQUE KEYS clause in the <JSON predicate> to check
for uniqueness if desired.

Two SQL/JSON items are comparable if one of them is an SQL/JSON null, or if both are in one of these types:
character string, numeric, boolean, DATE, TIME, TIMESTAMP.

Two SQL/JSON items SJI1 and SJI2 are said to be equivalent, defined recursively as follows:

1) If SJI1 and SJI2 are non-null values of a predefined type, then SJI1 and SJI2 are equivalent if they are
equal.

16 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
4.1 SQL/JSON items

2) If SJI1 and SJI2 are the SQL/JSON null, then SJI1 and SJI2 are equivalent.

3) If SJI1 and SJI2 are both SQL/JSON arrays of the same length N and corresponding elements of SJI1 and
SJI2 are equivalent, then SJI1 and SJI2 are equivalent.

4) If SJI1 and SJI2 are SQL/JSON objects with the same number of members, and there exists a bijection B
from SJI1 to SJI2 mapping each SQL/JSON member M of SJI1 to an SQL/JSON member B(M) of SJI2
such that the key and bound value of M are equivalent to the key and bound value of B(M), respectively,
for all members M of SJI1 then SJI1 and SJI2 are equivalent.

An SQL/JSON sequence is an ordered list of zero or more SQL/JSON items.

NOTE 6 — There is no SQL <data type> whose value space is SQL/JSON items or SQL/JSON sequences.

SQL/JSON items are typed values in the following categories:

1) Atomic values:

Atomic values are the non-null SQL values of the following types:

a) Strings in a Unicode character set.

b) Numeric values:

i) Exact numeric values.

ii) Approximate numeric values.

c) Boolean values.

d) Datetime values.

e) The SQL/JSON null value, which is distinct from all SQL values, including the SQL null.

2) SQL/JSON arrays.

3) SQL/JSON objects.

These categories are discussed in the following subsections.

4.1.1 Atomic values

Atomic values in the SQL/JSON data model are virtually a subset of the values of <predefined type> in
[ISO9075-2], Subclause 6.1, “<data type>”. To recap the choices in Foundation:

<predefined type> ::=
<character string type> [CHARACTER SET <character set specification>]
 [<collate clause>]

| <national character string type> [<collate clause>]
| <binary string type>
| <numeric type>
| <boolean type>
| <datetime type>
| <interval type>

The SQL/JSON data model differs from Foundation predefined types as follows:

©ISO/IEC 2017 – All rights reserved The SQL/JSON data model 17

ISO/IEC TR 19075-6:2017(E)
4.1 SQL/JSON items

1) The data model does not support <binary string type> and <interval type>.

2) Only character strings of Unicode characters are supported. The only collation is the binary (codepoint)
collation of Unicode.

3) The SQL/JSON null value is regarded as the sole value of its own type. That is, there is no null character
string value, null numeric value, etc. In addition, JavaScript semantics are used for nulls in comparisons
— the SQL/JSON null is equal to the SQL/JSON null. (See [ECMAscript], section 11.9.6, “The strict
equality comparison algorithm”, and similar sections.)

In general, operations in the path language operate on atomic values in the SQL/JSON data model with the
same semantics as the corresponding operation in SQL, but note that null semantics follows [ECMAscript].

Datetimes have no serialized representation in JSON. They are part of the SQL/JSON data model to support
comparison predicates after converting JSON strings to datetime.

4.1.2 SQL/JSON arrays

An SQL/JSON array is an ordered list of zero or more SQL/JSON items in the SQL/JSON data model. When
serialized, the list is separated by commas and enclosed in square brackets, for example:

[2.3, "bye bye"]

SQL arrays are 1-relative, whereas [ECMAscript] arrays are 0-relative. SQL/JSON arrays are also 0-relative.
This allows some path expression to be used in either the SQL/JSON path language or in JavaScript.

4.1.3 SQL/JSON objects

An SQL-JSON object is an unordered set of zero or more members.

NOTE 7 — Empty objects are permitted; see [RFC7159], section 2.2, “Objects”, and [ECMAscript], section 15.12.1.2, “The JSON
syntactic grammar”.

A member is a pair of values:

1) The first value is a character string and is called the key of the member.

2) The second value is any SQL/JSON item in the SQL/JSON data model and is called the bound value of
the member.

An SQL/JSON object is serialized enclosed in curly braces, with the members listed in a non-deterministic
order separated by commas. Each member is serialized as its key (a character string, therefore enclosed in
double quotes), a colon, and then the serialization of the (second) value of the member. For example:

{ "name": "Fido", "tag": 12345 }

18 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
4.1 SQL/JSON items

4.2 SQL/JSON sequences

An SQL/JSON sequence is an ordered list of zero or more SQL/JSON items. SQL/JSON sequences do not
nest; they can only be concatenated. One may think of an SQL/JSON item as equivalent to an SQL/JSON
sequence of that one item, which is an acceptable mental model, but this Technical Report endeavors to always
view an SQL/JSON sequence as a container of zero or more SQL/JSON items.

4.3 Parsing JSON

Parsing refers to the process of importing from some storage format into the SQL/JSON data model. The storage
format may be JSON text stored in a Unicode character string, or it may be some binary format such as AVRO
or BSON. Since no specifications of AVRO and BSON are formally referenceable, they have been left as
implementation extensions in [ISO9075-2].

The conversion from JSON is straightforward, because SQL/JSON data model is basically a superset of JSON.
In particular:

Table 3 — Parallels between JSON text and SQL/JSON data model

SQL/JSON data modelJSON text

truetrue

falsefalse

nullnull

string, e.g., 'hello dolly'string, e.g., "hello dolly"

The format for numbers in [RFC7159] is the same as numeric literals
in SQL. Consequently, a number from JSON can be transferred into
SQL by simply parsing it as a <signed numeric literal>.

number

SQL/JSON arrayarray

SQL/JSON objectobject

4.4 Serializing JSON

Serializing JSON refers to the process of exporting a value from the SQL/JSON data model back to some
storage format. Serialization is specified only to JSON text; conversion to some other format, such as AVRO
or BSON, is left as an implementation-defined extension in [ISO9075-2].

SQL/JSON datetimes cannot be serialized; neither can SQL/JSON sequences of length greater than one.

©ISO/IEC 2017 – All rights reserved The SQL/JSON data model 19

ISO/IEC TR 19075-6:2017(E)
4.2 SQL/JSON sequences

The result of serialization is an implementation-dependent string of Unicode characters that, if parsed, would
restore the original value in the SQL/JSON data model.

The precise result of serialization is implementation-dependent because:

— Meaningless whitespace is not specified.

— Because of escape sequences, there are multiple ways to serialize a character string.

— [ECMAscript], Sections 5.1.3, “The numeric string grammar”, and 9.3.1, “ToNumber applied to the string
type”, provide some discretion in the formatting of numbers.

— Members of an SQL/JSON object are unordered, so there are many possible permutations of the members
of an object.

20 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
4.4 Serializing JSON

5 SQL/JSON functions

In [ISO9075-2], operations on JSON data are generally performed using a set of built-in functions specified
explicitly for that purpose. These functions are called “SQL/JSON functions”. [ISO9075-2] also specifies some
supporting SQL syntax, such as the IS JSON predicate.

5.1 Handle JSON using built-in functions

SQL/JSON functions are partitioned into two groups: constructor functions (JSON_OBJECT, JSON_OBJEC-
TAGG, JSON_ARRAY, and JSON_ARRAYAGG) and query functions (JSON_VALUE, JSON_TABLE,
JSON_EXISTS, and JSON_QUERY). Constructor functions use values of SQL types and produce JSON values
(JSON objects or JSON arrays) represented in SQL character or binary string types. Query functions evaluate
SQL/JSON path language expressions against JSON values, producing values of SQL/JSON types, which are
converted to SQL types. The SQL/JSON path language is described in Clause 6, “SQL/JSON path language”.

5.2 JSON API common syntax

The SQL/JSON query functions all need a path specification, the JSON value to be input to that path specification
for querying and processing, and optional parameter values passed to the path specification. They use a common
syntax:

<JSON API common syntax> ::=
<JSON context item> <comma> <JSON path specification> [AS <JSON table path name>]
 [<JSON passing clause>]

<JSON context item> ::=
<JSON value expression>

<JSON path specification> ::=
<character string literal>

<JSON passing clause> ::=
PASSING <JSON argument> [{ <comma> <JSON argument> }]

<JSON argument> ::=
<JSON value expression> AS <identifier>

The type of the <value expression> contained in the <JSON value expression> immediately contained in the
<JSON context item> is a string type. If the <JSON context item> does not implicitly or explicitly specify a
<JSON input clause>, then FORMAT JSON is implicit.

If <JSON API common syntax> is not contained in <JSON table>, then <JSON table path name> is not required.
The <JSON table path name> is optional; if <JSON table path name> is not specified, then an implementation-
dependent <JSON table path name> is implicit. The <JSON context item> is the JSON input on which the
SQL/JSON path expression operates.

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 21

ISO/IEC TR 19075-6:2017(E)
5.1 Handle JSON using built-in functions

5.2.1 JSON value expression

<JSON context item> is defined as a <JSON value expression>, which is in turn defined as:

<JSON value expression> ::=
<value expression> [<JSON input clause>]

<JSON input clause> ::=
FORMAT <JSON representation>

<JSON representation> ::=
JSON [ENCODING { UTF8 | UTF16 | UTF32 }]

| <implementation-defined JSON representation option>

A <JSON value expression> may have an optional <JSON input clause>. This indicates that the values
expression should be parsed as JSON. The standardized option is FORMAT JSON; implementations may also
support syntax such as FORMAT AVRO or FORMAT BSON. When using the <JSON input clause>, the
<value expression> may be either a character string or a binary string.

If the user does not specify the ENCODING for a <JSON value expression>, then the SQL-implementation
will determine it as one of the three encoding alternatives: UTF8, UTF16, and UTF32.

5.2.2 Path expression

The context item is followed by a comma and the SQL/JSON path expression. <JSON path specification> is
a character string literal. Requiring a literal enables the implementation to optimize the query by analyzing the
SQL/JSON path expression and planning accordingly, for example, if there are indexes available on the JSON
data.

The optional <JSON table path name> is syntax that is only used in JSON_TABLE, and then only if the user
wants to write an explicit plan for processing nested COLUMNS clauses. Explicit plans for JSON_TABLE are
explained later.

5.2.3 PASSING clause

SQL's JSON facilities include a PASSING clause that is used to pass parameters to the SQL/JSON path
expression. For example, suppose that an SQL/PSM routine has parameters “upper” and “lower” and it is
desired to find rows in which the JSON data has a member called “age” between these two values. The user
might write:

SELECT *
FROM T
WHERE JSON_EXISTS (T.C,
 'lax $? ($lo <= @.age && @.age <= $up)'

PASSING upper AS "up",
 lower AS "lo")

In this example there are two variables defined in the PASSING clause. In “SQL-land” they are the PSM variables
upper and lower; in “SQL/JSON-land” they are $up and $lo.

22 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.2 JSON API common syntax

Syntactically, the PASSING clause is a comma-separated list of <JSON argument>s, defined as:

<JSON argument> ::=
<JSON value expression> AS <identifier>

The <JSON value expression> specifies the value to be passed into the SQL/JSON path engine. This may be
of any type supported by the data model (Unicode character strings, numbers, booleans and datetimes) or any
other type that can be cast to a Unicode character string (for example, almost all non-Unicode character strings,
or user-defined types with a user-defined cast to a Unicode character string type). In the example above, the
<value expression>s were SQL/PSM variables, but any <value expression> may be used. Thus, a join to another
table can be constructed by passing a column from one table into path expression on an SQL/JSON value of
another table.

The <identifier> in the <JSON argument> specifies the variable name by which the value can be referenced
within the SQL/JSON path expression. In this example, these identifiers are “up” and “lo”. Within the path
expression, these are referenced with a prefixed dollar sign ($up and $lo), since $ marks the variables in a
path expression.

5.2.4 JSON output clause

Whenever JSON data is returned as the result of a function, the application author will normally wish to control
the form in which that JSON data is returned. The syntax used to specify the data type, format, and encoding
of the JSON text created by a JSON-returning function.

<JSON output clause> ::=
RETURNING <data type>
 [FORMAT <JSON representation>]

<JSON representation> ::=
JSON [ENCODING { UTF8 | UTF16 | UTF32 }]

| <implementation-defined JSON representation option>

If FORMAT is not specified, then FORMAT JSON is implicit. If the <JSON output clause> specifies or implies
JSON, then the <data type> shall identify a string type. FORMAT JSON specifies the data format specified in
[RFC7159]. FORMAT <implementation-defined JSON representation option> specifies an implementation-
defined data format.

NOTE 8 — For example, BSON or AVRO; see Bibliography. An <implementation-defined JSON representation option> implies
an ability to parse a string into the SQL/JSON data model, and an ability to serialize an SQL/JSON array or SQL/JSON object to
a string, similar to the capabilities of “Parsing a JSON text”, and “Serializing an SQL/JSON item”, respectively.

5.2.5 ON ERROR and ON EMPTY syntax

The SQL/JSON query functions also have ON ERROR and ON EMPTY clauses in common. However, the
details of these clauses vary depending on the query function, so they are not included in the <JSON API
common syntax> shown above. They will be described individually for each query function.

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 23

ISO/IEC TR 19075-6:2017(E)
5.2 JSON API common syntax

5.3 Query functions

The SQL/JSON query functions are:

— JSON_EXISTS — determine whether an SQL/JSON value satisfies a path specification.

— JSON_VALUE — extract an SQL scalar value from an SQL/JSON value.

— JSON_QUERY — extract an SQL/JSON value from an SQL/JSON value.

— JSON_TABLE — extract a table from an SQL/JSON value.

5.3.1 JSON_EXISTS

JSON_EXISTS determines whether a JSON value satisfies a search criterion. The syntax for JSON_EXISTS
is:

<JSON exists predicate> ::=
JSON_EXISTS <left paren>

<JSON API common syntax>
 [<JSON exists error behavior> ON ERROR]
<right paren>

<JSON exists error behavior> ::=
TRUE | FALSE | UNKNOWN | ERROR

The syntax for JSON_EXISTS is the shared syntax <JSON API common syntax> , plus an optional ON ERROR
clause, defaulting to FALSE ON ERROR. If the value of the <JSON context item> simply contained in the
<JSON API common syntax> is the null value, then the result of <JSON exists predicate> is Unknown.

JSON_EXISTS is a predicate that can be used to test whether an SQL/JSON path expression is fulfilled in an
SQL/JSON value. JSON_EXISTS evaluates the SQL/JSON path expression; the result is True if the path
expression finds one or more SQL/JSON items.

Consider the following sample data in the following table with two columns, K (the primary key) and J (a column
containing JSON text):

Table 4 — JSON_EXISTS sample data

JK

{ "who": "Fred", "where": "General Products", "friends": [{ "name": "Lili", "rank": 5 },
{"name": "Hank", "rank": 7}] }

101

{ "who": "Tom", "where": "MultiCorp", "friends": [{ "name": "Sharon", "rank": 2},
{"name": "Monty", "rank": 3}] }

102

{ "who": "Jack","friends": [{ "name": "Connie" }] }103

{ "who": "Joe","friends": [{ "name": "Doris" }, {"rank": 1}] }104

{ "who": "Mabel", "where": "Black Label","friends": [{ "name": "Buck", "rank": 6}] }105

24 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

JK

{ "who": "Louise", "where": "Iana" }106

Looking at the sample data, one sees that each row contains a JSON object with one or more members. Observe
that rows 103 and 104 have no “where” member. To find the rows that have a “where” member, one can write:

SELECT T.K
FROM T
WHERE JSON_EXISTS (T.J, 'lax $.where')

This is the simplest possible invocation of JSON_EXISTS. The first argument is the context item T.J, a JSON
value to be queried. The second argument is the SQL/JSON path expression.

The SQL/JSON path expression begins with the keyword lax, the alternative being strict. The choice of lax or
strict governs the behavior in certain error situations to be described later. In this particular example the choice
is actually irrelevant.

After the mode declaration (lax or strict) one reaches the essence of the SQL/JSON path expression. In the
SQL/JSON path expression, the dollar sign ($) represents the context item. The dot operator (.) is used to select
a member of an object; in this case the member called “where” is selected.

If a row has a “where” member, then the result of the SQL/JSON path expression is the bound value of that
“where” member. Thus, the SQL/JSON path expression returns a non-empty SQL/JSON sequence for rows
101, 102, 105, and 106, and JSON_EXISTS return True for these rows.

In this example, the path expression is in lax mode, which means that any “structural” errors are converted to
the empty SQL/JSON sequence. A structural error is an attempt to access a non-existent member of an object
or element of an array. Rows 103 and 104 have structural errors, because they lack the “where” member. In
lax mode, such structural errors are handled by returning an empty SQL/JSON sequence. (The alternative, strict
mode, treats a structural error as a “hard” error and returns that error to the invoking routine. Strict mode will
be considered later.) On rows 103 and 104, the result of the SQL/JSON path expression is the empty SQL/JSON
sequence, and for these rows JSON_EXISTS returns False.

Thus, the result of the sample query is in the following table:

Table 5 — Result of the sample query

K

101

102

105

106

Alternatively, the query could be run in strict mode:

SELECT T.K

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 25

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

FROM T
WHERE JSON_EXISTS (T.J, 'strict $.where')

In this case, rows 103 and 104 will have errors in the path expression, which might be presented to the user as
exceptions. Users want the ability to handle exceptions so that the query can run to completion, rather than
halting on an exception. Thus, ON ERROR clause is provided in each of the four query operators. For example,
the user might write:

SELECT T.K
FROM T
WHERE JSON_EXISTS(T.J, 'strict $.where' FALSE ON ERROR)

Here, FALSE ON ERROR means that the result of JSON_EXISTS should be False if there is an error. The
results of this query will therefore be as shown in Table 5, “Result of the sample query”, matching the results
of the lax mode example. FALSE ON ERROR is the default error behavior for JSON_EXISTS. Other choices
are TRUE ON ERROR, UNKNOWN ON ERROR, or ERROR ON ERROR.

