TECHNICAL ISO/IECTR
REPORT 19075-6

First edition
2017-03

Information technology — Database
languages — SQL Technical Reports —

Part 6:
SQL support for JavaScript Object
Notation (JSON)

Technologies de l'information — Langages de base de données — SQL
rapport techniques —

Partie 6: Support de SQL pour JavaScript Object Notation (JSON)

Reference number
ISO/IEC TR 19075-6:2017(E)

© ISO/IEC 2017

ISO/IEC TR 19075-6:2017(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO/IEC 2017 - All rights reserved

ISO/IEC TR 19075-6:2017(E)

Contents Page
O B O iX
T [o) o R PP X
o0 0 1 TS 1
2 NOrMAtiVe FE O ENCES. . .t e 3
21 ISO and IEC Standards. oot 3
22 Other international standards. 3
3 JavaScript Object Notation (JSON). ...t ennes 5
31 What 18 JSON . . oot e e 5
32 Representations of JSON datao vttt et e et e e 6
321 AV 0. L e 6
322 B O ON . L it 7
33 SCNBIMAS. . . .o 7
331 JSON schemata and Validity.ot e 7
332 AVIO SCNEIMALAL . . o . oottt et e e e e e e e e e e 8
333 BSON SCNOMEIA . . . o .ttt ettt et e e e e 8
34 Why does JSON matter in the context of SQL?What is JISON’srelationshipto NoSQL?. 9
35 JSON termMiNOIOGY. - . . . oo ettt et e e e e e e e e e 10
3.6 Use cases for JISON support in SQL. oot et 11
361 JSON data ingestion and SIOTa0E.« v vttt e e e e e e 11
3.6.2 JSON data generation from relational data 12
3.6.3 Querying JSON as persistent semi-structured datamodel instances., 12
37 What features address thOSE USE CASES?.ottt e e e e 12
371 Storing JSON datain an SQL table. o e 12
372 Generating JSON in an SQL QUENY. oottt e et e e e e e e e e e e e e 13
373 Querying JSON datain SQL tablesusing SQL.t 13
4 The SQL/ISON data MOdel. e i 15
4.1 SOL/ISON OMIS. o\ ettt et e et e e e e e e e e e 16
411 ATOMIC VBIUBS. e e e e 17
41.2 SQL/IISON @ITAYS. .« o ettt et et e e e e e e e e e e e e e e 18
413 SQL/ISON OBJECES. . . oottt e e 18
4.2 SQL/ISON SEOUENCES. . . . v ottt ettt e e e e e e e e e e e e e e e e 19
4.3 ParSing JSON. . ..ttt 19
4.4 SENAliZING JSON. . . .ottt e e e 19
5 SOQL/JISON fUNCLIONS. . ..o 21
51 Handle JSON using built-in fUNCLIONS.ot e 21

©ISO/IEC 2017 — All rights reserved Contents iii

ISO/IEC TR 19075-6:2017(E)

52 JSON APl COMMON SYNEAX. ottt ittt et et e e e e e e e e e e e et et 21
521 JSON VaAlUE EXPIESSION. . . o o e ettt et e e e e e e et e e e e e e e e e e 22
522 Path @XPrESSION. . . oo 22
523 PASSING Clalise. . . ottt ittt et e e e e et e e e e 22
524 JSON OULPUL ClaUSE. . . . ottt e e e e e e e e e e e e et e e 23
5.25 ON ERROR and ON EMPTY SYNEBX. .+« vt oottt ettt e et ettt e et e ettt ens 23
53 QUENY TUNCLIONS.o e e e e e e e e e e e e e 24
531 JOON X ST S, ottt 24
5.3.2 JSON VA LUE. . e e e e e e 27
533 JSON _QUERY . . o e e 32
534 JSON T A B LE. ot 35
534.1 COLUMNS clausethat iSNOt NeSted.o ot e 36
5.34.2 Nested COLUMNS ClaUSE. oot e e e e e e e e e e e 39
5343 PLAN ClalSE. .« . oottt e e e e e e e e e e e 40
535 Conformance features for qQUENY OPEratOrS.ttt et et ettt 44
54 Constructor functions and IS JSON prediCate.ottt e 46
54.1 JSON L OBIE C T . . ottt ettt e e e 47
5.4.2 JSON_OBUIECTAGRG. . . ot ettt ettt e ettt e e e e e e e e e e e e 48
5.4.3 JOON A R R AY . 50
544 JSON_ARRAYAGRG. . . ottt et ettt e e e e e 50
545 ISISON PrediCate. oottt e e e e e e e e e e e e e e e 52
54.6 Handling of JISON nullsand SQL NUIIS. o e e 53
54.7 Conformance features for constructor fUNCLIONS.ot e e 53
6 SQL/ISON path languUage.oiu i e e 55
6.1 Overview of SQL/JSON path 1anguage.ottt 55
6.2 Objectives for the SQL/JSON path language.ot 57
6.3 MO0, . o .ottt e e e 58
6.3.1 EXample Of StriCt VS 1aX. . . o oo 59
6.4 LEXICEl 1SSUBS. . . . oottt e e 61
6.5 SYNEAX SUMMIBIY. .« . .o et e et et et e e e e e e e e e e e e e e e e e e et e 62
6.6 FOrmal SEmMantiCs. oottt 63
6.6.1 Notational CONVENTIONS. ottt e e et e e e e et e 63
6.7 Primitive OpErations.ttt e et e e e e e e 64
6.7.1 CONCAEENALTION. . . o ottt e e e e e e e 64
6.7.2 01T = o () 64
6.7.3 1710 S 65
6.8 Mode deClaration. 65
6.9 <ISON Path PrimMarY >, . .ot e e e 66
6.9.1 = = | 66
6.9.2 VA Al S, . . o 67
6.9.3 PNt NESES. . . . oo 68
6.10 A LS OIS, .« o it ittt et et e e e e e e 68
B.10.1 MEMDEr GCCESSOL. . o v o vt ettt et et et e e et e e e e e e e e e 69

iv. SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)