In the examples considered above, the SQL/JSON path expression $.where will find either zero or one
SQL/JSON item. In general, an SQL/JSON path expression might result in more than one SQL/JSON item.
For example, some rows have more than one “rank” member; however, row 103 has no rank member (and row
106 does not even have friends). To search for rows having “rank”, one might use:

SELECT T.K
FROM T
WHERE JSON_EXISTS (T.J, 'strict $.friends[*].rank')

This example shows another accessor in the SQL/JSON path language, [*], which selects all elements of an
array. Look at how this SQL/JSON path expression is evaluated in row 101:

Table 6 — Accessor example

ResultPath step

{ "who": "Fred", "where": "General Products", "friends": [{ "name": "Lili",
"rank": 5 }, {"name": "Hank", "rank": 7}] }

$1

[{ "name": "Lili", "rank": 5 }, { "name": "Hank", "rank": 7}]$.friends2

{ "name": "Lili", "rank": 5 }, { "name": "Hank", "rank": 7}$.friends[*]3

5, 7$.friends[*].rank4

Successive lines above show the evaluation of the SQL/JSON path expression $.friends[*].rank. On the first
line, $, the value is the entire context item. The next line drills down to the “friends” member, which is an array.
The next line drills down to the elements of the array. Notice that at this point the square bracket [] array
wrappers are lost, and the result at this point is an SQL/JSON sequence of length two. The final line drills down
to the “rank” member of each SQL/JSON item in the SQL/JSON sequence; the result is again an SQL/JSON
sequence of length two.

Note in this example how the accessors in the SQL/JSON path language automatically iterate over all SQL/JSON
items discovered by the previous step in the SQL/JSON path expression. In this example, this is seen in the
transition from step 3 to step 4.

26 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

In some commercial products, it is customary for a member accessor such as .rank to automatically iterate
over the elements of an array such as “friends”. Thus, the user of such a product would prefer to write
$.friends.rank, as if there were an implicit [*] on “friends”. This convention is supported in lax mode.
Thus, the path expression lax $.friends.rank finds the same rows as 'strict $.friends[*].rank in
this example. In lax mode, there are effectively two automatic iterations: first, any array in the sequence is
unwrapped (as if modified by [*]) and then the possibly expanded sequence is iterated over. Precise details
will be presented later when the path language is addressed.

The result of the SQL/JSON path expression in this example is 0 (zero), 1 (one), or 2 SQL/JSON items,
depending on the row. JSON_EXISTS is True if the result is 1 (one) or more SQL/JSON items, False if the
result is 0 (zero) SQL/JSON items, and governed by the ON ERROR clause if the result is an error.

5.3.2 JSON_VALUE

JSON_VALUE is an operator to extract an SQL scalar from a JSON value. The syntax of JSON_VALUE is

<JSON value function> ::=
JSON_VALUE <left paren>

<JSON API common syntax>
 [<JSON returning clause>]
 [<JSON value empty behavior> ON EMPTY]
 [<JSON value error behavior> ON ERROR]
<right paren>

<JSON returning clause> ::=
RETURNING <data type>

<JSON value empty behavior> ::=
ERROR

| NULL
| DEFAULT <value expression>

<JSON value error behavior> ::=
ERROR

| NULL
| DEFAULT <value expression>

<JSON value empty behavior> specifies what to do if the result of the SQL/JSON path expression is empty:

— NULL ON EMPTY means that the result of JSON_VALUE is the null value.

— ERROR ON EMPTY means that an exception is raised.

— DEFAULT <value expression> ON EMPTY means that the <value expression> is evaluated and cast to
the target type.

<JSON value error behavior> specifies what to do if there is an unhandled error. Unhandled errors can arise if
there is an input conversion error (for example, if the context item cannot be parsed), an error returned by the
SQL/JSON path engine, or an output conversion error. The choices are the same as for <JSON value empty
behavior>.

When using DEFAULT <value expression> for either the empty or error behavior, what happens if the <value
expression> raises an exception? The answer is that an error during empty behavior “falls through” to the error
behavior. If the error behavior itself has an error, there is no further recourse but to raise the exception.

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 27

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

If <JSON returning clause> is not specified, then an implementation-defined character string type is implicit.
The <data type> contained in the explicit or implicit <JSON returning clause> is a <predefined type> that
identifies a character string data type, numeric data type, boolean data type, or datetime data type. The declared
type of <JSON value function> is the type specified by <data type>. If <JSON value empty behavior> is not
specified, then NULL ON EMPTY is implicit. If <JSON value error behavior> is not specified, then NULL
ON ERROR is implicit. If the value of the <JSON context item> simply contained in the <JSON API common
syntax> is the null value, then the result of <JSON value function> is the null value of type <data type>.

After finding a desired row, the user might wish to extract an SQL scalar value from a JSON value. This is
done using JSON_VALUE. For example, to extract the who member from each row:

SELECT T.K,
JSON_VALUE (T.J, 'lax $.who') AS Who

FROM T

with the following result from the sample data:

Table 7 — Result 1

WHOK

Fred101

Tom102

Jack103

Joe104

Mabel105

Louise106

Note that JSON_VALUE by default returns an implementation-defined character string type. The user can
specify other types using a RETURNING clause, to be considered later.

The “where” member from each row can also be extracted. However, there is no “where” there in rows 103
and 104. This is a structural error when evaluating $.where. In lax mode, structural errors are converted to an
empty SQL/JSON sequence. For those rows, the user may desire a default value, such as null. This use case is
supported using the underlined syntax shown below:

SELECT T.K,
JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where'
NULL ON EMPTY) AS Nali

FROM T

with the following result:

28 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 8 — Result 2

NALIWHOK

General ProductsFred101

MultiCorpTom102

Jack103

Joe104

Black LabelMabel105

IanaLouise106

If the query is reformulated in strict mode, then the structural errors become “hard” errors, that is, errors that
are reported out of the path engine and back to the API level. To control “hard” errors, JSON_VALUE has an
ON ERROR clause. As one possibility of the ON ERROR clause, consider

SELECT T.K,
JSON_VALUE (T.J, 'strict $.who') AS Who,
JSON_VALUE (T.J, 'strict $.where'
DEFAULT 'no where there' ON ERROR)
AS Nali

FROM T

The result of this example would be:

Table 9 — Result 3

NALIWHOK

General ProductsFred101

MultiCorpTom102

no where thereJack103

no where thereJoe104

Black LabelMabel105

IanaLouise106

JSON_VALUE expects that the SQL/JSON path expression will return one SQL/JSON item; the ON EMPTY
clause can be used to handle missing data (no SQL/JSON items) gracefully. More than one SQL/JSON item
is an error. To avoid raising an exception on more than one SQL/JSON item, the ON ERROR clause can be
used. For example, some rows have more than one “friend”. Consider this query:

SELECT T.K,

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 29

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,
JSON_VALUE (T.J, 'lax $.friends.name' NULL ON EMPTY

DEFAULT '*** error ***' ON ERROR)
AS Friend

FROM T

with the following result:

Table 10 — Result 4

FRIENDNALIWHOK

*** error ***General ProductsFred101

*** error ***MultiCorpTom102

ConnieJack103

DorisJoe104

BuckBlack LabelMabel105

IanaLouise106

Rows 101 and 102 have an error because the path expression $.friends.name returns more than one
SQL/JSON item. Row 106, on the other hand, has no “friends”, so the NULL ON EMPTY clause determines
the result.

Row 104 in the preceding example deserves a closer look. Actually the “friends” member in this row is

"friends": [{ "name": "Doris" }, {"rank": 1}]

Thus, $.friends is an array of two objects. The member accessor $.friends.name will iterate over both
objects, as if $.friends[*].name had been written. The first object has a “name” member, the second one
does not. In lax mode, $.friends.name will quietly eliminate the SQL/JSON item in which there is no
“name”, leaving one SQL/JSON item, and then JSON_VALUE can succeed with the result “Doris” without
relying on either an ON EMPTY or ON ERROR clause.

The ON ERROR clause is useful in strict mode, where even structural errors are hard errors. For example,
consider the following example, with a small rewrite to specify strict mode:

SELECT T.K,
JSON_VALUE (T.J, 'strict $.who') AS Who,
JSON_VALUE (T.J, 'strict $.where' NULL ON EMPTY NULL ON ERROR) AS Nali,
JSON_VALUE (T.J, 'strict $.friends[*].name' NULL ON EMPTY

DEFAULT '*** error ***' ON ERROR)
AS Friend

FROM T

then the result changes to the following:

30 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 11 — Result 5

FRIENDNALIWHOK

*** error ***General ProductsFred101

*** error ***MultiCorpTom102

ConnieJack103

*** error ***Joe104

BuckBlack LabelMabel105

IanaLouise106

Look especially at row 104. In lax mode, the result in the FRIEND column was “Doris”, because there was
only one object in $.friends[*] with a “name”. In strict mode, this row has a path error, because
$.friends[*] has two objects, and one of them has no “name”.

So far the examples have all returned character strings. This is the default; to extract other types, use the
RETURNING clause. For example, the rank field is a number. A query to get the rank of the first friend is:

SELECT T.K,
JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.friends[0].rank' RETURNING INTEGER NULL ON EMPTY)
AS Rank

FROM T

Note in the underlined syntax the use of the subscript [0] to access the first element of the array. This follows
the convention in [ECMAscript], section 5.1, that arrays begin at subscript 0 (zero). This is one instance where
it was better to follow the conventions of the JSON community rather than SQL. The example has the following
result:

Table 12 — Result 6

RANKWHOK

5Fred101

2Tom102

Jack103

Joe104

6Mabel105

Louise106

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 31

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

5.3.3 JSON_QUERY

The JSON_VALUE function can extract a scalar from an SQL/JSON value, but it cannot extract an SQL/JSON
array or an SQL/JSON object from an SQL/JSON value. The JSON_QUERY function exists to extract SQL/JSON
values from SQL/JSON values.

The syntax for JSON_QUERY is:

<JSON query> ::=
JSON_QUERY <left paren>

<JSON API common syntax>
 [<JSON output clause>]
 [<JSON query wrapper behavior> WRAPPER]
 [<JSON query quotes behavior> QUOTES [ON SCALAR STRING]]
 [<JSON query empty behavior> ON EMPTY]
 [<JSON query error behavior> ON ERROR]

<right paren>

<JSON query wrapper behavior> ::=
WITHOUT [ARRAY]

| WITH [CONDITIONAL | UNCONDITIONAL] [ARRAY]

<JSON query quotes behavior> ::=
KEEP

| OMIT

<JSON query empty behavior> ::=
ERROR

| NULL
| EMPTY ARRAY
| EMPTY OBJECT

<JSON query error behavior> ::=
ERROR

| NULL
| EMPTY ARRAY
| EMPTY OBJECT

The ON EMPTY and ON ERROR clauses are similar to JSON_VALUE, and handled essentially the same
way. The novel wrinkle is that DEFAULT <value expression> options are not provided; instead, the user can
specify an empty array or empty object as the result in the empty or error cases.

If <JSON output clause> is not specified, then RETURNING FORMAT JSON is implicit. The declared type
of <JSON query>is the type specified by the <data type> contained in the explicit or implicit <JSON output
clause>. If <JSON query empty behavior> is not specified, then NULL ON EMPTY is implicit. If <JSON
query error behavior> is not specified, then NULL ON ERROR is implicit. If <JSON query wrapper behavior>
is not specified, then WITHOUT ARRAY is implicit. If <JSON query wrapper behavior> specifies WITH, and
if neither CONDITIONAL nor UNCONDITIONAL is specified, then UNCONDITIONAL is implicit. If the
value of the <JSON context item> simply contained in the <JSON API common syntax> is the null value, then
the result of <JSON query> is the null value.

Continuing with the example data from Table 4, “JSON_EXISTS sample data”, suppose the user wishes to
retrieve the who, where, and friends members. who and where are scalars and can be extracted with
JSON_VALUE, but friends is a JSON array, so JSON_QUERY is used:

SELECT T.K,

32 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,
JSON_QUERY (T.J, 'lax $.friends') AS Friends

FROM T
WHERE JSON_EXISTS (T.J, 'lax $.friends')

with the following result:

FRIENDSNALIWHOK

[{ "name": "Lili", "rank" : 5 }]
{ "name": "Hank", "rank" : 7 }]

General ProductsFred101

[{ "name": "Sharon", "rank" : 2 }]
{ "name": "Monty", "rank" : 3 }]

MultiCorpTom102

[{ "name": "Connie" }]Jack103

[{ "name": "Doris", "rank" : 1 }]Joe104

[{ "name": "Buck", "rank" : 6 }]Black LabelMabel105

In row 106, there is no friends member, so this row has been suppressed by the WHERE clause.

Now, consider the various special cases that can arise. One possibility is that the SQL/JSON path expression
returns an empty SQL/JSON sequence. Similar to JSON_VALUE, the user can use an ON EMPTY clause to
handle the empty case. Thus, to handle row 106, one might write:

SELECT T.K,
JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,
JSON_QUERY (T.J, 'lax $.friends' NULL ON EMPTY) AS Friends

FROM T

with this result:

FRIENDSNALIWHOK

[{ "name": "Lili", "rank" : 5 }]
{ "name": "Hank", "rank" : 7 }]

General ProductsFred101

[{ "name": "Sharon", "rank" : 2 }]
{ "name": "Monty", "rank" : 3 }]

MultiCorpTom102

[{ "name": "Connie" }]Jack103

[{ "name": "Doris", "rank" : 1 }]Joe104

[{ "name": "Buck", "rank" : 6 }]Black LabelMabel105

IanaLouise106

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 33

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

The example explicitly specified NULL ON EMPTY, which is also the default behavior. Other alternatives are
ERROR ON EMPTY, EMPTY ARRAY ON EMPTY, and EMPTY OBJECT ON EMPTY. The latter two
alternatives return the empty JSON forms “[]” and “{}”, respectively.

A possible error condition is that the SQL/JSON path expression may result in more than one SQL/JSON item,
or the result may be a scalar rather than an SQL/JSON array or object. For example, the path expression
$.friends.name (or $.friends[*].name in strict mode) may result in two names in rows 101 and 102.
To handle this, the user may request that the results be wrapped in an array wrapper. Here is an example:

SELECT T.K,
JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,
JSON_QUERY (T.J, 'lax $.friends.name' WITH ARRAY WRAPPER) AS FriendsNames

FROM T

with the result:

FRIENDSNAMESNALIWHOK

["Lili", "Hank"]General ProductsFred101

["Sharon", "Monty"]MultiCorpTom102

["Connie"]Jack103

["Doris"]Joe104

["Buck"]Black LabelMabel105

[]IanaLouise106

Once again, row 106 is especially interesting. In this row, the result of the path expression is an empty SQL/JSON
sequence. The array wrapper is applied to the empty SQL/JSON sequence, producing an empty array, so there
is no need to resort to the NULL ON EMPTY behavior in this case (and in fact the ON EMPTY clause is pro-
hibited if WITH ARRAY WRAPPER is specified).

The alternative to WITH ARRAY WRAPPER is WITHOUT ARRAY WRAPPER, the default shown in the
initial examples. Actually, WITH ARRAY WRAPPER comes in two varieties, WITH UNCONDITIONAL
ARRAY WRAPPER and WITH CONDITIONAL ARRAY WRAPPER, the default being UNCONDITIONAL.
The difference is that CONDITIONAL only supplies the array wrapper if the path expression results in anything
other than a singleton SQL/JSON array or object. UNCONDITIONAL always supplies the array wrapper,
regardless of what the path expression results are.

What is the difference between JSON_VALUE returning a character string and JSON_QUERY? The difference
can be seen with the following example data:

J2

{ a: "[1,2]", b: [1,2], c: "hi"}

34 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Note in this data that members a and c have values that are character strings, whereas member b has a value
that is an array. Here are the results of extracting each member, comparing JSON_VALUE with JSON_QUERY,
and comparing the different wrapper options:

Table 13 — Comparison of wrapper options

$.c$.b$.aOperator

hierror[1, 2]JSON_VALUE

error[1, 2]errorWITHOUT ARRAY WRAPPERJSON_-
QUERY

["hi"][[1,2]]["[1,2]"]WITH UNCONDITIONAL ARRAY WRAPPER

["hi"][1,2]["[1,2]"]WITH CONDITIONAL ARRAY WRAPPER

There are three error cases in this example. In the case of JSON_VALUE, they will be handled by using the
ON ERROR clause, as already discussed. As for JSON_QUERY, the possibilities for ON ERROR are the same
as ON EMPTY, namely NULL ON ERROR, EMPTY ARRAY ON ERROR, EMPTY OBJECT ON ERROR,
or ERROR ON ERROR.

5.3.4 JSON_TABLE

JSON_TABLE is a function that takes JSON data as input and generates relational data for valid input data. It
has three parameters:

1) The JSON value on which to operate.

2) An SQL/JSON path expression to specify zero or more rows.

3) A COLUMNS clause to specify the shape of the output table.

The complete syntax for JSON_TABLE is complex, because of the support for nested COLUMNS clauses.
Therefore the syntax will be presented in stages.

Consider the following sample data in a table, BOOKCLUB, that contains a JSON column, JCOL. Table 14,
“JSON_TABLE sample data in a book recommendation table” will be used in this section to illustrate some
examples of the JSON_TABLE function syntax:

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 35

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 14 — JSON_TABLE sample data in a book recommendation table

JCOLID

{ "Name" : "John Smith",
 "address" : { "streetAddress": "21 2nd Street",
 "city": "New York",
 "state" : "NY",
 "postalCode" : 10021 },
 "phoneNumber" : [{ "type" : "home", "number" : "212 555-1234" },
 { "type" : "fax", "number" : "646 555-4567" }]
 "books" : [{ "title" : "The Talisman",
 "authorList" : ["Stephen King", "Peter Straub"],
 "category" : ["SciFi", "Novel"]
 },
 { "title" : "Far from the Madding Crowd",
 "authorList" : ["Thomas Hardy"],
 "category" : ["Novel"]
 }
]
}

111

{ "Name" : "Peter Walker",
 "address" : { "streetAddress": "111 Main Street",
 "city": "San Jose",
 "state" : "CA",
 "postalCode" : 95111 },
 "phoneNumber" : [{ "type" : "home", "number" : "408 555-9876" },
 { "type" : "office", "number" : "650 555-2468" }]
 "books" : [{ "title":"Good Omens",
 "authorList" : ["Neil Gaiman", "Terry Pratchett"],
 "category" : ["Fantasy", "Novel"] },
 { "title" : "Smoke and Mirrors",
 "authorList" : ["Neil Gaiman"],
 "category" : ["Novel"] }] }

222

{ "Name" : "James Lee" }333

5.3.4.1 COLUMNS clause that is not nested

The elementary case with no nested COLUMNS clause is supported by the following syntax:

<JSON table> ::=
JSON_TABLE <left paren>

<JSON API common syntax>
<JSON table columns clause>

 [<JSON table plan clause>]
 [<JSON table error behavior> ON ERROR]
<right paren>

<JSON table columns clause> ::=

36 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

COLUMNS <left paren>
<JSON table column definition>

 [{ <comma> <JSON table column definition> }...]
<right paren>

<JSON table column definition> ::=
<JSON table ordinality column definition>

| <JSON table regular column definition>
| <JSON table formatted column definition>
| <JSON table nested columns>

<JSON table ordinality column definition> ::=
<column name> FOR ORDINALITY

<JSON table regular column definition> ::=
<column name> <data type>
 [PATH <JSON table column path specification>]
 [<JSON table column empty behavior> ON EMPTY]
 [<JSON table column error behavior> ON ERROR]

<JSON table column empty behavior> ::=
ERROR

| NULL
| DEFAULT <value expression>

<JSON table column error behavior> ::=
ERROR

| NULL
| DEFAULT <value expression>

<JSON table column path specification> ::=
<JSON path specification>

<JSON table formatted column definition> ::=
<column name> <data type>
FORMAT <JSON representation>
[PATH <JSON table column path specification>]
[<JSON table formatted column wrapper behavior> WRAPPER]
[<JSON table formatted column quotes behavior> QUOTES
 [ON SCALAR STRING]]
[<JSON table formatted column empty behavior> ON EMPTY]
[<JSON table formatted column error behavior> ON ERROR]

<JSON table formatted column wrapper behavior> ::=
WITHOUT [ARRAY]

| WITH [CONDITIONAL | UNCONDITIONAL] [ARRAY]

<JSON table formatted column quotes behavior> ::=
KEEP

| OMIT

<JSON table formatted column empty behavior> ::=
ERROR

| NULL
| EMPTY ARRAY
| EMPTY OBJECT

<JSON table formatted column error behavior> ::=
ERROR

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 37

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

| NULL
| EMPTY ARRAY
| EMPTY OBJECT

<JSON table error behavior> ::=
ERROR

| EMPTY

Like the other JSON querying operators, JSON_TABLE begins with <JSON API common syntax> to specify
the context item, path expression and PASSING clause. The path expression in this case is more accurately
called the row pattern path expression. This path expression is intended to produce an SQL/JSON sequence,
with one SQL/JSON item for each row of the output table.

The COLUMNS clause can define two kinds of columns: ordinality columns and regular columns.

An ordinality column provides a sequential numbering of rows. Row numbering is 1-based.

A regular column supports columns of scalar type. The column is produced using the semantics of
JSON_VALUE. The column has an optional path expression, called the column pattern, which can be defaulted
from the column name. The column pattern is used to search for the column within the current SQL/JSON item
produced by the row pattern. The column also has optional ON EMPTY and ON ERROR clauses, with the
same choices and semantics as JSON_VALUE.

The final option for a <JSON table column definition> is <JSON table nested columns>, which is considered
later.

This is followed by the PLAN clause as part of the <JSON table plan clause> option, which is used to express
the processing of multiple nested paths.

This following example generates relational data containing a column, ROWSEQ, illustrating the use of the
FOR ORDINALITY clause, a column, NAME, of type VARCHAR(30), and a column, ZIP, of type CHAR(5),
extracted according to the specified path expressions applied to the JSON data contained in the column JCOL
of the BOOKCLUB table.

SELECT jt.rowseq, jt.name, jt.zip
FROM bookclub,

JSON_TABLE (bookclub.jcol, "lax $"
COLUMNS (rowSeq FOR ORDINALITY,

 name VARCHAR(30) PATH 'lax $.Name',
 zip CHAR(5) PATH 'lax $.address.postalCode'
)
) AS jt

The result of the query is shown in Table 15, “Query result”.

Table 15 — Query result

ZIPNAMEROWSEQ

10021John Smith1

95111Peter Walker2

James Lee3

38 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

5.3.4.2 Nested COLUMNS clause

The syntax for a nested COLUMNS clause is:

<JSON table nested columns> ::=
NESTED [PATH] <JSON table nested path specification>
 [AS <JSON table nested path name>]

<JSON table columns clause>

<JSON table nested path specification> ::=
<JSON path specification>

<JSON table nested path name> ::=
<JSON table path name>

<JSON table path name> ::=
<identifier>

The nested COLUMNS clause begins with the keyword NESTED, followed by a path and an optional path
name. The path provides a refined context for the nested columns. The primary use of the path name is if the
user wishes to specify an explicit plan.

After the prolog to specify the path and path name, there is a COLUMNS clause, which has the same capabilities
already considered.

The NESTED clause allows unnesting of (even deeply) nested JSON objects/arrays in one invocation rather
than chaining several JSON_TABLE expressions in the SQL-statement.

The following example illustrates the use of an elementary nested COLUMNS clause in JSON_TABLE. Note
the missing phoneNumber data in the last row of the result. This default LEFT OUTER JOIN-like semantic in
this parent-child nested relationship is further explained in the next section.

SELECT bookclub.id, jt.name, jt.type, jt.number
FROM bookclub,

JSON_TABLE (bookclub.jcol, 'lax $'
COLUMNS (name VARCHAR(30) PATH 'lax $.Name',

NESTED PATH 'lax $.phoneNumber[*]'
COLUMNS (type VARCHAR(10) PATH 'lax $.type',

 number CHAR(12) PATH 'lax $.number')
) AS jt;

The result of the query using the BOOKCLUB table sample data is shown in Table 16, “Query result”.

Table 16 — Query result

NUMBERTYPENAMEID

212 555-1234HomeJohn Smith111

646 555-4567FaxJohn Smith111

408 555-9876HomePeter Walker222

650 555-2468OfficePeter Walker222

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 39

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

NUMBERTYPENAMEID

James Lee333

5.3.4.3 PLAN clause

As seen above, every path may optionally be followed by a path name using an AS clause. Path names are
identifiers and must be unique. Path names are used in the PLAN clause to express the desired output plan.

The syntax for the PLAN clause is:

<JSON table plan clause> ::=
<JSON table specific plan>

| <JSON table default plan>

<JSON table specific plan> ::=
PLAN <left paren> <JSON table plan> <right paren>

<JSON table plan> ::=
<JSON table path name>

| <JSON table plan parent/child>
| <JSON table plan sibling>

<JSON table plan parent/child> ::=
<JSON table plan outer>

| <JSON table plan inner>

<JSON table plan outer> ::=
<JSON table path name> OUTER <JSON table plan primary>

<JSON table plan inner> ::=
<JSON table path name> INNER <JSON table plan primary>

<JSON table plan sibling> ::=
<JSON table plan union>

| <JSON table plan cross>

<JSON table plan union> ::=
<JSON table plan primary> UNION <JSON table plan primary>
 [{ UNION <JSON table plan primary> }...]

<JSON table plan cross> ::=
<JSON table plan primary> CROSS <JSON table plan primary>
 [{ CROSS <JSON table plan primary> }...]

<JSON table plan primary> ::=
<JSON table path name>

| <left paren> <JSON table plan> <right paren>

<JSON table default plan> ::=
PLAN DEFAULT <left paren> <JSON table default plan choices> <right paren>

<JSON table default plan choices> ::=
<JSON table default plan inner/outer>
 [<comma> <JSON table default plan union/cross>]

40 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

| <JSON table default plan union/cross>
 [<comma> <JSON table default plan inner/outer>]

<JSON table default plan inner/outer> ::=
INNER

| OUTER

<JSON table default plan union/cross> ::=
UNION

| CROSS

The INNER, OUTER, UNION, and CROSS concepts in the context of the PLAN clause have the following
characteristics.

— INNER expresses INNER JOIN semantics.

— OUTER expresses LEFT OUTER JOIN semantics and is the default with parent/child relationships.

— The first operand of an INNER or OUTER (parent/child relationship) is necessarily a <JSON table path
name> and must be an ancestor of all path names in the second operand.

— If there is an explicit PLAN clause, all path names must be explicit and appear in the PLAN clause exactly
once.

— CROSS expresses CROSS JOIN semantics

— UNION expresses semantics of a FULL OUTER JOIN with an unsatisfiable predicate such as 1=0 and is
the default with sibling relationships

— UNION is associative (no parentheses required for a list of paths to be unioned).

— CROSS is associative

— Parentheses are required to disambiguate complex expressions. In particular, there is no precedence between
UNION and CROSS.

The following query illustrates the default OUTER semantics between the parent-child relationship of the outer
context of ID and NAME with the nested columns of the book title and first and second author columns. The
first and second author column values, if present, are explicitly placed in two separate columns in this example.

SELECT bookclub.id, jt.name, jt.title, jt.author1, jt.author2
FROM bookclub,

JSON_TABLE (bookclub.jcol, 'lax $'
COLUMNS (name VARCHAR(30) PATH 'lax $.Name',

NESTED PATH 'lax $.books[*]'
COLUMNS (title VARCHAR(60) PATH 'lax $.title',

NESTED PATH 'lax $.authorList[*]' AS A
COLUMNS (author1 VARCHAR(30) PATH 'lax $[0]'

 author2 VARCHAR(30) PATH 'lax $[1]'
)
)
)
) AS jt;

The result of the query using the BOOKCLUB table sample data is shown in Table 17, “Query result”.

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 41

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 17 — Query result

AUTHOR2AUTHOR1TITLENAMEID

Peter StraubStephen KingThe TalismanJohn Smith111

Thomas HardyFar From the Madding CrowdJohn Smith111

Terry PratchettNeil GaimanGood OmensPeter Walker222

Neil GaimanSmoke and MirrorsPeter Walker222

James Lee333

The following query illustrates the nested COLUMNS clause using the default UNION semantic with the sibling
nested author and category columns.

SELECT bookclub.id, jt.name, jt.title, jt.author1, jt.category
FROM bookclub,

JSON_TABLE (bookclub.jcol, 'lax $'
COLUMNS (name VARCHAR(30) PATH 'lax $.Name',

NESTED PATH 'lax $.books[*]'
COLUMNS (title VARCHAR(60) PATH 'lax $.title',

NESTED PATH 'lax $.authorList[*]' AS ATH
COLUMNS (author VARCHAR(30) PATH 'lax $')

NESTED PATH 'lax $.category[*]' AS CAT
COLUMNS (category VARCHAR(30)

PATH 'lax $')
)
) AS jt;

The result of the query using the BOOKCLUB table sample data is shown in Table 18, “Query result”.

Table 18 — Query result

CATEGORYAUTHORTITLENAMEID

Stephen KingThe TalismanJohn Smith111

Peter StraubThe TalismanJohn Smith111

SciFiThe TalismanJohn Smith111

NovelThe TalismanJohn Smith111

Thomas HardyFar From the Madding CrowdJohn Smith111

NovelFar From the Madding CrowdJohn Smith111

Neil GaimanGood OmensPeter Walker222

42 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

CATEGORYAUTHORTITLENAMEID

Terry PratchettGood OmensPeter Walker222

FantasyGood OmensPeter Walker222

NovelGood OmensPeter Walker222

Neil GaimanSmoke and MirrorsPeter Walker222

FantasySmoke and MirrorsPeter Walker222

James Lee333

The following query illustrates the nested columns using the PLAN clause specifying the CROSS semantics
between the sibling author and category columns. The rows with outer values that do not have any nested
columns are not present in the result given the INNER semantics.

SELECT bookclub.id, jt.name, jt.title, jt.author1, jt.category
FROM bookclub,

JSON_TABLE (bookclub.jcol, 'lax $' AS PERSON
COLUMNS (name VARCHAR(30) PATH 'lax $.Name',

NESTED PATH 'lax $.books[*]' AS BOOKS
COLUMNS (title VARCHAR(60) PATH 'lax $.title',

NESTED PATH 'lax $.authorList[*]' AS ATH
COLUMNS (author VARCHAR(30) PATH 'lax $')

NESTED PATH 'lax $.category[*]' AS CAT
COLUMNS (category VARCHAR(30)

PATH 'lax $')
)
)

PLAN (PERSON INNER (BOOKS INNER (ATH CROSS CAT)))
) AS jt;

The query above is equivalent to using the PLAN DEFAULT clause instead of the explicit PLAN clause as
follows:

SELECT bookclub.id, jt.name, jt.title, jt.author1, jt.category
FROM bookclub,

JSON_TABLE (bookclub.jcol, 'lax $' AS PERSON
COLUMNS (name VARCHAR(30) PATH 'lax $.Name',

NESTED PATH 'lax $.books[*]' AS BOOKS
COLUMNS (title VARCHAR(60) PATH 'lax $.title',

NESTED PATH 'lax $.authorList[*]' AS ATH
COLUMNS (author VARCHAR(30) PATH 'lax $')

NESTED PATH 'lax $.category[*]' AS CAT
COLUMNS (category VARCHAR(30)

PATH 'lax $')
)
)

PLAN DEFAULT (INNER , CROSS)
) AS jt;

The result of this query using the BOOKCLUB table sample data is shown in Table 19, “Query result”.

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 43

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 19 — Query result

CATEGORYAUTHORTITLENAMEID

SciFiStephen KingThe TalismanJohn Smith111

NovelStephen KingThe TalismanJohn Smith111

SciFiPeter StraubThe TalismanJohn Smith111

NovelPeter StraubThe TalismanJohn Smith111

NovelThomas HardyFar From the Madding CrowdJohn Smith111

FantasyNeil GaimanGood OmensPeter Walker222

NovelNeil GaimanGood OmensPeter Walker222

FantasyTerry PratchettGood OmensPeter Walker222

NovelTerry PratchettGood OmensPeter Walker222

FantasyNeil GaimanSmoke and MirrorsPeter Walker222

5.3.5 Conformance features for query operators

The following conformance features are defined for the SQL/JSON query operators:

— Feature T821, “Basic SQL/JSON query operators”, defined as the following:

• JSON_VALUE with no PASSING clause, no ON EMPTY, no ON ERROR clause.

— Without explicit PASSING syntax, no values other than the context item can be passed to an
SQL/JSON path expression.

— Without explicit syntax, the default for ON EMPTY is NULL ON EMPTY.

— Without explicit syntax, the default for ON ERROR is NULL ON ERROR.

• JSON_TABLE: with no PASSING clause, no sibling NESTED COLUMNS, no PLAN, no table-level
ON ERROR, and including same restrictions as JSON_VALUE for regular columns (i.e., no ON
EMPTY, no ON ERROR)

— Without explicit PASSING syntax, no values other than the context item can be passed to an
SQL/JSON path expression.

— Without explicit PLAN syntax, the default for joining parent/ child columns has OUTER join
semantics.

— Without sibling NESTED COLUMNS support, the default for joining sibling NESTED COLUMNS
has UNION join semantics.

44 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

— Without explicit syntax, the default for the table-level ON ERROR is EMPTY ON ERROR.

• JSON_EXISTS with no PASSING clause and no ON ERROR clause.

— Without explicit PASSING syntax, no values other than the context item can be passed to an
SQL/JSON path expression.

— Without explicit syntax, the default for ON ERROR is FALSE ON ERROR.

• IS JSON with no <JSON key uniqueness constraint>

— Without explicit UNIQUE KEYS syntax, the default is WITHOUT UNIQUE KEYS.

• Support for the SQL/JSON path language, except as listed as advanced features in Subclause 6.14,
“Conformance features for SQL/JSON path language”.

NOTE 9 — In all of the preceding, the excluded syntax options become enabled by other features enumerated below.

— Feature T822, “SQL/JSON: IS JSON WITH UNIQUE KEYS predicate”

• Adds the WITH UNIQUE KEYS and WITHOUT UNIQUE KEYS syntax to the IS JSON predicate.

— Feature T823, “SQL/JSON: PASSING clause”

• Allows passing of additional values to the SQL/JSON path expression.

— Feature T824, “JSON_TABLE: specific PLAN clause”

• Allows explicit specification of a join plan for parent/child and sibling NESTED COLUMNS.

— Feature T825, “SQL/JSON: ON EMPTY and ON ERROR clauses”

• Allows to overwrite the default for ON EMPTY and ON ERROR options for JSON_VALUE,
JSON_TABLE, JSON_QUERY, and JSON_EXISTS.

— Feature T826, “General value expression in ON ERROR or ON EMPTY clauses”

• Without this feature, the user specified value expression in the ON ERROR clause or ON EMPTY
clause in JSON_VALUE or on a regular column definition in JSON_TABLE can only be a literal.

— Feature T827, “JSON_TABLE: sibling NESTED COLUMNS clauses”

• With support for this feature, the user can specify either UNION or CROSS join semantics for joining
sibling NESTED COLUMNS.

— Feature T828, “JSON_QUERY”

• JSON_QUERY but no PASSING, ON EMPTY, ON ERROR, or wrapper clauses. These excluded
syntax options are enabled in conjunction with other features.

— Without explicit PASSING syntax, no values other than the context item can be passed to an
SQL/JSON path expression.

— Without explicit syntax, the default for ON EMPTY is NULL ON EMPTY.

— Without explicit syntax, the default for ON ERROR is NULL ON ERROR.

— Without explicit syntax, the default for the wrapper option is WITHOUT ARRAY.

— Feature T829, “JSON_QUERY: array wrapper options”

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 45

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

With support for this feature, the user can specify whether none, all, or only scalar results should be
enclosed in an SQL/JSON array.

•

— Feature T838, “JSON_TABLE: PLAN DEFAULT clause”

• This feature adds the PLAN DEFAULT syntax to JSON_TABLE.

5.4 Constructor functions and IS JSON predicate

To illustrate the use of the SQL/JSON constructor functions, consider the following two ordinary SQL tables
and one additional table that incorporates a single column of JSON data:

CREATE TABLE depts (
 deptno INTEGER,
 deptname CHARACTER VARYING(30))

CREATE TABLE jobs (
 job_seq INTEGER,
 job_attrib CHARACTER(5),
 job_attval CHARACTER VARYING(64))

CREATE TABLE employees (
 emp_id INTEGER,
 name CHARACTER VARYING(50),
 salary DECIMAL(7,2),
 dept_id INTEGER,
 json_emp CHARACTER VARYING(5000))

Consider the DEPTS table with the following content:

Table 20 — DEPTS table

DEPTNAMEDEPTNO

Engineering314

Architecture113

Accounting12

Sales7

Executive13

Consider also the JOBS table with the following content:

46 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 21 — JOBS table

JOB_ATTVALJOB_ATTRIBJOB_SEQ

155566Leader101

00:30:00Duration101

Design the new table for the web siteDescription101

01:00:00Duration234

Load the tables with existing dataDescription234

129596Leader492

Design the look-and-feel of the web siteDescription17

Finally, consider the EMPLOYEES table with the following content:

Table 22 — EMPLOYEES table

JSON_EMPDEPT_IDSALARYNAMEEMP_ID

710000Logan29334

77000James29335

79000Rachel29336

5.4.1 JSON_OBJECT

SQL applications working with JSON data will often need to construct new JSON objects, either for use within
the applications themselves, for storage in the SQL database, or to return to the application program itself. This
section of this Technical Report describes the built-in function, JSON_OBJECT, that constructs JSON objects
from explicit name/value pairs.