6.10.2 Member WildCard aCCESSON. oottt e e 72
6.10.3 ElOmMEnt @0CESS0N. . o vttt ettt et e e e e e e e e e 73
6.10.4 Element WildCard aCCeSSOr.ottt e 75
6.10.5 Sequence semantiCs Of the ACCESSONS. vttt t ettt e e e e et 76
6.11 [EmM MEtNOAS.o 77
L5200 S S Y o 1=) 1 77
B.10.2 SIZE(). it e 78
6.11.3 Numeric item methods (double, ceiling, floor, &s). 78
B.11.4 datelime(). . .. oot e 78
B.11.5 KEYVAIUB(). . . o oottt 79
6.12 AT NMELI C EXPIESSIONS. . . o vttt ettt e e e e e e e e e 80
6.12.1 Unary plus and MiNUS. oottt e e e e e 8l
6.12.2 BiNary OPEraliONS.ottt ittt e e e e e e 82
6.13 Fer EXPIESSION. . o 82
6.13.1 true/fal se and TTUEIFAISE.ottt e e e e e e 83
6.13.2 null and UNKNOWN.t e e e e e e e e e e e e 83
6.13.3 Error handling infilters. o 83
6.13.4 Truth tables. e 86
6.13.5 Comparison PradiCates.ottt et e 87
6.13.6 li ke regex pradiCate.oo i 89
6.13.7 starts W th predicate ... e 90
6.13.8 eXi SUS PrediCale.ottt 90
6.13.9 IS UNKNOWN PrediCate. oottt et e 92
6.14 Conformance features for SQL/JSON pathlanguage.c oo e 93
Bibliography. ... e 95
000 97

©ISO/IEC 2017 — All rights reserved Contents v

ISO/IEC TR 19075-6:2017(E)

Tables
Table Page
1 Termsand definitions. o 10
2 JSON, SQL/JSON, and SQL (other than SQL/JSON values and counterparts).coovvieinenenn... 15
3 Parallels between JSON text and SQL/JISON datamodel.ttt e 19
4 JSON EXISTS SaMpPledatalo oottt ittt e e e e e e e e e e e 24
5 Result of the Sample QUENY.o e 25
B ACCESSOr BXAMPl e, . ot e 26
7 RESUIE L. . e 28
8 RESUIE 2. . . 29
9 RESUIT 3. . . 29
10 RESUIL oo e 30
L1 RESUIL Bt e 31
12 RESUIL B et 31
13 Comparison Of WIapper OPLIONS.« ..ottt e e e e e e e e e e e e e e 35
14 JSON_TABLE sample datain abook recommendationtable. 36
15 QUENY TESUIL. . . ot e 38
16 QUENY TESUIL. . .ot e e e e 39
17 QUENY TESUIL. . ..o 42
18 QUENY TESUIL. . . o e e e e 42
19 QUENY TESUIL. . ..ttt e et e e e e e e 44
20 DEPT SHabIe. . . oottt 46
21 JOBS talle. . . o 47
22 EMPLOYEES tahle. . . .o 47
23 The JSON ObJeCt rEtUINEd.ottt e e e e e e e e e e e e e e 48
24 Returned JSON object with the corresponding job sequencenumber. i 49
25 QUENY TESUIE. . .ottt et e 51
26 QUENY RESUIS. . oo 51
27 QUENY RESUIS. . oottt et e e e e e e e 52
28 Three aspects of path evaluation governed by modes. i i e 58
29 Example of StHCt VS 1aX.o e 59
30 Features of the SQL/JSON path language.ot e e e 62
31 Dataused by unwrap() eXample. 64
32 Dataused by Wrap() @Xample. oo 65
33 Examples of atomic valuesinthe SQL/JSON pathlanguage. e 66
34 Examples of the @sCaping rUIES.ottt e e e e 66
35 Evauationof ' $. phones. type' inlaxmode. 70
36 INEMEdIAtE SO, . . . oottt e e e e 70
37 Evauation of' $. phones] *] . t Y P . 71
38 Evduation of ' $. phones[*] ? (exists (@type)).type 71
39 Evaluation of ' $. phones. *' inlax mode.o 72
40 Evaluation of ' $. phones] *] . % L 73
41 Evauationof 'l ax $.sensors. *[0, last, 2] i 75
42 Thestepinthe evalualion i e et e e et e 76
43 Result of the query withthe sampledata. i e 80

vi SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

45
46
47
48
49
50
51
52
53

55
56
57
58
59

ISO/IEC TR 19075-6:2017(E)

Evaluation of [ax -$.readi Nngs. fl 00r () ... 8l
Evaluation of 'l ax (-$.readings).floor () ... 81
Table T WIth WO FOW S . . o ot e e e e e e e e e e e e e 84
Computation ON oW K=102ottt e e e e 84
Modified table T 85
Computation on row K=102 in modifiedtable T. i e e 85
Computationof ' lax $? (@hours > 9)' onrow K=102.t 86
Computationof ' strict $? (@hours > 9)' instrictmode.coiiiiiiiinn... 86
RESUIT Of Q& . . oo 87
RESUIL O | | oottt e e 87
RESUIE Of 1. 87
SUPPOIEd COMPAITSONS o ettt ettt e 88
BNl FESUIt . . . o 89
A table With JSON COIUMN . . . oo e e e e e e e e e 91
Evaluationof ' strict $? (exists (@nane)).nanme' onrowK=201........................ 91
Evaluationof ' strict $? (exists (@nane)).nanme' onrowK=202........................ 91

©ISO/IEC 2017 — All rights reserved Contents vii

ISO/IEC TR 19075-6:2017(E)

Figures
Figure Page
1 Relationships between “JSON” and “SQL/IJISON.ttt 15
2 The SQL/JSON path language architeCture. ot e i 55

viii SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of
information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types
of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/
IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:
www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 32, Data management and interchange.

A list of all parts in the ISO/IEC 19075 series can be found on the ISO website.

NOTE 1 — Theindividual parts of multi-part technical reports are not necessarily published together. New editions of one or more
parts can be published without publication of new editions of other parts.

©ISO/IEC 2017 — All rights reserved Foreword ix

ISO/IEC TR 19075-6:2017(E)

I ntroduction

The organization of this part of ISO/IEC 19075 is as follows:

1)
2)

3)
4)

5)
6)

Clause 1, “ Scope”, specifies the scope of this part of 1SO/IEC 19075.

Clause 2, “Normative references’, identifies additional standards that, through reference in this part of
ISO/IEC 19075, constitute provisions of this part of 1SO/IEC 19075.

Clause 3, “ JavaScript Object Notation (JSON)”, introduces what is JSON.

Clause4, “The SQL/JSON datamodel”, introduces the data model that isused by the SQL/JSON functions
and the SQL/JSON path language.

Clause 5, “SQL/JSON functions’, introduces the SQL/JSON functions to query and construct JSON.
Clause 6, “ SQL/JSON path language”, introduces the SQL/JSON path language.

X SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

TECHNICAL REPORT ISO/IEC TR19075-6:2017(E)

| nfor mation technology — Database languages — SQL Technical Reports —

Part 6:
SQL support for JavaScript Object Notation (JSON)

1 Scope

This Technical Report describes the support in SQL for JavaScript Object Notation.
This Technical Report discusses the following features of the SQL language:

— Storing JSON data.

— Publishing JSON data.

— Querying JSON data.

— SQL/JSON data model and path language.

©ISO/IEC 2017 — All rights reserved Scope 1

ISO/IEC TR 19075-6:2017(E)

(Blank page)

2 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
2.1 1SO and |EC standards

2 Normativereferences

Thefollowing referenced documents are indi spensabl e for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 1SO and |EC standards

[1SO9075-2] ISO/IEC 9075-2:2016, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation)

2.2 Other international standards

[ECMAscript] ISO/IEC 16262:2011, Information technology — Programming languages, their environments
and system software interfaces — ECMA Script language specification; also available as ECMAScript
Language Specification,

http://ww. ecma-i nternational.org/publications/files/ecnma-st/ECVA-262. pdf

[Unicode] The Unicode Standard,
http://uni code.org

[RFC7159] Internet Engineering Task Force, RFC 7159, The JavaScript Object Notation (JSON) Data
Interchange Format, March 2014,
https://tools.ietf.org/rfc/rfc7159.txt

©ISO/IEC 2017 — All rights reserved Normativereferences 3

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://unicode.org
https://tools.ietf.org/rfc/rfc7159.txt

ISO/IEC TR 19075-6:2017(E)

(Blank page)

4 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
3.1 What isJSON?

3 JavaScript Object Notation (JSON)

3.1 What isJSON?

JSON (an acronym for “ JavaScript Object Notation”) is both anotation (that is, a syntax) for representing data
and an implied data model. JSON is not an object-oriented data model; that is, it does not define sets of classes
and methods, typeinheritance, or dataabstraction. Instead, JSON “objects’ are simple data structures, including
arrays. [RFC7159] saysthat JSON is atext format for the serialization of structured data. Itsinitial intended
use was as a data transfer syntax.

The complete syntax of JSON is specified in [RFC7159].

The first-class components of the JSON data model are JSON values. A JSON value is one of the following:
JSON abject, JSON array, JSON string, JSON number, or one of the JSON literals: true, false, and null. A
JSON abject is zero or more name-value pairs and is enclosed in curly braces— { }.A JSON array isan
ordered sequence of zero or more values and is enclosed in square brackets—[] .

Here is an example of a JSON abject:

{ "Nane" : "lsaac Newt on",
"Weight" : 80,
"Famous" : true,
"Phone" : null }

The name-value pairs are separated by commas, and the names are separated from the values by colons. The
names are always strings and are enclosed in (double) quotation marks.

Here is an example of a JSON array:

["Robert J. Oppenheiner”, 98, false, "Beechwood 45789"]

InaJSON array, the values are separated by commas. JSON arrays and objectsarefully nestable. That is, values
in both JISON objects and JSON arrays may be JSON strings, JSON numbers, JSON Booleans (represented by
the JSON literals true and false), JSON nulls (represented by the JSON literal null), JSON objects, or JSON
arrays.

JSON can be used to represent associative arrays — arrays whose elements are addressed by content, not by
position. An associative array can be represented in JSON as a JSON object whose members are name-value
pairs; the nameisused asthe“index” into the “array” — that is, to locate the appropriate member in the object
— and the value is used as the content of the appropriate member. Here is such an associative array:

{ "lsaac Newton" : "apple harvester" ,
"Robert J. Oppenheiner": "security risk" ,
"Al bert Einstein" : "patent clerk" ,

" St ephen Hawking" : "inspiration" }

An extremely important part of JSON’s design isthat it isinherently schema-less. Any JSON object can be
modified by adding new name-value pairs, even with names that were never considered when the object was

©ISO/IEC 2017 — All rights reserved JavaScript Object Notation (JSON) 5

ISO/IEC TR 19075-6:2017(E)
3.1 WhatisJSON?

initially created or designed. Similarly, any JSON array can be modified by changing the number of valuesin
the array.

3.2 Representations of JSON data

Before delving much deeper into the primary topic of this Technical Report, readers should understand that
JSON data can be represented in several widely-acknowledged and -used forms. The most obvious and most
easily recognizableisits“character string” representation, in which JSON datais represented in Unicode
characters as plain text. More specifically, explicit characters such as the left square brace, comma, right curly
brace, quotation mark, and letters and digits are al used in their native Unicode representation (UTF-8, UTF-
16, UTF-32).