<JSON object constructor> ::=
JSON_OBJECT <left paren>
 [<JSON name and value> [{ <comma> <JSON name and value> }...]
 [<JSON constructor null clause>]
 [<JSON key uniqueness constraint>]]
 [<JSON output clause>]
<right paren>

<JSON name and value> ::=
[KEY] <JSON name> VALUE <JSON value expression>

| <JSON name> <colon> <JSON value expression>

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 47

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

<JSON name> ::=
<character value expression>

<JSON constructor null clause> ::=
NULL ON NULL

| ABSENT ON NULL

<JSON key uniqueness constraint> ::=
WITH UNIQUE [KEYS]

| WITHOUT UNIQUE [KEYS]

The <JSON name>s may not be NULL. The <JSON value expression>s may be NULL, with the action taken
controlled by the <JSON constructor null clause>. NULL ON NULL produces an SQL/JSON null, while
ABSENT ON NULL omits that key:value pair from the resulting SQL/JSON object. The default if no <JSON
constructor null clause> is given is NULL ON NULL.

JSON_OBJECT is typically used in <select list>s, as illustrated in the following example.

SELECT
JSON_OBJECT(KEY 'deptno' VALUE d.deptno,

KEY 'deptname' VALUE d.deptname) AS D314
FROM depts AS d
WHERE d.deptno = 314

This query returns one row for department 314 recorded in the DEPTS table; that row contains a single column,
which contains a serialization of a JSON object having the department number and name. The result column
type is VARCHAR with an implementation-defined length. Visually, the returned JSON object would look
something like this:

NOTE 10 — This and other examples in this Technical Report show insignificant whitespace in the result for readability only.
For example, the spaces following the left curly brace, before and after the colons, etc., in the output are insignificant whitespace.
While a conforming SQL-implementation may add insignificant whitespace, no conforming SQL-implementation is required to
do so.

Table 23 — The JSON object returned

D314

{ "deptno" : 314, "deptname" : "Engineering" }

If Feature T814, “Colon in JSON_OBJECT or JSON_OBJECTAGG” is implemented, the query could also be
expressed using colon as a key-value separator:

SELECT JSON_OBJECT('deptno' : d.deptno, 'deptname' : d.deptname) AS D314
FROM depts AS d
WHERE d.deptno = 314

5.4.2 JSON_OBJECTAGG

Often, it is inappropriate or even impossible to construct a JSON object by explicitly specifying the names of
the contained name/value pairs (e.g., because the names are not known a priori). Instead, an application developer
may wish to construct a JSON object as an aggregation of information in an SQL table. Presuming that the

48 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

SQL table actually contains a column with JSON names and another column with corresponding values, the
built-in function JSON_OBJECTAGG (“object aggregate”) performs this function.

<JSON object aggregate constructor> ::=
JSON_OBJECTAGG <left paren>

<JSON name and value>
 [<JSON constructor null clause>]
 [<JSON key uniqueness constraint>]
[<JSON output clause>]
<right paren>

The default if no <JSON constructor null clause> is given is NULL ON NULL.

The following example will create a JSON object containing a sequence of name/value pairs in which the name
is a department name and the value is the department number:

SELECT JSON_OBJECTAGG (deptname VALUE deptno)
FROM depts

The result of this query is a table containing a single row of one column, which contains a serialization of a
JSON object. That object would look something like this:

{ "Engineering" : 314, "Architecture" : 113, "Accounting" : 12,
 "Sales" : 7, "Executive" : 13 }

The reader will observe that this is actually a kind of “pivot” of the DEPTS table.

The JSON_OBJECTAGG function can also be used in grouped queries to good effect.

The SQL query:

SELECT j.job_seq,
JSON_OBJECTAGG (j.job_attrib, j.job_attval RETURNING VARCHAR(200))

AS attributes
FROM jobs AS j
GROUP BY j.job_seq

will produce a table containing four rows, each containing two columns. The first column of the table contains
the job sequence numbers, while the second column contains a serialization of a JSON object that is a pivot of
the information in all of the rows associated with the corresponding job sequence number. The result type of
the JSON object is VARCHAR with a maximum length of 200, as specified in the query. An exception condition
would be raised if this length is exceeded. The result will look something like this:

Table 24 — Returned JSON object with the corresponding job sequence number

ATTRIBUTESJOB_SEQ

{ "Leader" : "155566", "Duration" : "00:30:00", "Description" : "Design the new tables for
the web site" }

101

{ "Duration" : "01:00:00", "Description" : "Load the tables with existing data" }234

{ "Leader" : "129596" }492

{ "Description" : "Design the look-and-feel of the web site" }17

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 49

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

5.4.3 JSON_ARRAY

Just as an application developer might wish to construct a JSON object from an explicit list of data, she might
wish to construct a JSON array from a similar list of data. The built-in function JSON_ARRAY provides that
capability.

<JSON array constructor> ::=
<JSON array constructor by enumeration>

| <JSON array constructor by query>

<JSON array constructor by enumeration> ::=
JSON_ARRAY <left paren>
 [<JSON value expression> [{ <comma> <JSON value expression> }...]
 [<JSON constructor null clause>]]
 [<JSON output clause>]
<right paren>

<JSON array constructor by query> ::=
JSON_ARRAY <left paren>

<query expression>
 [<JSON input clause>]
 [<JSON constructor null clause>]
 [<JSON output clause>]
<right paren>

JSON_ARRAY has two variants: One variant produces its result from an explicit list of SQL values (literals
or computed values, including subqueries); the second variant produces its results from an SQL query expression
invoked within the function. For the constructor-by-query form, the query expression must return exactly one
column, and the array values are formed from the column values generated by the query expression.

For JSON_ARRAY, if not explicitly specified, the default ON NULL clause is ABSENT ON NULL (which
is different from the default for JSON_OBJECT).

The following query illustrates the use of JSON_ARRAY:

SELECT
JSON_ARRAY ('deptno', d.deptno, 'deptname', d.deptname)
FROM depts AS d
WHERE d.deptno = 314

This query returns one row for department 314 recorded in the DEPTS table; that row contains a single column,
which contains a serialization of a JSON array containing two character string literals, the department number,
and the department name. Visually, the returned JSON array would look something like this:

["deptno", 314, "deptname", "Engineering"]

5.4.4 JSON_ARRAYAGG

Just as an SQL application might need to construct a JSON object as an aggregation of SQL data, so might it
need to construct a JSON array as an aggregate.

<JSON array aggregate constructor> ::=
JSON_ARRAYAGG <left paren>

<JSON value expression>

50 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

 [<JSON array aggregate order by clause>]
 [<JSON constructor null clause>]
 [<JSON output clause>]
<right paren>

<JSON array aggregate order by clause> ::=
ORDER BY <sort specification list>

The default, if no ON NULL clause is given, is ABSENT ON NULL.

For example:

SELECT JSON_ARRAYAGG (j.job_attval RETURNING CLOB(8K)) AS attributes
FROM jobs AS j

The result of this query is a table of one row and one column, which would look something like this:

Table 25 — Query result

ATTRIBUTES

["155566", "00:30:00", "Design the new tables for the web site",
"01:00:00", "Load the tables with existing data", "129596", "Design the
look-and-feel of the web site"]

JSON_ARRAYAGG supports an optional ORDER BY clause that allows the results of the query to be ordered
before the selected data is extracted to be placed in the resulting JSON array. As an example, the SQL that
might be used to create a JSON object for each department listing all employees and their salary in order of
increasing salary looks like this:

SELECT JSON_OBJECT (
 'department' : d.name,
 'employees' : JSON_ARRAYAGG (JSON_OBJECT ('employee' : e.name,
 'salary' : e.salary)

ORDER BY e.salary ASC)) AS departments
FROM depts d, employees e
WHERE d.deptno = e.dept_id
GROUP BY d.deptno;

Table 26, “Query Results”, illustrates the results of this query:

Table 26 — Query Results

DEPARTMENTS

{ "department" : "Sales",
 "employees" : [{ "employee" : "James", "salary" : 7000},
 { "employee" : "Rachel", "salary" : 9000},
 { "employee" : "Logan", "salary" : 10000}]
}

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 51

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

In the following example, when there no employees in a department, a JSON null is output as the employee
name and the salary in the result:

SELECT JSON_OBJECT (
 'department' : d.name,
 'employees' : JSON_ARRAYAGG (JSON_OBJECT ('employee' : e.name,
 'salary' : e.salary)

ORDER BY e.salary ASC)) AS departments
FROM depts d LEFT OUTER JOIN employees e

ON (d.deptno = e.dept_id)
GROUP BY d.deptno;

The result would be something like those shown in Table 27, “Query Results”:

Table 27 — Query Results

DEPARTMENTS

{ "department" : "Sales",
 "employees" : [{ "employee" : "James", "salary" : 7000},
 { "employee" : "Rachel", "salary" : 9000},
 { "employee" : "Logan", "salary" : 10000}]
}

{ "department" : "Engineering",
 "employees" : [{ "employee" : null, "salary" : null }]
}

{ "department" : "Architecture",
 "employees" : [{ "employee" : null, "salary" : null }]
}

{ "department" : "Accounting",
 "employees" : [{ "employee" : null, "salary" : null }]
}

{ "department" : "Executive",
 "employees" : [{ "employee" : null, "salary" : null }]
}

5.4.5 IS JSON predicate

Applications will frequently want to ensure that the data they expect to consume as JSON data is, indeed, JSON
data. The IS JSON predicate determines whether the value of a specified string does or does not conform to
the structural rules for JSON. The syntax of the IS JSON predicate is:

<JSON predicate> ::=
<string value expression> [<JSON input clause>] IS [NOT] JSON
 [<JSON predicate type constraint>]
 [<JSON key uniqueness constraint>]

52 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

<JSON predicate type constraint> ::=
VALUE

| ARRAY
| OBJECT
| SCALAR

If <JSON input clause> is not specified, then FORMAT JSON is implicit. If <JSON key uniqueness constraint>
is not specified, then WITHOUT UNIQUE KEYS is implicit.

5.4.6 Handling of JSON nulls and SQL nulls

SQL (correctly) distinguishes between data such as zero-length strings and the special pseudo-value known as
“the null value”. The semantics of those two things are quite different and those differences affect a great many
SQL operations. The differences are an important part of the semantics of the SQL language.

The JSON null provides yet another related difference. In JSON, null is an actual value, represented by a JSON
literal (“null”). It must be able to distinguish JSON nulls from SQL null values and that distinction is an
important part of the semantics of JSON handling in the SQL context.

To illustrate the situation, consider the JSON object stored in a column of an SQL table:

{ "a" : null, "b" : "null", "c" : "" }

JSON_VALUE, evaluated against that JSON object, returning the result as an SQL scalar value, would return,
for each respective name/value pair, the following: the SQL null value, the SQL character string comprising
the four characters “null”, and the SQL zero-length character string; if JSON_VALUE were used to retrieve
the value associated with the name “d”, it would return the SQL null value. Note that, when retrieving the value
of the first name/value pair, the SQL/JSON null value is automatically transformed into an SQL null value.

The JSON constructor functions have to deal with situations in which the SQL data that is being queried are
SQL null values. SQL/JSON supplies optional syntax to allow the application author to select whether SQL
null values are included in the JSON object or JSON array being constructed, or whether object members or
array elements whose (bound) values are SQL null values are omitted from the JSON object or JSON array
being constructed.

5.4.7 Conformance features for constructor functions

There are five conformance features defined for the JSON constructor functions:

— Feature T811, “Basic SQL/JSON constructor functions”, defined as the following:

• JSON_OBJECT with no <JSON key uniqueness constraint>.

— Without explicit UNIQUE KEYS syntax, the default is WITHOUT UNIQUE KEYS.

• JSON_ARRAY.

• JSON_ARRAYAGG without the ORDER BY option.

— Without explicit ORDER BY syntax, the ordering of the elements in the SQL/JSON array is
implementation-dependent.

©ISO/IEC 2017 – All rights reserved SQL/JSON functions 53

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

NOTE 11 — In all of the preceding, the excluded syntax options become enabled by other features enumerated below.

— Feature T812, “SQL/JSON: JSON_OBJECTAGG” with no <JSON key uniqueness constraint>.

— Feature T813, “SQL/JSON: JSON_ARRAYAGG with ORDER BY”

• This feature allows the user to specify an order of the elements of the constructed SQL/JSON array.

— Feature T814, “Colon in JSON_OBJECT or JSON_OBJECTAGG”

• Subclause 5.4.1, “JSON_OBJECT”, contains examples that show the syntax of JSON_OBJECT with
and without support for Feature T814, “Colon in JSON_OBJECT or JSON_OBJECTAGG”.

— Feature T830, “Enforcing unique keys in SQL/JSON constructor functions”

• Adds the WITH UNIQUE KEYS and WITHOUT UNIQUE KEYS syntax to JSON_OBJECT and
JSON_OBJECTAGG.

54 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functions and IS JSON predicate

6 SQL/JSON path language

6.1 Overview of SQL/JSON path language

The SQL/JSON path language is a query language used by certain SQL operators (JSON_VALUE,
JSON_QUERY, JSON_TABLE and JSON_EXISTS, collectively known as the SQL/JSON query operators)
to query JSON text. The SQL/JSON path language is not, strictly speaking, SQL, though it is embedded in
these operators within SQL. Lexically and syntactically, the SQL/JSON path language adopts many features
of [ECMAscript], though it is neither a subset nor a superset of [ECMAscript]. The semantics of the SQL/JSON
path language are primarily SQL semantics.

The SQL/JSON path language is used by the SQL/JSON query operators in the architecture shown in this dia-
gram:

Figure 2 — The SQL/JSON path language architecture

The SQL/JSON query operators share the same first three lines in the diagram, which are expressed syntactically
in the <JSON API common syntax> that is used by all SQL/JSON query operators. This framework provides
the following inputs to an SQL/JSON query operator:

1) A context item (the JSON text to be queried).

2) A path specification (the query to perform on the context item; this query is expressed in the SQL/JSON
path language specified in [ISO9075-2], Subclause 9.38, “SQL/JSON path language: lexical elements”
and Subclause 9.39, “SQL/JSON path language: syntax and semantics”.

3) A PASSING clause (SQL values to be assigned to variables in the path specification, for example, as values
used in predicates within the path specification).

The SQL/JSON operators effectively pass these inputs to a “path engine” that evaluates the path specification,
using the context item and the PASSING clause to specify the values of variables in the path specification. The
effective behavior of the path engine is specified in the General Rules of Subclause 9.39, “SQL/JSON path
language: syntax and semantics”, in [ISO9075-2].

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 55

ISO/IEC TR 19075-6:2017(E)
6.1 Overview of SQL/JSON path language

The result of evaluating a path specification on a context item and PASSING clause is a completion condition,
and, if the completion condition is successful completion, an SQL/JSON sequence. The SQL/JSON query
operators, in their General Rules, use the completion code and SQL/JSON sequence to complete the specific
computation specified via the particular SQL/JSON query operator.

Errors can occur at the following junctures in this architecture:

1) An error can occur when converting an input. For example, if the context item does not parse as JSON
text, then that is an input conversion error.

2) An error can occur while processing an SQL/JSON path expression. This category of errors is further
subdivided as follows:

a) A structural error occurs when an SQL/JSON path expression attempts to access a non-existent element
of an SQL/JSON array or a non-existent member of a JSON object.

b) A non-structural error is any other error during evaluation of an SQL/JSON path expression; for
example, divide by zero.

3) An error can occur when converting an output.

The SQL operators JSON_VALUE, JSON_QUERY, JSON_TABLE, and JSON_EXISTS provide the following
mechanisms to handle these errors:

1) The SQL/JSON path language traps any errors that occur during the evaluation of a <JSON filter expres-
sion>. Depending on the precise <JSON path predicate> contained in the <JSON filter expression>, the
result may be Unknown, True, or False, depending on the outcome of non-error tests evaluated in the
<JSON path predicate>.

2) The SQL/JSON path language has two modes, strict and lax, which govern structural errors, as follows:

a) In lax mode:

i) If an operation requires an SQL/JSON array but the operand is not an SQL/JSON array, then
the operand is first wrapped in an SQL/JSON array prior to performing the operation.

ii) If an operation requires something other than an SQL/JSON array, but the operand is an
SQL/JSON array, then the operand is unwrapped by converting its elements into an SL/JSON
sequence prior to performing the operation.

iii) After applying the preceding resolutions to structural errors, if there is still a structural error,
the result is an empty SQL/JSON sequence.

b) In strict mode, if the structural error occurs within a <JSON filter expression>, then the error handling
of <JSON filter expression> applies. Otherwise, a structural error is an unhandled error.

3) Non-structural errors outside of a <JSON path predicate> are always unhandled errors, resulting in an
exception condition returned from the path engine to the SQL/JSON query operator.

4) The SQL/JSON query operators provide an ON ERROR clause to specify the behavior in case of an input
conversion error, an unhandled structural error, an unhandled non-structural error, or an output conversion
error.

56 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.1 Overview of SQL/JSON path language

6.2 Objectives for the SQL/JSON path language

The objectives for the SQL/JSON path language are:

1) Minimalism: a minimal language that meets a short list of use cases, leaving freedom to adapt the language
to additional use cases in the future.

The following decisions were made based on this objective:

a) Rule out the following: union, intersection, difference, join, FLWOR expressions.

b) Only a minimal set of predicates, such as the standard comparison operators, on atomic values only
(no “deep equal”).

c) JSON path expressions must be compile-time constants; this excludes dynamic JSON path expressions
embedded in static SQL queries.

d) Parameters to JSON queries must be passed by value, not by reference.

e) No “reverse axes”.

2) SQL semantics: the language should be readily integratable into an SQL engine; therefore, the semantics
of predicates, operators, etc. should generally follow SQL. “Push-down” optimizations are facilitated by
making the semantics in SQL and in the path language the same.

Here are some consequences of this objective:

a) Functions in the path expression language should have SQL semantics.

b) Predicates should have SQL semantics; this means three-valued logic, SQL comparison rules (such
as trailing blank handling) and any other semantics issues should also be derived from SQL. However,
JSON null is not the same as SQL null, so that null == null is True and there is no need for an is
null predicate.

3) JavaScript-like: the language should evolve from JavaScript, because that is the language that users will
find most appropriate for working on JSON. JavaScript has been standardized as [ECMAscript]. This
means that lexical and syntactic issues generally follow JavaScript, while semantic issues follow SQL in
case of conflict between the two.

Here are some consequences of this objective:

a) Dot (.) for member access and [] for array access. 0-relative arrays (JavaScript-like rather than SQL-
like) were adopted.

b) Lexical and syntactic design generally follow JavaScript.

4) Implementation accommodation: Some platforms for JSON have adopted some conventions that are laxer
than JavaScript, particularly that in some contexts a singleton array can behave like a scalar, and conversely
a scalar can behave like a singleton array. As a consequence of this objective, a “lax” mode is provided
that avoids errors on certain path expressions that would be regarded as errors in JavaScript.