However, for avariety of reasons, JSON datais sometimes stored and exchanged in one of several binary rep-
resentations. For example, a binary representation of JSON data may be significantly smaller (fewer octets)
than the character representation of the same data, so a reduction in network bandwidth and or storage media
can be achieved by transferring or storing that datain a binary representation.

Readers should note that there are no published standards, either from traditional dejure standards organizations
nor from consortiaor other defacto standards groups, for any binary representations of JSON. The two described
in this Technical Report arefrequently used and may be representative of binary JSON representations generally.
Thefollowing discussion isintended only to illustrate the use of and issueswith binary serializations of JSON.
The SQL standard leaves it implementation-defined whether or not such representations are supported in any
particular implementation.

3.21 Avro

Avro [Avro] isdescribed asa*” data serialization system”. Assuch, itsuseisnot limited to abinary representation
or as acompression representation of JSON data. However, anumber of JSON environments have chosen Avro
astheir preferred binary, compressed representation.

Avro has anumber of important characteristics that affect its choice as a JSON representation.

— Dataisrepresented in avariable-length, “shortest” form; e.g., the integer 2 and the integer 2000 occupy a
different number of octets in an Avro string.

— Numbersarerepresented using arather arcane“zig-zag” encoding (this notation “moves’ the sign bit from
itsnormal position asthefirst bit to thelast bit; doing so permits removing leading zeros from the numbers,
thus making their representation occupy fewer octets).

— Thereisnot a one-to-one mapping between JSON atomic types and Avro atomic types.

— Avro datais aways associated with an Avro schema. An Avro schema describes the physical structure of
the corresponding Avro data and is needed merely to “unpack” Avro data because of the variable-length
fields and the various encoding rules. An Avro schema may accompany each individual Avro data string,
or it may be specified separately and applied to all Avro datastringsin, say, an Avro datafile. Avro schemas
tell ailmost nothing about the data other than how it is packed into a data string.

— Avro strings can be encoded using JSON notation (which sort of contradictsits use as adifferent represen-
tation for JISON data) or using a binary notation.

6 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
3.2 Representations of JSON data

Readers should recognize that Avro is not adifferent kind of data at al. It is, instead, merely another way of
representing the same data that the JSON character string format represents. (It should be noted that not al
possible Avro strings can be treated as JSON data; similarly, not every character string isavalid bit of JSON
data)) In this Technical Report, Avro is referenced as one possible serialization of JSON data; the character
string format is another serialization of the same data.

3.22 BSON

BSON [BSON] (variously pronounced asthough it were spelled “bison” or as*beeson”) isanother data serial-
ization system. [BSON] saysthat it is“abinary format in which zero or more key/value pairs are stored as a
singleentity,” called a“document.” BSON is used by — and apparently was created for — a specific commercia
product.

BSON strings are no less difficult for human beings to read than Avro strings are, but the design of BSON is
significantly different than Avro’s. A BSON document is roughly a sequence of elements, each of whichis
introduced by a single-octet code (for example, the hexadecimal value ‘01’ identifies the element as a double
precision floating point value, which is always eight octetsin length, and ‘0D’ identifies the element asa string
containing JavaScript code), followed by an optional element name, followed by the (mandatory) element
value.

BSON, like Avro, is not a different kind of data, but merely provides yet another way of representing JSSON
data. (Also like Avro, not all BSON strings represent valid JSON data.)

3.3 Schemas

3.3.1 JSON schemata and validity

Neither [RFC7159] nor [ECM Ascript] provide any mechanism by which JISON values can betested for validity
other than strict syntactic validity.

JSON text is sufficiently “self-describing” that data encoded in JSON is easily parsed and can often be used in
application components that have no specific knowledge of the data contained therein. This last fact explains
why JSON is so successful in the broader data management community, in spite of the lack of a standard way
to document its structure.

Thereis at |east one effort to define a schemafor JSON [JSONschema] that would describe the structure of
JSON datato be considered “valid” for some given application. However, there does not appear to be any sig-
nificant amount of interest from the JSON community for the rapid devel opment of a schema definition language
for JSON.

While a schema language for JSON data could be useful in some circumstances, it does not appear that such a
language is widely used, and [SO9075-2] neither relies on nor creates such alanguage.

[1S09075-2] uses the word “valid” to describe datainstances that satisfy all JISON syntactic requirements.
[1S09075-2] specifiesanew SQL predicate, IS JSON, to test the (syntactic) validity of JSON data instances.

©ISO/IEC 2017 — All rights reserved JavaScript Object Notation (JSON) 7

ISO/IEC TR 19075-6:2017(E)
3.3 Schemas

3.3.2 Avroschemata

Because Avro is arepresentation in which each “field” (abit of JSON data) occupies no more octets than is
required, using the particular encoding method for data of each type, it is not possible to smply index to a
specific field in each Avro string. In fact, because of the way that Avro encodesitsfields, it is not possible to
scan an Avro string and identify the start of the second, third, or twenty-fifth field in that string.

Consequently, Avro specifies that each Avro value be described by an Avro schema. Avro schemata are
expressed in the character representation of JISON. The schemathat represents an entire Avro string is composed
of “smaller” schematathat represent each field in the Avro string. The schemadescribes each field by its name,
datatype, and (if not already unambiguous) length. Thus, an application wishing to accessthefieldsin an Avro
string must first parse the schema of that string, then use that information to locate the desired fields in the
string and to “decode” the field contents into a value of a JSON datatype.

Because each JSON text can be of adifferent size or contain different components, one might wish to provide
adifferent schemafor each JSON text...a schema that uniquely describes that text and not (necessarily) any
other JSON text. This approach necessarily creates an increase in size of the JSON texts associated with those
schemata. For small JSON texts and/or JSON textswith agreat many fields, the overhead (in octets) of providing
aschema for each such text in the Avro representation becomes unacceptable very quickly. For very large
JSON texts, particularly with small numbers of (very large) fields, the presence of a per-text schema may be
perfectly reasonable.

Avro does not require that a schema be provided along with each JSON text, individually. It does permit that
approach, but it also alowsfor asingle schemato describe all of the Avro-represented JSON textsin a* container
file” Aslong as al of the textsin that container file are sufficiently alike, a single schemais adequate — and,
of course, produces much-reduced overhead. In the context of this Technical Report, an entire column containing
the Avro representation of JSON texts acts as the “ container file.” The Avro schema associated with such a
column is part of the metadata describing the column.

In the preceding paragraph, the phrase “ sufficiently alike” was used. That phrase means that each object/array
inthe rows of acolumn contai n the same number of members/elements, each having the same name (for objects)
and datatype. It also means that the lengths (number of octets) of each member/element must be respectively
the same, and that’s not always easy to ensure.

NOTE 2 — Therefore, the JSON objects“{ " name" : " Joe", "salary" : 85000}” and “{ "name" : "Bob", "salary" : 78000 }"
are“sufficiently alike”, but “{ " name" : " Ann", " bonus" : 85000 }” is not.

3.3.3 BSON schemata

Because the BSON representation of JSON contains a one-octet code as the first octet of every field, it is pos-
sibleto scan aBSON value and uniquely identify each field and its data type. Consequently, no sort of schema
isrequired for BSON-represented JSON data.

However, BSON — like Avro — uses variable-length fields, so that corresponding members/elementsin dif-
ferent objectsg/arrays can have significantly different lengths. Scanning BSON stringsto locate thosefield codes
(and thus the fields themsel ves) requires CPU cycles. BSON might benefit from having a schema capability
somewhat similar to Avro’s, but it is certainly not necessary.

8 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL ?

3.4 Why doesJSON matter in the context of SQL?What isJSON’srelationship
to NoSQL ?

It isunclear that JSON and SQL [ISO9075-2] have any inherent relationship, but it is equally clear that the
technical, business, and government worlds are increasingly using both kinds of datain their environments.
Individual applications are required to access and manipulate all of these kinds of data, often concurrently.
There are great benefits when a single data management system can concurrently handle all of the data. Among
the benefitsare: reduced administrative costs, improved security and transaction management, better performance
and greater optimizability, better resource allocation, and increased devel oper productivity.

Incorporation of JSON into the SQL umbrella offersimplementers and users alike the benefits described above.
That fact easily justifies the relatively small increase in size and complexity of the SQL standard, especially
when the approach described in this Technical Report is used.

NoSQL database systems [NoSQLDB] are generally characterized by the following attributes:
— They do not use the relational model (they also do not use a number of other data models).

— They tend to be focused on “big data’ and on applications for which “approximate” answers are often
adequate.

— They areoptimized for dataretrieval, not for data creation or update, nor on the relationshi ps between data.

— They usually do not use ACID [ACIDtxns] transactions; instead, they may offer transactional models that
result in “eventual consistency”.

— They tend to be designed using distributed, fault-tolerant, highly parallel hardware and software architectures.

NoSQL database systems come in avery wide variety of kinds, based on their targeted marketplaces, data
models, and application requirements. They have been crudely taxonomized into:

— Key-value stores
— “BigTable” stores
— Document stores
— Graph databases

Key-value stores provide exactly the capability that the name implies. applications provide akey and are given
avaluein return. Key-value stores may manage only “flat” pairs, or they may manage hierarchical pairs.

BigTable stores implement multi-dimensional arrays such that applications provide one or more index values
(often strings used as key values, instead of numeric indexes) that together provide the location of acell, the
value of which is returned to the application.

Document stores, contrary to what the name many suggest to many, do not necessarily store textual documents
such as books, specifications, or magazines; instead, they store datathat may be traditional textual documents
or organized collections of structured (and semi-structured) data.

Graph databases provide away to store datathat is generally linked together into graphs (often directed graphs,
sometimes trees in particular).

Many, but hardly all, NoSQL database systems manage data represented in JSON, especially key-value stores
and document stores.

©ISO/IEC 2017 — All rights reserved JavaScript Object Notation (JSON) 9

ISO/IEC TR 19075-6:2017(E)
3.4 Why does JSON matter in the context of SQL? What is JISON’srelationship to NoSQL ?

The rapidly increasing use of JSON to interchange data between Web applications has caught the attention of
academics, technologists, developers, and even enterprise management. SQL database implementers are
increasingly convinced that they must support JSON data “ natively”. This Technical Report describes the
approach taken in [ISO9075-2], which allows such implementers to provide that support in acommon manner.

3.5 JSON terminology

JSON istaken from JavaScript, which has been standardized under the name “ECMA Script” [ECMAscript].
[ECMAscript] defines the terminology for its objects, but [RFC7159] uses terminology that is significantly
different. Other specifications associated with JISON use still different terminol ogy.

[1S09075-2] and this Technical Report stick as closely as possible to the notation in [RFC7159]. Thefollowing
terms and their definitions are used:

Table 1 — Terms and definitions

Term Definition

JSON text A sequence of tokens, which must be encoded in Unicode [Unicode] (UTF-8 by
default); insignificant white space may be used anywherein JSON text except within
strings (where all white space is significant), numbers, and literals — note that JSON
text isasingle object or array

Token One of six structural characters (“{", “}", “[", “1", “:", "), strings, numbers, and lit-
erals

Value An object, array, number, string, or one of threeliterals

Type A primitive type or a structured type

Primitive type A string, a number, a Boolean, or a null

Primitive value A valuethat is a string, number, Boolean, or null

Structured type An object or an array

Structured value A value that is an object or an array

String A sequence of Unicode characters; some characters must be “ escaped” by preceding

them with areverse solidus (“\”), while any or al characters can be represented in
“Unicode notation” comprising the string “\u” followed by four hexadecimal digits
or two such strings representing the UTF-16 surrogate pairs representing characters
not onthe Basic Multilingual Plane (strings are surrounded by double-quote characters,
which are not part of the value of the strings)

Number A sequence comprising aninteger part, optionally followed by afractional part and/or
an exponent part (non-numeric values, such asinfinity and NaN are not permitted)