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 57

ISO/IEC TR 19075-6:2017(E)
6.2 Objectives for the SQL/JSON path language

6.3 Modes

The path engine has two modes, strict and lax. The motivation for these modes is that strict mode will be used
to examine data from a strict schema perspective, for example, to look for data that diverges from an expected
schema. Therefore, strict mode raises an error if the data does not strictly adhere to the requirements of a path
expression. Lax mode is intended to be more forgiving, so lax mode converts errors to empty SQL/JSON
sequences.

In addition, lax mode adopts the convention that an array of size 1 is interchangeable with the singleton. This
convention is supported with the following conventions:

1) If an operation requires an array but the operand is not an array, then the operand is implicitly “wrapped”
in an array.

2) If an operation requires a non-array but the operand is an array, then the operand is implicitly “unwrapped”
into an SQL/JSON sequence.

These modes govern three aspects of path evaluation, as shown in the following table:

Table 28 — Three aspects of path evaluation governed by modes

strictlax

Arrays are not automatically unnested
(the user can still write [*] to unnest an
array explicitly).

Certain path steps, such as the member
accessor $.key, automatically iterate over
SQL/JSON sequences. To make these
iterative path steps friendlier for arrays,
arrays are automatically unnested prior
to performing the iterative path step. This
means that the user does not need to use
an explicit [*] to unnest an array prior to
performing an iterative path step. This
facilitates the use case where a field may
be either an array or a scalar.

Automatic
unnesting
of arrays

There is no automatic wrapping prior to
subscript path steps.

Subscript path steps, such as $[0] or $[*],
may be applied to a non-array. To do this,
the non-array is implicitly wrapped in an
array prior to applying the subscript
operation. This also facilitates the use
case where a field may be either an array
or a scalar.

Automatic
wrapping
within an
array

58 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

strictlax

Errors are strictly defined in all casesMany errors related to whether data is or
is not an array or scalar are handled by
the two preceding features. The remain-
ing errors are classified as either struc-
tural or non-structural. An example of a
structural error is $.name if $ has no
member whose key is name. Structural
errors are converted to empty SQL/JSON
sequences. An example of a non-struc-
tural error is divide by zero; such errors
are not elided.

Error han-
dling

Note that the path language mode is orthogonal to the ON ERROR clause. There are numerous use cases for
having any combination of ON ERROR clauses combined with either strict or lax modes.

6.3.1 Example of strict vs lax

Consider the following data, stored in a table called Data:

Table 29 — Example of strict vs lax

colpk

{ name: "Fred",
 phonetype: "work",
 "phone#": "650-506-2051"
}

1

{ name: "Molly",
 phones: [{ phonetype: "work",
 "phone#": "650-506-7000" },
 { phonetype: "cell",
 "phone#": "650-555-5555" }
]
}

2

{ name: "Afu",
 phones: [{ phonetype: "cell",
 "phone#": "88-888-8888" }]
 }

3

{ name: "Justin"
}

4

{ name: "U La La",
 phones: []
}

5

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 59

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

This data has been created with a sloppy schema. If a person has just one phone (row 1), then the phonetype
and phone# are members of the JSON object. If a person has more than one phone (row 2), then there is a
member called phones whose value is an array holding the phone information. But sometimes a person with
just one phone still has a phones array (row 3). Also, some people have no phones, which can be indicated by
an absence of the phonetype and phone# members (row 4), or by the presence of a phones array whose value
is empty (row 5).

Now the question is how to use JSON_TABLE to display all the name and phone information. Suppose one
wants to get a table with columns called name, phonetype, and phone#. If a person has multiple phones, the
display should be denormalized, with the person’s name repeated in multiple rows, in order to display each
phone number in a separate row. If a person has no phones, the person name should appear in a single row,
with nulls for the phone information.

Processing this data would be very difficult using strict mode. This is why lax mode is provided: to make it
easier to deal with sloppy schemas such as this.

The solution to this use case is the following query:

SELECT D.pk, JT.name,
COALESCE (JT."phone#", JT."phones.phone#") AS "phone#",
COALESCE (JT."phonetype", JT."phones.phonetype#") AS "phonetype"

FROM Data AS D,
JSON_TABLE (D.col, 'lax $'

COLUMNS (
 name VARCHAR(30) PATH 'lax $.name',

"phone#" VARCHAR(30) PATH 'lax $.phone#',
"phonetype" VARCHAR(30) PATH 'lax $.phonetype',
NESTED COLUMNS PATH 'lax $.phones[*]' (

"phones.phone#" VARCHAR(30) PATH 'lax $.phone#',
"phones.phonetype" VARCHAR(30) PATH 'lax $.phonetype'

)
)
) AS JT

Above, two output columns of the JSON_TABLE have been underlined, and two others are boxed. To understand
this query, note the following:

1) Row 1 has phone# and phonetype as “bare” members of the outermost object. These two members will be
picked up by the underlined columns called “phone#” and “phonetype”. The NESTED COLUMNS clause
has a path that will find no rows. The default plan for NESTED COLUMNS is an outer join. Thus, there
will be effectively a dummy row created with null values for the boxed columns. In the SELECT list, each
COALESCE operator is used to choose the non-null values from an underlined column and the corresponding
boxed column.

2) Rows 2 and 3 do not have bare phone# and phonetype; instead they have an array called phones. In these
rows, the underlined columns have paths that will find empty sequences, defaulting to the null value. The
NESTED COLUMNS clause is used to iterate over the phones array, producing values for the boxed
columns, and again, the COALESCE operators in the SELECT list retain the non-null values.

3) Row 4 has no phone data at all. In this case, the underlined columns have paths that will find nothing
(defaulting to null values). The NESTED COLUMNS clause also has a path that finds an empty sequence.
Using the default outer join logic, this means that the boxed columns will also be null. The COALESCE
operators must coalesce two null values, resulting in null.

60 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

4) Row 5 has a phones array, but it is empty. This case is processed similarly to rows 2 and 3: the underlined
columns are null because their paths are empty. The NESTED COLUMNS clause is used, but the array is
empty, so this is an outer join with an empty table. Thus, the boxed columns also come up null, and the
COALESCE operators combine these nulls to get null. The end result is the same as row 4.

6.4 Lexical issues

Lexically, the SQL/JSON path language generally follows the conventions of [ECMAscript] (with a few
modifications detailed below). It follows that SQL/JSON path language is case-sensitive in both identifiers and
key words. Unlike SQL, there are no “quoted” identifiers, and there is no automatic conversion of any identifiers
to uppercase.

It was decided not to adopt the following lexical features of JavaScript into the SQL/JSON path language:

— Comments.

— Hex numeric literals.

— JavaScript regular expressions (instead the SQL predicate LIKE_REGEX is adopted, which uses XQuery
regular expressions, written as JavaScript character string literals).

— Automatic semicolon insertion (this feature pertains to JavaScript statements; since we only have expressions
and not statements, this is not relevant to the SQL/JSON path language).

The following lexical adjustments were made:

— Identifiers must not start with $.

— @ is an additional punctuator.

It turns out that no reserved words in SQL/JSON path language are required. The issue is how to determine in
a lexical scanner whether an alphabetic string is a key word or an identifier. In the defined language, identifiers
occur in only two contexts in the language:

— Beginning with a dollar sign, as a variable name.

— After a period, as a member name (never followed by a <left paren>).

Keywords never begin with a dollar sign, and, if they can come after a period, are always followed by a <left
paren>. Thus, it is possible to determine if a token is an identifier or a key word purely from the lexical context.

The rules for nested quoted strings were particularly examined. An SQL/JSON path expression is required to
be an SQL character string literal, so it will be enclosed in single quotes. Within this literal, the user may wish
to write a character string literal; such a character string literal will be written using the JavaScript convention
to enclose in double quotes. Within this character string literal, the user may wish to have a single quote. At
this point the user must escape the single quote, which can be done using either the SQL convention of writing
it twice, or using a JavaScript escape.

Here is an example. The user wishes to find names that start with “O'” such as “O'Connor”. The user writes
this query:

'lax $.name ? (@ starts with "O''")'

The quotes in the preceding example are interpreted as follows:

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 61

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

— The outermost single quotes ' enclose an SQL character string literal.

— The double quotes " enclose a character string in the SQL/JSON path language.

— The inner single quotes ' are doubled in accordance with the SQL convention, because they are contained
in an SQL character string literal. The pair actually denotes one instance of a single quote.

The example could also be written using JavaScript escapes to represent the single quote, although this is not
a good option. The example would be written:

'lax $.name ? (@ starts with "O\''")'

Here the user is using the JavaScript escape for single quote, which is \'. However, the single quote in this must
still survive the quoting rules of the outermost container, the SQL character string literal, so it is necessary to
write \''. Thus, there is no benefit in using JavaScript escape here.

It would also be feasible to use the “\u” escape for single quote, which is “\u0027”, like this:

'lax $.name ? (@ starts with "O\u0027")'

Now let's look at double quotes. Suppose the user wants to search $.text for an initial substring:

"hello

The user might write:

'lax $.text ? (@ starts with "\"hello")'

In this example there is no problem with placing a double quote within the outermost single quotes which
delimit an SQL character string literal. However, there is a problem placing a double quote within a JavaScript
double-quoted literal; therefore the need to use the JavaScript escape \". Alternatively, using \u escapes:

'lax $.text ? (@ starts with "\u0022hello")'

6.5 Syntax summary

The following table summarizes the features of the SQL/JSON path language:

Table 30 — Features of the SQL/JSON path language

ExampleComponent

“hello”, 1.5e3, true, false, nullliterals

$ — context item
$frodo — variable whose value is set in PASSING clause
@ — value of the current item in a filter

variables

($a + $b)*$cparentheses

62 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.4 Lexical issues

ExampleComponent

member accessor: $.phone
wildcard member accessor: $.*
element accessor: $[1, 2, 4 to 7]
wildcard element accessor: $[*]

accessors

$?(@.salary > 100000)filter

&&
||
!

boolean

== != <> < <= > >=comparison

exists ($)
($a == $b) is unknown
$ like_regex "colou?r"
$ starts with $a

special predicates

+ - * / %arithmetic

$.type()
$.size()
$.double()
$.ceiling()
$.floor()
$.abs()
$.datetime()
$.keyvalue()

item functions

6.6 Formal semantics

6.6.1 Notational conventions

Throughout the formal semantics, there are SQL/JSON sequences of SQL/JSON items. SQL/JSON sequences
are generally denoted S, possibly with additional letters and possible with a subscript, and SQL/JSON items
are generally denoted I, possibly with additional letters and possibly with a subscript. SQL/JSON sequences
are shown enclosed in parentheses, like this: S = (I1, I2, ..., In). Individual subscripts on SQL/JSON
items are denoted with lowercase letters, such as i, j, or k.

Objects are represented as an unordered set of members { M1, ..., Mm }, where each member is a key/bound
value pair: Mj = Kj : Vj. Or an object can be represented as { K1 : V1, ..., Km : Vm }.

Arrays are represented as an ordered list of elements: [E1, ..., Es].

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 63

ISO/IEC TR 19075-6:2017(E)
6.5 Syntax summary

6.7 Primitive operations

The formal semantics uses the following primitive operations:

6.7.1 Concatenation

Concatenation of SQL/JSON sequences S1, S2, ..., Sn is denoted (S1, S2, ..., Sn). There is no
nesting of SQL/JSON sequences and empty SQL/JSON sequences are removed.

6.7.2 unwrap()

The unwrap() operator expands all the arrays in an SQL/JSON sequence.

Let S = (I1, I2, ..., In); unwrap(S) is defined by these rules:

1) For each j between 1 and n, let S2j be the SQL/JSON sequence

Case:

a) If Ij is an array Ij = [E1, ..., Em], then let S2j = (E1, ..., Em).

b) Otherwise, let S2j = (Ij).

2) The result of unwrap(S) is the concatenation of the SQL/JSON sequences (S21, S22, ..., S2n).

The unwrap() operator is only used in lax mode. Its purpose is to support data that is sometimes a single object
and sometimes an array of objects. If it is an array of objects, the user wants to ignore the array boundary and
just drill down to the members of the objects. This user view is accommodated by converting the array into an
SQL/JSON sequence prior to accessing the members of the nested objects. Example: $.phones.type using the
data shown below:

Table 31 — Data used by unwrap() example

T.C

{ name: "Babu", phones: { type: "cell", "090-0101" } }

{ name: "Fred", phones: [{ type: "home", number: "372-0453" },
 { type: "work", number: "506-2051" }] }

In the first row, phones is just an object, so there is no problem performing $.phones.type.

In the second row, phones is an array of objects. In lax mode, $.phones will evaluate to an array, and then the
next step to get type will use the unwrap operator to iterate over the array, so the end result is an SQL/JSON
sequence with two values, “home” and “work”. This is equivalent to performing $.phones[*].type in either
mode.

64 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.7 Primitive operations

6.7.3 wrap()

wrap: wrap() converts any nonarray in an SQL/JSON sequence to an array of length 1.

Let S = (I1, I2, ..., In); wrap(S) is defined by these rules:

1) For each j between 1 and n, let I2j be the SQL/JSON item

a) If Ij is an array, then I2j = Ij.

b) Otherwise, I2j = [Ij].

2) The result of wrap (S) is the SQL/JSON sequence (I21, I22, ..., I2n)

The wrap() operator is only used in lax mode. Its role is to handle data that is sometimes an array and sometimes
not an array. This is similar to the unwrap() operator. The difference is that wrap() is used when the user's
intended final outcome is a singleton. That is, if the data is an array, the user only wants to get a single element
from the array, say $[0]. If the data is not an array, then the user wants the operation to act as if it were a singleton
array. Example: $.phones[0] applied to the following data:

Table 32 — Data used by wrap() example

T.C

{ name: "Fred", phones: ["372-0453", "506-2051"] }

{ name: "Babu", phones: "090-0101" }

On the first row, the result is “372-0453”, on the second row the result is “090-0101”.

NOTE 12 — wrap() and unwrap() are not inverses in general. However, if A = [E] is a singleton array and E is not an array, then

wrap (unwrap ([E])) = wrap ((E)) = [E]

Also if S = (I1, ..., In) is an SQL/JSON sequence that contains no arrays, then

unwrap (wrap (I1, ..., In) = unwrap ([I1], ..., [In]) = (I1, ..., In)

6.8 Mode declaration

A <JSON path expression> begins with a declaration of either strict or lax mode:

<JSON path expression> ::=
<JSON path mode> <JSON path wff>

<JSON path mode> ::=
strict

| lax

<JSON path wff> is the “meat” of an SQL/JSON path expression (“wff” stands for “well-formed formula”).

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 65

ISO/IEC TR 19075-6:2017(E)
6.7 Primitive operations

6.9 <JSON path primary>

In programming languages, a “primary” is a BNF non-terminal that is self-delimited, either because it is a single
token, or because of matching delimiters such as parentheses. (For example, <value expression primary> and
<table primary> in [ISO9075-2]). The primaries in the specified language are given by the BNF:

<JSON path primary> ::=
<JSON path literal>

| <JSON path variable>
| <left paren> <JSON path wff> <right paren>

6.9.1 Literals

The atomic values in the SQL/JSON path language are written the same as in JSON, and are interpreted as if
they were SQL values. Here are some examples:

Table 33 — Examples of atomic values in the SQL/JSON path language

Interpreted asAs written

boolean Truetrue

boolean Falsefalse

SQL/JSON nullnull

exact numeric scale 0 value 123123

exact numeric scale 1 value 12.312.3

approximate numeric value 12.312.3e0

Unicode character string, value 'hello' (without the delimiting quotes)"hello"

In character strings, the escaping rules of both SQL (as the outer language) and JavaScript apply. Here are some
examples:

Table 34 — Examples of the escaping rules

ExplanationExample

The single quote character is escaped by doubling (SQL convention).
The value is O'Connor

"O''Connor"

The double quote character is escaped with a backslash (JavaScript
convention). The value is "hello"

"\"hello\""

66 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.9 <JSON path primary>

6.9.2 Variables

The BNF for variables is:

<JSON path variable> ::=
<JSON path context variable>

| <JSON path named variable>
| <at sign>
| <JSON last subscript>

<JSON path context variable> ::=
<dollar sign>

<JSON path named variable> ::=
<dollar sign> <JSON path identifier>

<JSON last subscript> ::=
last

Context variable: The SQL/JSON path language is always invoked with a context item. The context item is
referenced using the symbol $. The context item is parsed as JSON; it is an error if the parsing fails.

Named variables: Optionally, additional values can be passed in to the path engine using the PASSING clause.
Each value in the PASSING clause has an SQL identifier declared using AS. For example:

JSON_VALUE (T1.J, 'lax $.phone [$K]'
PASSING T2.Huh AS K)

The preceding example passes in the computed value T2.Huh as a variable named K. Within the path expression,
this value is referenced using the variable $K.

In the preceding example, the declared type of T2.Huh must be supported in the SQL/JSON data model. This
means it must be a character string with character set Unicode, numeric, boolean, or datetime. It cannot be a
binary string, interval, row type, user-defined type, reference type, or collection type.

It is also possible to pass JSON to a named variable. The (unnamed) context item is always parsed as JSON;
to parse a named variable, the FORMAT clause is required, as in this example:

JSON_EXISTS (T1.J1, 'lax $? (@.name == $J2.name)'
PASSING T2.J2 FORMAT JSON AS J2)

The preceding example compares the name field in two JSON values, T1.J1 and T2.J2. T1.J1 is chosen as the
context item, whereas T2.J2 is passed in the PASSING clause. T1.J1 does not need a FORMAT clause, whereas
T2.J2 does, because without it T2.J2 would not be parsed and would only be passed as a character string. The
path expression tests whether the name member in T1.J1 is the same as the name member in T2.J2, using a
filter expression (presented later). The result of the path expression is an empty SQL/JSON sequence if the
name members are not equal, causing JSON_EXISTS to return False. If the name members are equal, then the
result of path expression is a singleton SQL/JSON item, and the result of JSON_EXISTS is True.

Note that it is necessary to observe the identifier rules of both SQL and JavaScript. Going back to the first
example, the SQL identifier K was coerced to uppercase since it is not a quoted identifier. JavaScript does not
coerce its identifiers to either upper or lower case. Consequently the following would be an error:

JSON_VALUE (T1.J, 'lax $.phone [$k]'
PASSING T2.Huh AS k)

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 67

ISO/IEC TR 19075-6:2017(E)
6.9 <JSON path primary>

In the erroneous rewrite, uppercase K has been replaced everywhere by lowercase k. In SQL, this is still coerced
to uppercase, but in the path expression, $k is left in lowercase, so there is a mismatch. To get a variable with
a lowercase name, it must be double-quoted in SQL, like this:

JSON_VALUE (T1.J, 'lax $.phone [$k]'
PASSING T2.Huh AS "k")

Other variables: Two kinds of variables occur only in special contexts; these are:

1) The keyword last is a kind of variable, referencing the last subscript of an array; this will be considered
with element accessors later.

2) An at-sign @ is used in filter expressions to denote the value of the current SQL/JSON item; this will be
considered with filter expressions later.

6.9.3 Parentheses

As in SQL and JavaScript, parentheses may be used to override precedence. For example:

$a * ($b + 4)

The parentheses override the usual precedence that performs multiplication before addition.

6.10 Accessors

The syntax for accessors is:

<JSON accessor expression> ::=
<JSON path primary>

| <JSON accessor expression> <JSON accessor op>

<JSON accessor op> ::=
<JSON member accessor>

| <JSON wildcard member accessor>
| <JSON array accessor>
| <JSON wildcard array accessor>
| <JSON filter expression>
| <JSON item method>

The first four choices are the accessors to be considered in this section. The last two are syntactically similar
but will be treated separately for semantic reasons.

So, for present purposes, there are four accessors:

1) Member accessor.

2) Wildcard member accessor.

3) Element accessor.

4) Wildcard element accessor.

68 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.9 <JSON path primary>

These accessors follow these general principles:

1) Accessors are postfix operators so they can be concatenated; they are evaluated from left to right.

2) The first operand of an accessor is evaluated to obtain an SQL/JSON sequence.

3) The second operand specifies which kind of access to perform.

4) The access is performed by iterating over all SQL/JSON items in the value of the first operand.

5) In strict mode, an accessor results in an error if any SQL/JSON item in the sequence fails the access (e.g.,
member not found, subscript out of range, etc.).

6) Lax mode has three techniques to mitigate many errors:

a) Automatically unwrapping arrays before performing member access.

b) Automatically wrapping non-arrays in an array before performing element access.

c) Converting structural errors to empty SQL/JSON sequence.

6.10.1 Member accessor

The syntax for member accessor is:

<JSON member accessor> ::=
<period> <JSON path key name>

| <period> <JSON path string literal>

A member accessor is used to access a member of an object by key name. There are two ways to specify the
key name:

1) If the key name does not begin with a dollar sign and meets the JavaScript rules of an Identifier, then the
member name can be written in clear text. For example,

$.name
$.firstName
$.Phone

2) Any key name can be written as a character string literal. This supports member names that begin with a
dollar sign or contain special characters. For example:

$."name"
$."$price"
$."home address"

The semantics are as follows:

1) The first operand is evaluated, resulting in an SQL/JSON sequence of SQL/JSON items.

2) In strict mode, every SQL/JSON item in the SQL/JSON sequence must be an object with a member having
the specified key name. If this condition is not met, the result is an error.

3) In lax mode, any SQL/JSON array in the SQL/JSON sequence is unwrapped. Unwrapping only goes one
deep; that is, if there is an array of arrays, the outermost array is unwrapped, leaving the inner arrays alone.

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 69

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

4) Iterating over the SQL/JSON sequence, the bound value of each SQL/JSON item corresponding to the
specified key name is extracted. (In lax mode, any missing members are passed over silently).

Example: Suppose the context item is:

$ = { phones: [{ type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }] }

$.phones.type is evaluated in lax mode as follows:

Table 35 — Evaluation of '$.phones.type' in lax mode

ValueStep

{ phones: [
 { type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }] }

$1

[{ type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }]

$.phones2

"cell",
"home"

$.phones.type3

In the first step, the value is just an SQL/JSON sequence of length 1, the context item.

In the second step, the value is the bound value of the member named phones. This is still an SQL/JSON
sequence of length 1; the only item is an array.

The third step tries to access the type member. However, the SQL/JSON item in the SQL/JSON sequence is
an array, not an object. Since this is an array in lax mode, the member accessor first unwraps this SQL/JSON
item, giving the following intermediate step:

Table 36 — Intermediate step

ValueStep

{ type: "cell", number: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", number: "hij-klmn" }

Unwrap
($.phones)

2.1

(Note that there is no unwrap function in the path language; this is an implicit primitive used in lax mode.)

The result of the intermediate step 2.1 is to unwrap the array, producing an SQL/JSON sequence with three
SQL/JSON items. Now, the member access for type is performed iteratively on each SQL/JSON item of the
intermediate result. The first and third SQL/JSON items have a type member, but the second does not. The
final result (step 3) only retains the bound values for those SQL/JSON items that have a type member. The
second SQL/JSON item, which lacks a type member, is a structural error, which is converted to an empty
SQL/JSON sequence in lax mode.

70 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

Now let's consider this example in strict mode. Step 1 is evaluated the same as in lax mode. In step 2, a structural
error is seen, because the SQL/JSON item is an array rather than an object.

To get past this error, the strict mode user can use the wildcard element accessor presented later. The revised
path expression is $.phones[*].type, and the evaluation is shown below:

Table 37 — Evaluation of'$.phones[*].type'

ValueStep

{ phones: [
 { type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }] }

$1

[{ type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }]

$.phones2

{ type: "cell", number: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", number: "hij-klmn" }

$.phones[*]3

error$.phones[*]
.type

4

The revised path expression still gets an error on step 4, because the second SQL/JSON item in the value of
step 3 does not have a type member. The data has a loose schema that does not always provide a type member.
Most likely, this data was not created with a strict mode application in mind. However, a strict mode user can
surmount this hurdle by filtering out the SQL/JSON items that do not have a type member, using the path
expression $.phones[*] ? (exists (@.type)).type. Filters are another capability to be presented later.
This version of the path expression is evaluated as shown below:

Table 38 — Evaluation of '$.phones[*] ? (exists (@.type)).type'

ValueStep

{ phones: [
 { type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }] }

$1

[{ type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }]

$.phones2

{ type: "cell", number: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", number: "hij-klmn" }

$.phones[*]3

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 71

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

ValueStep

{ type: "cell", number: "abc-defg" },
{ type: "home", number: "hij-klmn" }

$.phones[*]
? (exists
(@.type))

4

"cell",
"home"

$.phones[*]
? (exists
(@.type))
.type

5

6.10.2 Member wildcard accessor

The BNF is:

<JSON wildcard member accessor> ::=
<period> <asterisk>

The semantics are as follows:

1) The first operand is evaluated, resulting in an SQL/JSON sequence of SQL/JSON items.

2) In strict mode, every SQL/JSON item in the SQL/JSON sequence must be an object. If this condition is
not met, the result is an error.

3) In lax mode, any SQL/JSON array in the SQL/JSON sequence is unwrapped.

4) Iterating over the SQL/JSON sequence, every bound value of each SQL/JSON object in the SQL/JSON
sequence is extracted. (In lax mode, any SQL/JSON items that are not objects are passed over silently.)
There is only an implementation-dependent order to members within an object, but the order of objects
within the SQL/JSON sequence is preserved in the result.

For example, using the data in the last section, consider the path expression $.phones.* in lax mode. The
evaluation is shown below:

Table 39 — Evaluation of '$.phones.*' in lax mode

ValueStep

{ phones: [
 { type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }] }

$1

[{ type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }]

$.phones2

{ type: "cell", number: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", number: "hij-klmn" }

Unwrap
($.phones)

2.1

72 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

ValueStep

"cell", "abc-defg", "pqr-wxyz", "home",
"hij-klmn"

$.phones.*3

Step 2.1 shows the intermediate step to unwrap the array because of lax mode.

In strict mode, the user must write $.phones[*].* to avoid raising an error. The computation is then:

Table 40 — Evaluation of '$.phones[*].*'

ValueStep

{ phones: [
 { type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }] }

$1

[{ type: "cell", number: "abc-defg" },
 { number: "pqr-wxyz" },
 { type: "home", number: "hij-klmn" }]

$.phones2

{ type: "cell", number: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", number: "hij-klmn" }

$.phones[*]2.1

"cell", "abc-defg", "pqr-wxyz", "home",
"hij-klmn"

$.phones[*].*3

6.10.3 Element accessor

The BNF is:

<JSON array accessor> ::=
<left bracket> <JSON subscript list> <right bracket>

<JSON subscript list> ::=
<JSON subscript> [{ <comma> <JSON subscript> }...]

<JSON subscript> ::=
<JSON path wff 1>

| <JSON path wff 2> to <JSON path wff 3>

<JSON path wff 1> ::=
<JSON path wff>

<JSON path wff 2> ::=
<JSON path wff>

<JSON path wff 3> ::=
<JSON path wff>

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 73

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

An element accessor uses square brackets to enclose a comma-separated list of subscripts. The subscripts can
be specified in either of two forms:

1) A single numeric value.

2) A range between two numeric values (inclusive) indicated by the keyword to.

Following JavaScript conventions rather than SQL conventions, subscripts are 0-relative. Thus, [0] accesses
is the first element in an array.

To handle arrays of unknown length, the special variable last may be used in a subscript. The value of last
is the size of the array minus 1. For example, $[last] accesses the last element in array $; and $last-1 to
last] accesses the last two elements. This variable can only be used within an array accessor, where it references
the innermost array containing last.

For example:

$[0, last-1 to last, 5]

The preceding accesses the first element of $, the last two elements of $, and the sixth element of $. Subscripts
can be specified in any order and may contain duplicates.

In strict mode, subscripts must be singleton numeric values between 0 and last; in lax mode, any subscripts
that are out of bound are simply ignored. In both strict and lax mode, non-numeric subscripts such as
$["hello"] are an error.

More precisely, the semantics are specified as follows:

1) The first operand is evaluated, yielding an SQL/JSON sequence of SQL/JSON items.

2) In lax mode, any SQL/JSON item in the SQL/JSON sequence that is not an array is wrapped in an array
of size 1.

3) In strict mode, it is an error if any SQL/JSON item in the SQL/JSON sequence is not an array.

4) For every SQL/JSON item I in the SQL/JSON sequence:

a) Every subscript is evaluated and subject to implementation-defined rounding or truncation. Note that
last may have a different value on different arrays in the SQL/JSON sequence (which is why this
step is not performed outside the loop on SQL/JSON items). It is an error if any subscript is not a
singleton numeric item, even in lax mode.

b) Each subscript specifies a set of integers (either a single integer, or all integers between the lower and
upper bound inclusive).

c) In strict mode, it is an error if any subscript is less than 0 or greater than last. It is also an error when
using to to specify a range if the lower bound is greater than the upper bound.

d) The sets of integers are concatenated in the order specified by the user to obtain the final set of sub-
scripts.

e) The result for I is the SQL/JSON sequence of elements in I at the positions specified by the final set
of subscripts.

5) The overall result is the concatenation of the result for each SQL/JSON item I in the input SQL/JSON
sequence.

Example: Let the context item be:

74 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

$ = { sensors:
 { SF: [10, 11, 12, 13, 15, 16, 17],
 FC: [20, 22, 24],
 SJ: [30, 33]
 }
 }

Consider the path expression lax $.sensors.*[0, last, 2]. The evaluation is:

Table 41 — Evaluation of 'lax $.sensors.*[0, last, 2]'

ValueStep

{ sensors:
 { SF: [10,11,12,13,15,16,17],
 FC: [20,22,24],
 SJ: [30,33]
 } }

$1

 { SF:[10,11,12,13,15,16,17],
 FC: [20,22,24],
 SJ: [30,33]
 }

$.sensors2

 [10,11,12,13,15,16,17],
 [20,22,24],
 [30,33]

$.sensors.*3

 10,17,12,
 20,24,24,
 30,33

$.sensors.*[0,last,2]4

Note that in step 3, the second array has 3 elements, so that last and 2 select the same element. Thus, in step
4, the element whose value is 24 is selected twice.

Also, in step 3, the third array has 2 elements, so that 2 is out of bounds. In lax mode, this is passed over silently,
and only subscript positions 0 and last appear in the final result.

If this was evaluated in strict mode, there would be an error because the third array has a subscript that is out
of bounds. To avoid the error, the user might filter out arrays with less than three elements.

6.10.4 Element wildcard accessor

The BNF is:

<JSON wildcard array accessor> ::=
<left bracket> <asterisk> <right bracket>

For example, the accessor $[*] converts an array into a sequence of all of its elements. In strict mode, the
operand must be an array. In lax mode, if the operand is not an array, then one is provided by wrapping it in
an array before unwrapping (effectively a no-op on non-array operands).

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 75

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

More precisely, the semantics are specified as follows:

1) The first operand is evaluated, yielding an SQL/JSON sequence of SQL/JSON items.

2) In lax mode, any SQL/JSON item in the SQL/JSON sequence that is not an array is wrapped in an array
of size 1.

3) In strict mode, it is an error if any SQL/JSON item in the SQL/JSON sequence is not an array.

4) For every SQL/JSON item I in the SQL/JSON sequence: the result for I is the sequence of elements of I.

5) The overall result is the concatenation of the result for each SQL/JSON item I in the input SQL/JSON
sequence.

In lax mode, $[*] is the same as $[0 to last]. In strict mode, there is a subtle difference: $[0 to last]
actually requires that the array have at least one element (at subscripts 0 and last), whereas $[*] is not an
error in strict mode if $ is the empty array.

6.10.5 Sequence semantics of the accessors

In review, the input to an accessor is an SQL/JSON sequence. The accessor is applied to each SQL/JSON item
in the SQL/JSON sequence in turn and the results are concatenated, preserving order. When applying an
accessor to an SQL/JSON item, the result may be an error, or an SQL/JSON sequence of some length (possibly
empty, possibly a singleton, possibly longer). Overall, this means that there may be no one-to-one correspondence
between the input SQL/JSON items and the output SQL/JSON items.

For example, consider the path expression $.*[1 to last] applied in lax mode to the following JSON text:

$ = { "x": [12, 30],
 "y": [8],
 "z": ["a", "b", "c"] }

The result of $.* is the following SQL/JSON sequence:

[12, 30], [8], ["a", "b", "c"]

The next step in the evaluation is shown below:

Table 42 — The step in the evaluation

Output SQL/JSON sequenceInput SQL/JSON sequence

30[12, 30]

[8]

"b", "c"["a", "b", "c"]

In the first SQL/JSON item in the SQL/JSON sequence, last = 1 (SQL/JSON arrays are 0-relative), so the
result is the singleton 30. (Note that the array accessor has removed the container). In the next SQL/JSON item,
last = 0. The subscript expression 1 to 0 is a structural error but lax mode converts this to an empty

76 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

SQL/JSON sequence. In the last row, last = 2 and the result is the last 2 SQL/JSON items of the array. The
final result is this SQL/JSON SQL/JSON sequence:

30, "b", "c"

6.11 Item methods

Item methods are functions that operate on an SQL/JSON item and return an SQL/JSON item. Item methods
iterate over an SQL/JSON sequence; therefore they are written like methods as postfix operators on a path
expression.

<JSON item method> ::=
<period> <JSON method>

<JSON method> ::=
type <left paren> <right paren>

| size <left paren> <right paren>
| double <left paren> <right paren>
| ceiling <left paren> <right paren>
| floor <left paren> <right paren>
| abs <left paren> <right paren>
| datetime <left paren> [<JSON datetime template>] <right paren>
| keyvalue <left paren> <right paren>

<JSON datetime template> ::=
<JSON path string literal>

The first two item methods, type() and size(), can be used to learn type information about the SQL/JSON
items in an SQL/JSON sequence. Even in lax mode, these item methods do not unwrap arrays, because if they
unwrapped arrays, it would be impossible to learn their type or size.

The other item methods automatically unwrap an array in lax mode.

6.11.1 type()

The type() method returns a character string that names the type of the SQL/JSON item. Let I be the SQL/JSON
item, then I.type() is:

— If I is the SQL/JSON null, then “null”.

— If I is true or false, then “boolean”.

— If I is numeric, then “number”.

— If I is a character string, then “string”.

— If I is an SQL/JSON array, then “array”.

— If I is an SQL/JSON object, then “object”.

— If I is a datetime, then “date”, “time without time zone”, “time with time zone”, “timestamp without time
zone”, or “timestamp with time zone”, as appropriate.

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 77

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

For example, to filter to retain only numeric SQL/JSON items, one might use:

lax $.* ? (@.type() == "number")

6.11.2 size()

The size() item method returns the size of an SQL/JSON item. The size is defined:

— The size of an SQL/JSON array is the number of elements in the array.

— The size of an SQL/JSON object or a scalar is 1.

For example, to filter retain only arrays of size 2 or more, one might use:

 strict $.* ? (@.type() == "array" && @.size() > 1)

Here, strict mode must be used, because the filter operator ? automatically unwraps arrays in lax mode.

6.11.3 Numeric item methods (double, ceiling, floor, abs)

The numeric item methods provide common numeric functions.

— double() converts a string or numeric to an approximate numeric value; this is primarily useful to handle
character strings containing numbers.

— ceiling(), floor(), and abs() perform the same operations as CEILING, FLOOR, and ABS in SQL.

6.11.4 datetime()

JSON has no datetime types. Datetime values are most likely stored in character strings. [RFC7159] gives no
guidance about how to format datetimes in character strings; therefore one can expect that user data exhibits a
profusion of formats, including a preference for month/day/year versus a preference for day-month-year or the
computer-friendly yearmonthday; and a preference for twelve-hour clock with am/pm vs a twenty-four hour
clock.

One way to handle datetimes would be to pull the string out to the SQL level, where products already have
functions to interpret datetime strings. However, this means that predicates on datetimes must be expressed in
SQL rather than the path language.

It is useful to perform predicates close to the data in the path language. The solution is to augment the SQL/JSON
path language with a modest datetime capability. The four ingredients are:

— The SQL/JSON data model is augmented with the SQL datetime types.

— datetime() method to convert a character string to an SQL datetime type, optionally using a conversion
template.

— Variables passed in to the path engine may be of datetime type.

78 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.11 Item methods

— Comparison predicates on datetimes are supported.

This functionality is not complete because it lacks datetime arithmetic. Nevertheless, it supports the critical use
case of comparison predicates.

The only ingredient listed above that is not already present in SQL is the datetime() method. The datetime()
method is used to convert a character string to a datetime type.

6.11.5 keyvalue()

The keyvalue() method is used to interrogate an SQL/JSON object of unknown schema, by transforming to an
SQL/JSON sequence of objects with a known schema.

For example, suppose:

 $ = { who: "Fred", what: 64 }

Then:

 $.keyvalue() =
 ({ name: "who", value: "Fred", id: 9045 },
 { name: "what", value: 64, id: 9045 }
)

Looking at this example, the input is a single SQL/JSON object having two members; the output is an SQL/JSON
sequence of two SQL/JSON objects having three members. In the result SQL/JSON sequence, the members
are:

— name, the key name of a member M in the input object.

— value, the bound value of M.

— id, an implementation-dependent integer that is a unique identifier for the input SQL/JSON object.

Since members of an object are unordered, the order of the result SQL/JSON sequence is implementation-
dependent.