Boolean Thelitera “true’ or theliteral “false”

10 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
3.5 JSON terminology

Term Definition

Null Thelitera “null”

Object A structure represented by a“{”, zero or more members separated by “,”, and “}”
Member A string followed by acolon followed by avaluein an object (amember isalso known

asa‘“name-value pair”’; the name is sometimes called a“key” and the second value
is sometimes called a“bound value™)

Array A structure represented by a“[”, zero or more elements separated by “,", and “]”

Element A valueinan array

Field A member in an object, an element in an array, aname in amember, or avaluein a
member

Datamode (general) | A definition of what kinds of data belong to a particular universe of discourse,
including the operations on those kinds of data

JSON data model The (implicit) data model associated with JSON

SQL/JSON data The data model created for operating on JSON data within the SQL language
model

3.6 Usecasesfor JSON support in SQL

There are three primary use cases.

— JSON dataingestion and storage

— JSON data generation from relational data

— Querying JSON as persistent semi-structured data model instances

The following sections discuss these use cases in greater detail.

3.6.1 JSON dataingestion and storage

Defining a new native data type is both costly to implement for SQLimplementations and costly to adopt by
database tools and applications alike. Thus, [|SO9075-2] took the approach to ingest JSON data as character
strings or binary strings that are then stored in ordinary SQL columns of some existing string type. When such
dataisretrieved from those columns for use in JSON-based functions, it is transformed (parsed) into instances
of an internal SQL/JSON data model that is never directly exposed to the application author.

©ISO/IEC 2017 — All rights reserved JavaScript Object Notation (JSON) 11

ISO/IEC TR 19075-6:2017(E)
3.6 Usecasesfor JSON support in SQL

3.6.2 JSON data generation from relational data

This use case asks “How can JSON data instances be (declaratively) generated from relational tables for data
export?’ Applications that are based on JSON data not only want to store and retrieve such data upon demand,
but they typically want their queries against such datato provide results in the same form — JSON. Although
itistrivia to provide procedural mechanisms by which applications can laboriously (and with many likely
errors) construct JSON data, SQL’s declarative nature suggests that JSON objects and arrays should be generated
instead of potentially lengthy character strings that represent such objects and arrays. (Readers are cautioned
not to misinterpret this use case as requiring provision of a“bulk JSON data export” facility.)

[1S09075-2] addressesthis use case by providing several functionsthat transform the datastored in SQL tables
into instances of the internal SQL/JSON data model that can, if needed, be serialized back into character string
form. This Technical Report provides several examples for those functions.

3.6.3 Querying JSON as persistent semi-structured data model instances

This use case explores how JSON datathat is stored directly in SQL tables can be queried. Direct mapping of
entire SQL tablesinto single (or, necessarily, multiple) JSON objects or arrays has not been specified in
[1S09075-2], athough support is provided for such mappings when needed by applications. Instead, JSON
datais stored within an opaque data type (specifically an SQL string or Large Object) that can be manipulated
through the functional interface specified in [1SO9075-2], asillustrated by examplesin this Technical Report.

3.7 What features address those use cases?

The use cases are addressed as follows:

— SQL query expressions can access JSSON data according to its structure (e.g., using the names of key-value
pairsin JSON objects, positionsin JSON arrays, €tc.).

— SQL queries can generate JSSON data directly for return to invokers of those queries.
— SQL tables can store JSON data persistently.

In the next sections, each of these “macro-features’ are explored in turn.

3.7.1 Storing JSON datain an SQL table

The approach taken by [1SO9075-2] and described in this Technical Report isto store JSON datainto character
string columns or binary string columnsthat are defined within ordinary SQL tables. That permits those JSON
datato participate in SQL queries (and, importantly, SQL -transactions) in the same manner as the data stored
in other columns of the same tables. By choosing to use columns whose declared types are string types, the
standardization (and implementation) overhead of creating a new built-in SQL data type is avoided without
losing any significant advantages of a built-in type.

Applications, however, are not expected to provide detailed code to manipulate JSON datain those strings
directly in the form of character string operations. [|SO9075-2] provides a number of built-in SQL functions

12 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
3.7 What features address those use cases?

that access (query) JSON data stored in such columns. These functions are described in Clause 5, “ SQL/JSON
functions’.
3.7.2 Generating JSON in an SQL query

[1S09075-2] provides built-in functions that generate JSON objects and JSON arrays as the results of SQL
gueries, whether the source of the data queried is JSON data or ordinary SQL data. These functions are also
described in Clause 5, “SQL/JSON functions’.

3.7.3 Querying JSON datain SQL tablesusing SQL

Since thereis no well-known, standardized, and universally accepted language that queries data represented in
the JSON datamodel, [SO9075-2] definesthe SQL/JSON path language, which isembedded in SQL operators
that address the use cases outlined in Subclause 3.6, “Use cases for JSON support in SQL”.

©ISO/IEC 2017 — All rights reserved JavaScript Object Notation (JSON) 13

ISO/IEC TR 19075-6:2017(E)

(Blank page)

14 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)

4 The SQL/JSON data model

The SQL/JSON data model used by SQL/JSON path language can be summarized as “ sequences of items”.
Theitemsare SQL scalar values with an additional SQL/JSON null value, and composite data structures using
JSON arrays and objects.

To clearly distinguish between JSON values “outside” the SQL -environment and their analogs “inside” the
SQL-environment, the following conventions are adopted:

— Themadifier “JSON” refersto constructs within a character or binary string that conformsto [RFC7159].
— Themodifier “SQL/JSON" refersto JSON constructs within the SQL -environment.

Therelationship between “ JISON” outside of and * SQL/JSON” within the SQL-environment iscrudely illustrated
in Figure 1, “Relationships between “JSON” and “ SQL/JSON"".