Using keyvalue(), a path expression to learn the key names in the input is:

 $.keyvalue().name

and the result is the SQL/JSON sequence:

 ("who", "what")

Note that in lax mode, keyvalue() unwraps its input. For example, suppose:

 $ = [{ who: "Fred", what: 64 },
 { who: "Moe", how: 22 }]

Then:

 lax $.keyvalue() =
 ({ name: "who", value: "Fred", id: 8394 },
 { name: "what", value: 64, id: 8394 },

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 79

ISO/IEC TR 19075-6:2017(E)
6.11 Item methods

 { name: "who", value: "Moe", id: 5372 },
 { name: "how", value: 22, id: 5372 }
)

This example illustrates the use of the id member in the result to distinguish separate objects in the input. The
data can be viewed using JSON_TABLE with the following query:

SELECT ID, NAME, SVALUE, IVALUE
FROM T,
JSON_TABLE (T.J, 'lax $.keyvalue()'

COLUMNS (
 NAME VARCHAR(30) PATH 'lax $.name',
 SVALUE VARCHAR(30) PATH
 'lax $.value ? (@.type() == "string")',
 IVALUE INTEGER PATH
 'lax $.value ? (@.type() == "number")',
 ID INTEGER PATH 'lax $.id'
)) AS JT

ORDER BY ID, NAME

Note how the patterns for SVALUE and IVALUE filter the value member based on its type() as either
string or number.

Result of the query with the sample data is:

Table 43 — Result of the query with the sample data

IVALUESVALUENAMEID

22how5372

Moewho5372

64what8394

Fredwho8394

6.12 Arithmetic expressions

The SQL/JSON path language uses the same arithmetic operators as [ECMAscript]:

— Unary + or -.

— Binary + - * / %

For addition, subtraction, multiplication, division, and modulus, respectively.

80 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.11 Item methods

6.12.1 Unary plus and minus

The unary plus and minus operations iterate over the SQL/JSON sequence that is their operand. Every SQL/JSON
item in the SQL/JSON sequence must be numeric (else an error is raised, even in lax mode). Otherwise, the
only error is the corner case of overflow when taking the unary minus of certain numbers at the boundary of
their range.

The unary operations are prefix operations whereas the accessors are postfix operations. The precedence binds
the accessors more tightly (the same precedence as [ECMAscript]). For example, suppose.

$ = { readings: [15.2, -22.3, 45.9] }

Then 'lax -$.readings.floor()' is equivalent to:

lax -($.readings.floor())

Table 44 — Evaluation of lax -$.readings.floor()

ValueExpressionStep

{ readings: [15.2, -22.3, 45.9] }$1

[15.2, -22.3, 45.9]$.readings2

15, -23, 45$.readings.floor()3

-15, 23, -45-$.readings.floor()4

To get a different order of evaluation, parentheses are required, as in:
lax (-$.readings).floor():

Table 45 — Evaluation of 'lax (-$.readings).floor()'

ValueExpressionStep

{ readings: [15.2, -22.3, 45.9] }$1

[15.2, -22.3, 45.9]$.readings2

-15.2, 22.3, -45.9-$.readings3

-15.2, 22.3, -45.9(-$.readings)4

-16, 22, -46(-$.readings).floor()5

In strict mode, these examples require an explicit [*] to unnest the array, either:
strict -$.readings[*].floor(),

or:
strict (-$.readings[*]).floor()

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 81

ISO/IEC TR 19075-6:2017(E)
6.12 Arithmetic expressions

6.12.2 Binary operations

The binary operations do not iterate over an SQL/JSON sequence (such iteration would require a cross product).
Instead, they expect their operand to be a singleton numeric; otherwise the result is an error, even in lax mode.

The binary operators have the same precedence as in most computer languages, including [ECMAscript] and
SQL. As usual, parentheses may be used to override the precedence.

Modulus, indicated by % as in [ECMAscript], uses the same algorithm as the SQL MOD function.

6.13 Filter expression

A filter expression is similar to a WHERE clause in SQL — it is used to remove SQL/JSON items from an
SQL/JSON sequence if they do not satisfy a predicate. The syntax uses a question mark followed by a paren-
thesized predicate:

<JSON filter expression> ::=
<question mark> <left paren> <JSON path predicate> <right paren>

<JSON predicate primary> ::=
<JSON delimited predicate>

| <JSON non-delimited predicate>

<JSON delimited predicate> ::=
<JSON exists path predicate>

| <left paren> <JSON path predicate> <right paren>

<JSON non-delimited predicate> ::=
<JSON comparison predicate>

| <JSON like_regex predicate>
| <JSON starts with predicate>
| <JSON unknown predicate>

To evaluate a filter, the following steps are performed:

1) In lax mode, any SQL/JSON arrays in the operand are unwrapped.

2) The predicate is evaluated for each SQL/JSON item in the SQL/JSON sequence.

3) The result is those SQL/JSON items for which the predicate resulted in True.

Within a filter, the special variable @ is used to reference the current SQL/JSON item in the SQL/JSON sequence.
There have been several examples of this variable earlier in this discussion. A Syntax Rule stipulates that @ is
only permitted in the predicate of a filter. The value of @ is the current SQL/JSON item of the first operand of
the innermost filter containing the @.

The SQL/JSON path language has the following predicates:

— exists predicate, to test if a path expression has a non-empty result.

— Comparison predicates ==, !=, <>, <, <=, >, and >=.

— like_regex for string pattern matching.

— starts with to test for an initial substring.

82 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.12 Arithmetic expressions

— is unknown to test for Unknown results.

The result of evaluating a predicate is an SQL truth value (True, False, Unknown) rather than an SQL/JSON
sequence in the data model.

Unlike [ECMAscript], predicates are not expressions; instead, predicates constitute a sublanguage that is only
permitted within the filter expression.

6.13.1 true/false and True/False

JSON has literals true and false, which are parsed into the SQL/JSON model as the SQL boolean values
True and False. However, there is no syntax to treat an SQL/JSON item as a boolean value. For example,
suppose:

 $ = { name: "Portia", skilled: true }

$.skilled is True, but there is no syntax such as:

 $? (@.skilled)

that would presumably treat $.skilled as a predicate. Such syntax is not provided, because then the truth
value of an arbitrary SQL/JSON sequence must be defined, which leads to unnecessary complexity.

Instead, to test whether $.skilled is True, a comparison predicate such as:

 $? (@.skilled == true)

should be used.

6.13.2 null and Unknown

JSON has literal null, which is parsed into the SQL/JSON data model as a special value called the SQL/JSON
null. The SQL/JSON null is not the same as the SQL null. Here are some differences to be aware of:

1) The SQL truth value Unknown is the same as the null value of boolean type. In the SQL/JSON data model,
there are no SQL nulls, so Unknown is not part of the SQL/JSON data model. However, SQL/JSON
predicates have results that are SQL truth values True, False, and Unknown. Recall that the SQL/JSON
path language distinguishes predicates from expressions; predicates result in truth values whereas expressions
result in values in the SQL/JSON data model.

2) An SQL predicate operating on an SQL null usually returns Unknown. In contrast, the SQL/JSON null
value is equal to itself; the result of null == null is True.

6.13.3 Error handling in filters

Errors can arise in filters in two ways:

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 83

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

1) A predicates must evaluate its operand(s) that are expression(s), which may result in an error condition.
(Lax mode converts structural errors to an empty SQL/JSON sequence. All non-structural errors in lax
mode, as well as all errors of any sort in strict mode, are regarded as unhandled errors at the expression
level.)

2) After evaluating its operand(s), the predicate may find that the values are not appropriate. For example,
10 == "ten"; there are no errors in the operands, but they are not comparable, so this predicate still has
an error.

With either kind of error, the predicate results in Unknown.

Here are some examples. First, consider a nonstructural error such as divide by a non-numeric value. Consider
a table T with two rows:

Table 46 — Table T with two rows

JK

{ pay: 100, hours: 10 }101

{ pay: 100, hours: "ten" }102

The user wishes to find rows in which the average of pay/hours is greater than 9. The user writes this query:

SELECT K
FROM T
WHERE JSON_EXISTS (T.J, 'lax $? (@.pay/@.hours > 9)'

Consider how this query is evaluated on each row of T.

In row K=101, the computation proceeds without incident. In the filter, @.pay = 100 and @.hours = 10, so
the quotient @.pay/@.hours is 10, which is greater than 9. Therefore, the filter succeeds and the overall path
expression results in a nonempty SQL/JSON sequence, the JSON_EXISTS is True, and 101 appears in the
result of the query.

As for row K=102, one has the following computation:

Table 47 — Computation on row K=102

ValueExpressionStep

{ pay: 100, hours: "ten" }$1

{ pay: 100, hours: "ten" }@2

100@.pay3

"ten"@.hours4

error@.pay/@.hours5

Unknown@.pay/@.hours > 96

84 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

ValueExpressionStep

empty SQL/JSON sequence$? (@.pay/@.hours > 9)7

Since the result of the path expression is the empty SQL/JSON sequence, JSON_EXISTS is False, and 102
does not appear in the result of the query.

This example would behave precisely the same in strict mode, because nonstructural errors are unhandled errors
in both modes.

Next, consider a structural error. Modify the table slightly, like this:

Table 48 — Modified table T

JK

{ pay: 100, hours: 10 }101

{ pay: 100, horas: 10 }102

The difference is that row K=102 does not have an hours member. With the same query as before (still in lax
mode), row K=101 will process just the same and appear in the final result. As for row K=102, one has the
following computation:

Table 49 — Computation on row K=102 in modified table T

ValueExpressionStep

{ pay: 100, horas: 10 }$1

{ pay: 100, horas: 10 }@2

100@.pay3

empty sequence@.hours4

error@.pay/@.hours5

Unknown@.pay/@.hours > 96

empty sequence$? (@.pay/@.hours > 9)7

With the revised data, step 4 is now an empty sequence, but step 5 is still an unhandled error, and thereafter
the computation is the same, with the same ultimate result, K=102 is omitted from the final result. Strict mode
would have the identical value at each step of the computation.

As another example, with the same data, consider the query 'lax $? (@.hours > 9)'. The computation
for row K=101 is uninteresting; let’s look at K=102:

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 85

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Table 50 — Computation of 'lax $? (@.hours > 9)' on row K=102

ValueExpressionStep

{ pay: 100, horas: 10 }$1

{ pay: 100, horas: 10 }@2

empty SQL/JSON sequence@.hours3

False@.hours > 94

empty SQL/JSON sequence'lax $? (@.hours > 9)'5

In this example, step 4, the comparison of an empty SQL/JSON sequence with 9, is not an error. Instead, as is
discussed later, comparison predicates are performed with existential semantics. Essentially, the comparison
predicate forms the cross product of all SQL/JSON items in the first operand with all SQL/JSON items in the
second operand. The comparison predicate is True if any of these comparisons in the cross product is true. In
this example, one of the operands is empty, so the cross product is empty, and therefore the predicate is False.

Now, let's consider the last example in strict mode, 'strict $? (@.hours > 9)':

Table 51 — Computation of 'strict $? (@.hours > 9)' in strict mode

ValueExpressionStep

{ pay: 100, horas: 10 }$1

{ pay: 100, horas: 10 }@2

error@.hours3

Unknown@.hours > 94

empty SQL/JSON sequence'strict $? (@.hours > 9)'5

Step 3 is a structural error, which is an unhandled error in strict mode. The unhandled error comes into the
predicate, where it causes a result of Unknown. The final result in step 5 is the same as in lax mode, because a
filter rejects both False and Unknown.

6.13.4 Truth tables

By design, the boolean operators &&, ||, and ! always have singleton operands which are truth values (True,
False, Unknown). There is no way to treat a JSON atomic value true or false as an operand of a boolean
operator. The user should write, e.g., $a == true to test if $a is the JSON literal true.

86 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

The operands of && (boolean AND) may be evaluated in either order. If the first tested operand's value is enough
to determine the result, there is no need to evaluate the other operand. Otherwise, the result is given by this
table:

Table 52 — Result of &&

UnknownFalseTrue

UnknownFalseTrueTrue

FalseFalseFalseFalse

UnknownFalseUnknownUnknown

Similarly, the operands of || (Boolean OR) may be tested in either order, with short circuit logic if the first to
be tested is enough to determine the result. The result is given by:

Table 53 — Result of ||

UnknownFalseTrue

TrueTrueTrueTrue

UnknownFalseTrueFalse

UnknownUnknownTrueUnknown

The truth table for ! (boolean NOT) is:

Table 54 — Result of !

NOT PP

FalseTrue

TrueFalse

UnknownUnknown

6.13.5 Comparison predicates

Following [ECMAscript], the comparison operators are: ==, !=, <, <=, >, and >=. Additionally, <> can be used
equivalently to !=.

NOTE 13 — Due to a bug, [ISO9075-2] does not list != as a valid comparison operator. This error is corrected in the Technical
Corrigendum for [ISO9075-2].

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 87

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Although the symbols are adopted from [ECMAscript], the syntax and semantics are quite different from
[ECMAscript]. Here are some of the key differences:

— Comparison operators are not left associative, unlike [ECMAscript].

— Equality operators have the same precedence as inequality comparison operators, unlike [ECMAscript].

— Automatic casting rules to support comparisons across types are not provided. (For example, in
[ECMAscript], booleans can be compared to numbers, with true == 1 and false == 0.)

— Comparison of arrays or objects to anything, even themselves, is not supported. There is no “deep equals”.

— In lax mode, comparison operators automatically unwrap their operands.

The following table summarizes which comparisons are supported:

Table 55 — Supported comparisons

SQL/JSON objectSQL/JSON arraySQL/JSON scalarSQL/JSON null

not comparablenot comparablecomparablecomparableSQL/JSON null

not comparablenot comparablestring vs string
number vs number,
date vs date,
time vs time,
timestamp vs
timestamp
boolean vs
boolean,

comparableSQL/JSON scalar

not comparablenot comparablenot comparablenot comparableSQL/JSON array

not comparablenot comparablenot comparablenot comparableSQL/JSON object

Thus, comparisons to SQL/JSON arrays and objects are not supported. Note though that in lax mode, arrays
are unwrapped prior to comparison, which might mitigate this.

SQL/JSON nulls and scalars may be compared. When comparing two scalars, they must be comparable as SQL
scalars. Comparison is decided using SQL semantics, with this additional rule: SQL/JSON null is equal to
SQL/JSON null, and is not greater than or less than anything.

Comparison predicates have existential semantics. This means that the two operands may be SQL/JSON
sequences. The cross product of these SQL/JSON sequences is formed. Each SQL/JSON item in one SQL/JSON
sequence is compared to each item in the other SQL/JSON sequence. The predicate is Unknown if there any
pair of SQL/JSON items in the cross product is not comparable; the predicate is True if any pair is comparable
and satisfies the comparison operator. In all other cases, the predicate is False. In lax mode, the path engine is
permitted to stop evaluation early if it detects either an error or a success (whichever one is found first is the
“winner”). In strict mode, the path engine must test all comparisons in the cross product, and the result is
Unknown if any of these comparisons is not comparable. For example:

$.x ? (2 > @.[*])

88 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

where $.x is [1, "one"]. The comparands are the sequences (2) and (1, "one"). The cross product of the com-
parisons is (2 > 1, 2 > "one"). The first comparison is true and the second comparison is an error. In strict mode
the path engine must perform both comparisons and the result is Unknown. In lax mode, the engine may perform
the comparisons in any order. If it tests 2 > 1 first, the path engine can quit with a result of True. If it tests 2 >
"one" first, the path engine can quit with a result of Unknown. If it performs both tests, it can choose either
True or Unknown as the result.

The semantics of comparison predicate can be summarized with these rules:

— Evaluate both operands, giving two SQL/JSON sequences A and B. If there is an error in either evaluation,
the result is Unknown and no further rules are performed.

— In lax mode, unwrap each SQL/JSON A and B.

— Let ERR and FOUND be flags that are initially False.

— Form the cross product of A and B. Compare the pairs in this cross product in an implementation-dependent
order. If any pair is not comparable, set ERR to True. If any pair satisfies the comparison, set FOUND to
True.

— The final result is determined by this table:

Table 56 — Final result

ERR = FalseERR = True

Truestrict mode: Unknown
lax mode: either True or Unknown (implementation-
dependent)

FOUND = True

FalseUnknownFOUND = False

6.13.6 like_regex predicate

For pattern matching, SQL's LIKE_REGEX predicate was borrowed, rather than the LIKE predicate, because
LIKE_REGEX provides a rich regular expression capability. To facilitate precompilation, only character string
literals are supported in the pattern and flags. The syntax is:

<JSON like_regex predicate> ::=
<JSON path wff> like_regex <JSON like_regex pattern>
 [flag <JSON like_regex flags>]

<JSON like_regex pattern> ::=
<JSON path string literal>

<JSON like_regex flag> ::=
<JSON path string literal>

Like comparison predicates, the like_regex predicate uses existential semantics.

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 89

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

6.13.7 starts with predicate

The starts with predicate tests whether its second operand is an initial substring of its first operand. While
this could be done using like_regex, the benefit to the user is that there is no need to check the second operand
for the presence of special characters such as quantifiers which must be escaped when using regular expressions.

The starts with predicate can be seen as a kind of range comparison. For example,

 @.name starts with "Mc"

is equivalent to:

 @.name >= "Mc" && @.name < "Md"

With this analogy in mind, the second operand is permitted to be an SQL/JSON sequence and to support exis-
tential semantics.

<JSON starts with predicate> ::=
<JSON starts with whole> starts with <JSON starts with initial>

<JSON starts with whole> ::=
<JSON path wff>

<JSON starts with initial> ::=
<JSON path wff>

6.13.8 exists predicate

The exists predicate tests whether a path expression has at least one SQL/JSON item. The BNF is:

<JSON exists path predicate> ::=
exists <left paren> <JSON path wff> <right paren>

The rules for this predicate are simple:

1) The path expression <JSON path wff> is evaluated.

2) Case:

a) If the result of the path expression is an error, then <JSON exists predicate> is Unknown.

b) If the result of the path expression is an empty SQL/JSON sequence, then <JSON exists predicate>
is False.

c) Otherwise, <JSON exists predicate> is True.

The exists predicate can be used to probe for a member or element in advance of accessing it. This is especially
useful in strict mode, which would otherwise raise an error.

For example, consider a table with JSON column in which some rows have a name member and other rows
do, as in this sample data:

90 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Table 57 — A table with JSON column

JK

{ name: { first: "Manny", last: "Moe" }, points: 123 }201

{ points: 41 }202

In strict mode, an expression such as $.name.first would raise an error on row K=202. To avoid this, one could
write 'strict $? (exists (@.name)).name'. The evaluation of this on row K=201 is as follows:

Table 58 — Evaluation of 'strict $? (exists (@.name)).name' on row K=201

ValueExpressionStep

{ name: { first: "Manny",
last: "Moe" }, points: 123 }

$

{ name: { first: "Manny",
last: "Moe" }, points: 123 }

@

{ first: "Manny",
last: "Moe" }

@.name

Trueexists (@.name)

{ name: { first: "Manny",
last: "Moe" }, points: 123 }

$?(exists (@.name))

{ first: "Manny",
last: "Moe" }

$?(exists (@.name)).name

The evaluation on row K=202 is as follows:

Table 59 — Evaluation of 'strict $? (exists (@.name)).name' on row K=202

ValueExpressionStep

{ points: 41 }$

{ points: 41 }@

error@.name

Unknownexists (@.name)

empty SQL/JSON sequence$?(exists (@.name))

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 91

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

ValueExpressionStep

empty SQL/JSON sequence$?(exists (@.name)).name

Thus, the exists predicate enables the user in strict mode to achieve lax semantics (conversion of structural
error to empty SQL/JSON sequence) on a selective basis.

6.13.9 is unknown predicate

The is unknown predicate tests if a boolean condition is Unknown. This is provided because, without it, it
would be very difficult to find data that causes an Unknown predicate result. The syntax is:

<JSON unknown predicate> ::=
<right paren> <JSON path predicate> <left paren> is unknown

The boolean condition to be tested is enclosed in parentheses for clarity. The is unknown predicate has no
error conditions in its own right; instead, it is used to test for error conditions in the parenthesized path predicate
(since that is the only way to arrive at an Unknown result).

For example, a data set may have a member called sex which should have values “M” or “F”. To find the rows
of males, one might write:

SELECT *
FROM T
WHERE JSON_EXISTS (T.J, 'lax $? (@.sex == "M")')

and similarly to find the rows of females, one might use “F” in the filter.

Perhaps though the data also contains a few anomalous rows in which sex has been encoded numerically as 0
or 1. In that case, predicates such as @.sex == “M” will generate errors, which result in Unknown. By simply
counting rows, the user may find they have 50 rows with sex = “M”, 50 rows with sex = “F”, and two other
rows.

Finding these other rows in three-valued logic can be tricky. In this example, you could find them with:

SELECT *
FROM T
WHERE JSON_EXISTS (T.J,

 'lax $? (@.sex.type() == "number")')

As it happens, the problem is that the rows contain numeric values for sex, but there could be other reasons
that a sex is neither “M” nor “F”. To conveniently find the rows that are neither True nor False under some
predicate, what is required is the is unknown predicate. Using this predicate, the user writes:

SELECT *
FROM T
WHERE JSON_EXISTS (T.J,

 'lax $? (((@.sex=="M") || (@.sex=="F")) is unknown')

The predicate now selects precisely the troublesome rows that are neither “M” nor “F” for whatever reason.

92 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

6.14 Conformance features for SQL/JSON path language

The following features are defined for the SQL/JSON path language:

— Feature T831, “SQL/JSON path language: strict mode”.

• There is no feature for lax mode; this means that lax mode support is mandatory for all the SQL/JSON
query functions.

— Feature T832, “SQL/JSON path language: item method”.

• This feature enables the type(), size(), double(), ceiling(), floor(), abs(), datetime(),
and keyvalue() methods in the SQL/JSON path language.

— Feature T833, “SQL/JSON path language: multiple subscripts”.

• Without this feature, only a single subscript or a single range can be specified in a JSON array accessor.

— Feature T834, “SQL/JSON path language: wildcard member accessor”.

• Without this feature, the <JSON wildcard member accessor> .* is not available.

— Feature T835, “SQL/JSON path language: filter expressions”.

• This feature enables the ?(<JSON path predicate>) syntax in the SQL/JSON path langauge.

— Feature T836, “SQL/JSON path language: starts with predicate”.

• This feature enables the starts with predicate.

— Feature T837, “SQL/JSON path language: regex_like predicate”.

• This feature enables the like_regex predicate.

©ISO/IEC 2017 – All rights reserved SQL/JSON path language 93

ISO/IEC TR 19075-6:2017(E)
6.14 Conformance features for SQL/JSON path language

(Blank page)

94 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

Bibliography

[ACIDtxns] Distributed Transaction Processing: Concepts and Techniques, Gray, Jim, and
Reuter,Andreas; Morgan Kaufmann, 1993; ISBN 1-55860-190-2

[Avro] http://avro.apache.org/

[BSON] http://bsonspec.org/

[JSONschema] http://json-schema.org

[NoSQLDB] http://nosql-database.org/

©ISO/IEC 2017 – All rights reserved 95

ISO/IEC TR 19075-6:2017(E)

http://avro.apache.org/
http://bsonspec.org/
http://json-schema.org
http://nosql-database.org/

(Blank page)

96 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

— A —
ABS • 78
ABSENT • 48, 50, 51
ARRAY • 32, 34, 35, 37, 38, 45, 53
AS • 21, 22, 23, 28, 29, 30, 31, 33, 34, 38, 39, 40, 41, 42,

43, 48, 49, 50, 51, 52, 60, 67, 68, 80
ASC • 51, 52

— B —
BY • 49, 51, 52, 53, 80

— C —
CEILING • 78
CHAR • 38, 39
CHARACTER • 17, 46
COALESCE • 60, 61
COLUMNS • iv, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 60,

61, 80
CONDITIONAL • 32, 34, 35, 37
CREATE • 46
CROSS • 40, 41, 43, 45
CROSS • 41

— D —
DEFAULT • 27, 29, 30, 32, 37, 40, 43, 46

— E —
EMPTY • iv, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38,

44, 45
ENCODING • 22, 23
ERR • 89
ERROR • iv, 23, 24, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37,

38, 44, 45, 56, 59

— F —

FALSE • 24, 26, 45
FLOOR • 78
FOR • 37, 38
FORMAT • 21, 22, 23, 32, 37, 53, 67
FOUND • 89
FROM • 22, 25, 26, 28, 29, 30, 31, 33, 34, 38, 39, 41, 42,

43, 48, 49, 50, 51, 52, 60, 80, 84, 92
FULL • 41

— G —
GROUP • 49, 51, 52

— I —
INNER • 40, 41, 43
INTEGER • 31, 46, 80
IS • iv, 7, 21, 45, 52
Identifier • 69

— J —
JOIN • 39, 41, 52
JSON • iv, 7, 21, 22, 23, 32, 45, 52, 53, 67
<JSON API common syntax> • 21, 23, 24, 27, 28, 32, 36,

38, 55
<JSON accessor expression> • 68
<JSON accessor op> • 68
<JSON argument> • 23
<JSON array accessor> • 73
<JSON array aggregate constructor> • 50
<JSON array aggregate order by clause> • 51
<JSON array constructor> • 50
<JSON array constructor by enumeration> • 50
<JSON array constructor by query> • 50
<JSON constructor null clause> • 48, 49, 50, 51
<JSON context item> • 21, 24, 28, 32
<JSON datetime template> • 77
<JSON delimited predicate> • 82

ISO/IEC TR 19075-6:2017(E)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Conformance Rule, Table, or other descriptive text.

©ISO/IEC 2017 – All rights reserved Index 97

<JSON exists error behavior> • 24
<JSON exists path predicate> • 90
<JSON exists predicate> • 24, 90
<JSON filter expression> • 82
<JSON input clause> • 22, 50, 52
<JSON item method> • 68, 77
<JSON key uniqueness constraint> • 45, 48, 52, 53, 54
<JSON last subscript> • 67
<JSON like_regex flag> • 89
<JSON like_regex pattern> • 89
<JSON like_regex predicate> • 89
<JSON member accessor> • 69
<JSON method> • 77
<JSON name> • 48
<JSON name and value> • 47
<JSON non-delimited predicate> • 82
<JSON object aggregate constructor> • 49
<JSON object constructor> • 47
<JSON output clause> • 23, 32, 49, 50, 51
<JSON passing clause> • 21
<JSON path context variable> • 67
<JSON path expression> • 65
<JSON path mode> • 65
<JSON path named variable> • 67
<JSON path primary> • 66, 68
<JSON path specification> • 21, 22, 37, 39
<JSON path variable> • 66, 67
<JSON path wff 1> • 73
<JSON path wff 2> • 73
<JSON path wff 3> • 73
<JSON predicate> • 52
<JSON predicate primary> • 82
<JSON predicate type constraint> • 53
<JSON query> • 32
<JSON query empty behavior> • 32
<JSON query error behavior> • 32
<JSON query quotes behavior> • 32
<JSON query wrapper behavior> • 32
<JSON representation> • 22, 23, 37
<JSON returning clause> • 27, 28
<JSON starts with initial> • 90
<JSON starts with predicate> • 90
<JSON starts with whole> • 90
<JSON subscript> • 73
<JSON subscript list> • 73
<JSON table> • 36
<JSON table column definition> • 37, 38
<JSON table column empty behavior> • 37

<JSON table column error behavior> • 37
<JSON table column path specification> • 37
<JSON table columns clause> • 36, 39
<JSON table default plan> • 40
<JSON table default plan choices> • 40
<JSON table default plan inner/outer> • 40, 41
<JSON table default plan union/cross> • 40, 41
<JSON table error behavior> • 38
<JSON table formatted column definition> • 37
<JSON table formatted column empty behavior> • 37
<JSON table formatted column error behavior> • 37
<JSON table formatted column quotes behavior> • 37
<JSON table formatted column wrapper behavior> • 37
<JSON table nested columns> • 37, 38, 39
<JSON table nested path name> • 39
<JSON table nested path specification> • 39
<JSON table ordinality column definition> • 37
<JSON table path name> • 39, 40, 41
<JSON table plan> • 40
<JSON table plan clause> • 36, 38, 40
<JSON table plan cross> • 40
<JSON table plan inner> • 40
<JSON table plan outer> • 40
<JSON table plan parent/child> • 40
<JSON table plan primary> • 40
<JSON table plan sibling> • 40
<JSON table plan union> • 40
<JSON table regular column definition> • 37
<JSON table specific plan> • 40
<JSON unknown predicate> • 92
<JSON value empty behavior> • 27, 28
<JSON value error behavior> • 27, 28
<JSON value expression> • 22, 23, 48, 50
<JSON value function> • 27, 28
<JSON wildcard array accessor> • 75
<JSON wildcard member accessor> • 72, 93
JSON_ARRAY • iv, 21, 50, 53
JSON_ARRAYAGG • iv, 21, 50, 51, 52, 53
JSON_EXISTS • iv, 21, 22, 24, 25, 26, 27, 32, 33, 45, 55,

56, 67, 84, 85, 92
JSON_OBJECT • 21, 47, 48, 50, 51, 52, 53, 54
JSON_OBJECTAGG • iv, 21, 49, 54
JSON_QUERY • iv, 21, 32, 33, 34, 35, 45, 56
JSON_TABLE • iv, 21, 22, 35, 36, 38, 39, 41, 42, 43, 44,

45, 46, 55, 56, 60, 80
JSON_VALUE • iv, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35,

38, 44, 45, 53, 55, 56, 67, 68

— K —

98 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

KEEP • 32, 37
KEY • 47, 48
KEYS • 16, 45, 48, 53, 54

— L —
LEFT • 39, 41, 52
LIKE • 89
LIKE_REGEX • 61, 89
last • 67

— N —
NESTED • 39, 41, 42, 43, 44, 45, 60, 61
NOT • 52
NULL • 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 44, 45, 48,

49, 50, 51

— O —
OBJECT • 32, 34, 35, 37, 38, 53
OMIT • 32, 37
ON • iv, iv, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 44, 45, 48, 49, 50, 51, 52, 56, 59
ORDER • 51, 52, 53, 80
ORDINALITY • 37, 38
OUTER • 39, 40, 41, 44, 52

— P —
PASSING • iv, 21, 22, 38, 44, 45, 55, 56, 67, 68
PATH • 37, 38, 39, 41, 42, 43, 60, 80
PLAN • 38, 40, 41, 43, 44, 46
<predefined type> • 17, 28

— Q —
QUOTES • 32, 37

— R —
RETURNING • 23, 27, 28, 31, 32, 49

— S —
SCALAR • 32, 37, 53
SELECT • 22, 25, 26, 28, 29, 30, 31, 32, 33, 34, 38, 39,

41, 42, 43, 49, 50, 51, 52, 60, 80, 84, 92
SELECT • 48
SET • 17
STRING • 32, 37

— T —
Feature T811, “Basic SQL/JSON constructor functions” •

53

Feature T812, “SQL/JSON: JSON_OBJECTAGG” • 54
Feature T813, “SQL/JSON: JSON_ARRAYAGG with

ORDER BY” • 54
Feature T814, “Colon in JSON_OBJECT or

JSON_OBJECTAGG” • 48, 54
Feature T821, “Basic SQL/JSON query operators” • 44
Feature T822, “SQL/JSON: IS JSON WITH UNIQUE KEYS

predicate” • 45
Feature T823, “SQL/JSON: PASSING clause” • 45
Feature T824, “JSON_TABLE: specific PLAN clause” • 45
Feature T825, “SQL/JSON: ON EMPTY and ON ERROR

clauses” • 45
Feature T826, “General value expression in ON ERROR

or ON EMPTY clauses” • 45
Feature T827, “JSON_TABLE: sibling NESTED COLUMNS

clauses” • 45
Feature T828, “JSON_QUERY” • 45
Feature T829, “JSON_QUERY: array wrapper options” •

45
Feature T830, “Enforcing unique keys in SQL/JSON

constructor functions” • 54
Feature T831, “SQL/JSON path language: strict mode” •

93
Feature T832, “SQL/JSON path language: item method”

• 93
Feature T833, “SQL/JSON path language: multiple

subscripts” • 93
Feature T834, “SQL/JSON path language: wildcard

member accessor” • 93
Feature T835, “SQL/JSON path language: filter

expressions” • 93
Feature T836, “SQL/JSON path language: starts with

predicate” • 93
Feature T837, “SQL/JSON path language: regex_like

predicate” • 93
Feature T838, “JSON_TABLE: PLAN DEFAULT clause”

• 46
TABLE • 46
TRUE • 24, 26

— U —
UNCONDITIONAL • 32, 34, 35, 37
UNION • 40, 41, 42, 44, 45
UNIQUE • 16, 45, 48, 53, 54
UNKNOWN • 24, 26
UTF16 • 22, 23
UTF32 • 22, 23
UTF8 • 22, 23

— V —
VALUE • 47, 48, 49, 53

©ISO/IEC 2017 – All rights reserved Index 99

ISO/IEC TR 19075-6:2017(E)

VARCHAR • 38, 39, 41, 42, 43, 48, 49, 60, 80
VARYING • 46

— W —
WHERE • 22, 25, 26, 33, 48, 50, 51, 82, 84, 92
WITH • 16, 32, 34, 35, 37, 45, 48, 54
WITHOUT • 32, 34, 35, 37, 45, 48, 53, 54
WRAPPER • 32, 34, 35, 37

100 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 – All rights reserved

ISO/IEC TR 19075-6:2017(E)

﻿

ISO/IEC TR 19075-6:2017(E)
﻿

© ISO/IEC 2017 – All rights reserved

ICS 35.060
Price based on 100 pages

	Contents
	Tables
	Figures
	Foreword
	Introduction
	1 Scope
	2 Normative references
	2.1 ISO and IEC standards
	2.2 Other international standards

	3 JavaScript Object Notation (JSON)
	3.1 What is JSON?
	3.2 Representations of JSON data
	3.2.1 Avro
	3.2.2 BSON

	3.3 Schemas
	3.3.1 JSON schemata and validity
	3.3.2 Avro schemata
	3.3.3 BSON schemata

	3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?
	3.5 JSON terminology
	3.6 Use cases for JSON support in SQL
	3.6.1 JSON data ingestion and storage
	3.6.2 JSON data generation from relational data
	3.6.3 Querying JSON as persistent semi-structured data model instances

	3.7 What features address those use cases?
	3.7.1 Storing JSON data in an SQL table
	3.7.2 Generating JSON in an SQL query
	3.7.3 Querying JSON data in SQL tables using SQL

	4 The SQL/JSON data model
	4.1 SQL/JSON items
	4.1.1 Atomic values
	4.1.2 SQL/JSON arrays
	4.1.3 SQL/JSON objects

	4.2 SQL/JSON sequences
	4.3 Parsing JSON
	4.4 Serializing JSON

	5 SQL/JSON functions
	5.1 Handle JSON using built-in functions
	5.2 JSON API common syntax
	5.2.1 JSON value expression
	5.2.2 Path expression
	5.2.3 PASSING clause
	5.2.4 JSON output clause
	5.2.5 ON ERROR and ON EMPTY syntax

	5.3 Query functions
	5.3.1 JSON_EXISTS
	5.3.2 JSON_VALUE
	5.3.3 JSON_QUERY
	5.3.4 JSON_TABLE
	5.3.4.1 COLUMNS clause that is not nested
	5.3.4.2 Nested COLUMNS clause
	5.3.4.3 PLAN clause

	5.3.5 Conformance features for query operators

	5.4 Constructor functions and IS JSON predicate
	5.4.1 JSON_OBJECT
	5.4.2 JSON_OBJECTAGG
	5.4.3 JSON_ARRAY
	5.4.4 JSON_ARRAYAGG
	5.4.5 IS JSON predicate
	5.4.6 Handling of JSON nulls and SQL nulls
	5.4.7 Conformance features for constructor functions

	6 SQL/JSON path language
	6.1 Overview of SQL/JSON path language
	6.2 Objectives for the SQL/JSON path language
	6.3 Modes
	6.3.1 Example of strict vs lax

	6.4 Lexical issues
	6.5 Syntax summary
	6.6 Formal semantics
	6.6.1 Notational conventions

	6.7 Primitive operations
	6.7.1 Concatenation
	6.7.2 unwrap()
	6.7.3 wrap()

	6.8 Mode declaration
	6.9 <JSON path primary>
	6.9.1 Literals
	6.9.2 Variables
	6.9.3 Parentheses

	6.10 Accessors
	6.10.1 Member accessor
	6.10.2 Member wildcard accessor
	6.10.3 Element accessor
	6.10.4 Element wildcard accessor
	6.10.5 Sequence semantics of the accessors

	6.11 Item methods
	6.11.1 type()
	6.11.2 size()
	6.11.3 Numeric item methods (double, ceiling, floor, abs)
	6.11.4 datetime()
	6.11.5 keyvalue()

	6.12 Arithmetic expressions
	6.12.1 Unary plus and minus
	6.12.2 Binary operations

	6.13 Filter expression
	6.13.1 true/false and True/False
	6.13.2 null and Unknown
	6.13.3 Error handling in filters
	6.13.4 Truth tables
	6.13.5 Comparison predicates
	6.13.6 like_regex predicate
	6.13.7 starts with predicate
	6.13.8 exists predicate
	6.13.9 is unknown predicate

	6.14 Conformance features for SQL/JSON path language

	Blank Page