Parse)
(Serialize

JSON

Figure 1 — Rélationships between “JSON” and “ SQL/JSON"

JSON datais parsed into SQL/JSON values, which can then be serialized back into JSON. All JSON data can
be parsed into SQL/JSON values; however, not all SQL/JSON values can be serialized into JSON data. Parsing
and serializing are addressed in more detail in Subclause 4.3, “Parsing JSON”, and Subclause 4.4, “ Serializing
JSON", respectively.

Table 2, “JSON, SQL/JSON, and SQL (other than SQL/JSON values and counterparts)”, lists various terms
used in [1SO9075-2] and this Technical Report related to JSON, SQL/JSON, and SQL (other than SQL/JSON
values and their corresponding counterparts).

Table 2 — JSON, SQL/JSON, and SQL (other than SQL/JSON values and counterparts)

JSON SQL/JSON SQL (other than SQL/JSON)
JSON array SQL/JSON array
JSON object SQL/JSON object

©ISO/IEC 2017 — All rights reserved The SQL/JSON data model 15

ISO/IEC TR 19075-6:2017(E)

4.1 SQL/JSON items

JSON SQL/JSON SQL (other than SQL/JSON)
JSON member SQL/JSON member
JSON literal nul | SQL/JSON null typed nulls
JSON literal t r ue True True
JSON literd f al se False False
JSON number number non-null number
JSON string character string non-null character string
datetime non-null datetime
SQL/JSON item
SQL/JSON sequence

NOTE 3 — SQL/JSON and SQL other than SQL/JSON have precisely the same val ue spaces in the case of non-null scalars of
boolean, numeric, string, or datetime types.

4.1 SQL/JSON items

An SQL/JSON item is defined recursively as any of the following:

1) AnSQL/JSON scalar, defined asanon-null value of any of the following predefined (SQL) types: character
string with character set Unicode, numeric, boolean, or datetime.

2) An SQL/JSON null, defined as avalue that is distinct from any value of any SQL type.
NOTE 4 — An SQL/JSON null is distinct from the null value of any SQL type.

3) An SQL/JSON array, defined as an ordered list of zero or more SQL/JSON items, called the SQL/JSON
elements of the SQL/JSON array.

4) An SQL/JSON object, defined as an unordered collection of zero or more SQL/JSON members, where an
SQL/JSON member isapair whose first value is a character string with character set Unicode and whose
second valueis an SQL/ JSON item. The first value of an SQL/JSON member is called the key and the
second valueis called the bound value.

NOTE 5 — [RFC7159], section 2.2, “Objects’, says “ The names within an object SHOULD be unique’. Thus, non-unique
keys are permitted but not advised. The user may use the WITH UNIQUE KEY S clause in the <JSON predicate> to check
for uniqueness if desired.

Two SQL/JSON items are comparable if one of them isan SQL/JSON null, or if both arein one of these types:
character string, numeric, boolean, DATE, TIME, TIMESTAMP.

Two SQL/JSON items SJI1 and SJI2 are said to be equivalent, defined recursively as follows:

1) If SJI1and SJ12 are non-null values of a predefined type, then SJI1 and SJI12 are equivalent if they are
equal.

16 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
4.1 SQL/JSON items
2) If SJI1 and SJI2 are the SQL/JSON null, then SJI1 and SJI2 are equivalent.

3) If SJI1and SJI2 are both SQL/JSON arrays of the same length N and corresponding elements of SJI1 and
SJ12 are equivalent, then SJ11 and SJI2 are equivalent.

4) If SJI1 and SJI2 are SQL/JSON objects with the same number of members, and there exists a bijection B
from SJI1 to SJI2 mapping each SQL/JSON member M of SJI1 to an SQL/JSON member B(M) of SJI12
such that the key and bound value of M are equivalent to the key and bound value of B(M), respectively,
for al members M of SJI1 then SJI1 and SJI2 are equivalent.

An SQL/JSON sequence is an ordered list of zero or more SQL/JSON items.
NOTE 6 — Thereis no SQL <data type> whose value space is SQL/JSON items or SQL/JSON sequences.

SQL/JSON items are typed valuesin the following categories:
1) Atomic values:
Atomic values are the non-null SQL values of the following types:
a) Stringsin aUnicode character set.
b) Numeric values:
i) Exact numeric values.
i) Approximate numeric values.
c) Boolean values.
d) Datetime values.
€) The SQL/JSON null value, which isdistinct from all SQL values, including the SQL null.
2) SQL/JSON arrays.
3) SQL/JSON objects.

These categories are discussed in the following subsections.

411 Atomicvalues

Atomic valuesin the SQL/JSON data model are virtually a subset of the values of <predefined type> in
[1S09075-2], Subclause 6.1, “ <datatype>". To recap the choicesin Foundation:

<predefined type> ::=
<character string type> [CHARACTER SET <character set specification>]
[<collate clause>]
| <national character string type> [<collate clause>]
| <binary string type>
| <numeric type>
| <bool ean type>
| <datetime type>
| <interval type>
The SQL/JSON data model differs from Foundation predefined types as follows:

©ISO/IEC 2017 — All rights reserved The SQL/JSON data model 17

ISO/IEC TR 19075-6:2017(E)
4.1 SQL/JSON items

1) Thedatamode does not support <binary string type> and <interval type>.

2) Only character strings of Unicode characters are supported. The only collation is the binary (codepoint)
collation of Unicode.

3) The SQL/JSON null value is regarded as the sole value of its own type. That is, thereis no null character
string value, null numeric value, etc. In addition, JavaScript semantics are used for nullsin comparisons
— the SQL/JSON null is equal to the SQL/JSON null. (See [ECMAscript], section 11.9.6, “The strict
equality comparison algorithm”, and similar sections.)

In general, operations in the path language operate on atomic values in the SQL/JSON data model with the
same semantics as the corresponding operation in SQL, but note that null semantics follows [ECMAscript].

Datetimes have no serialized representation in JSON. They are part of the SQL/JSON data model to support
comparison predicates after converting JSON strings to datetime.

4.1.2 SQL/JSON arrays

An SQL/JSON array isan ordered list of zero or more SQL/JSON itemsin the SQL/JSON data model. When
serialized, thelist is separated by commas and enclosed in square brackets, for example:

[2.3, "bye bye"]

SQL arrays are 1-relative, whereas [ECM Ascript] arrays are O-relative. SQL/JSON arrays are also O-relative.
This allows some path expression to be used in either the SQL/JSON path language or in JavaScript.

413 SQL/JISON objects

An SQL-JSON object is an unordered set of zero or more members.

NOTE 7 — Empty objects are permitted; see[RFC7159], section 2.2, “ Objects’, and [ECMAscript], section 15.12.1.2, “The JSON
syntactic grammar”.

A member isapair of values:
1) Thefirst valueisacharacter string and is called the key of the member.

2) Thesecond valueisany SQL/JSON item in the SQL/JSON data model and is called the bound value of
the member.

An SQL/JSON object is serialized enclosed in curly braces, with the members listed in a non-deterministic
order separated by commas. Each member is serialized asits key (a character string, therefore enclosed in
double quotes), a colon, and then the serialization of the (second) value of the member. For example:

{ "name": "Fido", "tag": 12345 }

18 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
4.2 SQL/JSON sequences

4.2 SQL/JSON sequences

An SQL/JSON sequence is an ordered list of zero or more SQL/JSON items. SQL/JSON sequences do not
nest; they can only be concatenated. One may think of an SQL/JSON item as equivalent to an SQL/JSON
sequence of that one item, which is an acceptable mental model, but this Technical Report endeavorsto aways
view an SQL/JSON sequence as a container of zero or more SQL/JSON items.

4.3 Parsing JSON

Parsing refersto the process of importing from some storage format into the SQL/JSON datamodel. The storage
format may be JSON text stored in a Unicode character string, or it may be some binary format such asAVRO
or BSON. Since no specifications of AVRO and BSON are formally referenceable, they have been left as
implementation extensionsin [1SO9075-2].

The conversion from JSON is straightforward, because SQL/JSON datamodel isbasically a superset of JSON.
In particular:

Table 3 — Parallels between JSON text and SQL/JSON data model

JSON text SQL/JSON data model
true true

false false

null null

string, e.g., "hello dolly" string, e.g., 'hello dolly’

number Theformat for numbersin [RFC7159] isthe sameasnumeric literals
in SQL. Consequently, anumber from JSON can betransferred into
SQL by simply parsing it as a <signed numeric literal>.

array SQL/JSON array

object SQL/JSON object

4.4 Serializing JSON

Serializing JSON refers to the process of exporting a value from the SQL/JSON data model back to some
storage format. Serialization is specified only to JSON text; conversion to some other format, such as AVRO
or BSON, isleft as an implementati on-defined extension in [1SO9075-2].

SQL/JSON datetimes cannot be serialized; neither can SQL/JSON sequences of length greater than one.

©ISO/IEC 2017 — All rights reserved The SQL/JSON data model 19

ISO/IEC TR 19075-6:2017(E)
44 Serializing JSON

The result of serialization is an implementation-dependent string of Unicode characters that, if parsed, would
restore the original value in the SQL/JSON data model.

The precise result of serialization isimplementation-dependent because:

— Meaningless whitespace is not specified.

— Because of escape sequences, there are multiple ways to serialize a character string.

— [ECMAscript], Sections5.1.3, “The numeric string grammar”, and 9.3.1, “ ToNumber applied to the string
type”, provide some discretion in the formatting of numbers.

— Members of an SQL/JSON object are unordered, so there are many possible permutations of the members
of an object.

20 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.1 Handle JSON using built-in functions

5 SQL/JSON functions

In [1SO9075-2], operations on JSON data are generally performed using a set of built-in functions specified
explicitly for that purpose. These functionsare called “ SQL/JSON functions’. [| SO9075-2] also specifies some
supporting SQL syntax, such asthe IS JSON predicate.

5.1 HandleJSON using built-in functions

SQL/JISON functions are partitioned into two groups: constructor functions (JSON_OBJECT, JSON_OBJEC-
TAGG, JSON_ARRAY, and JSON_ARRAYAGG) and query functions (JSON_VALUE, JSON_TABLE,

JSON_EXISTS, and JISON_QUERY). Constructor functions use values of SQL typesand produce JSON values
(JSON objects or JSON arrays) represented in SQL character or binary string types. Query functions evaluate
SQL/JSON path language expressions against JSON values, producing values of SQL/JSON types, which are
converted to SQL types. The SQL/JSON path language is described in Clause 6, “ SQL/JSON path language”.

5.2 JSON API common syntax

The SQL/JSON query functionsall need a path specification, the JSON valueto beinput to that path specification
for querying and processing, and optional parameter values passed to the path specification. They useacommon
syntax:

<JSON APl commpn syntax> ::=
<JSON context itenr <comma> <JSON path specification> [AS <JSON table path nane>]
[<JSON passing cl ause>]

<JSON context items ::=
<JSON val ue expressi on>

<JSON path specification> ::=
<character string literal >

<JSON passing cl ause> ::=
PASSI NG <JSON argunent> [{ <coma> <JSON argunent> }]

<JSON argument> ::=
<JSON val ue expression> AS <identifier>

The type of the <value expression> contained in the <JSON value expression> immediately contained in the
<JSON context item> isastring type. If the <JSON context item> does not implicitly or explicitly specify a
<JSON input clause>, then FORMAT JSON isimplicit.

If <JSON API common syntax> is not contained in <JSON table>, then <JSON table path name> isnot required.
The <JSON table path name> is optional; if <JSON table path name> is not specified, then an implementation-
dependent <JSON table path name> isimplicit. The <JSON context item> is the JSON input on which the
SQL/JSON path expression operates.

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 21

ISO/IEC TR 19075-6:2017(E)
5.2 JSON API common syntax

5.2.1 JSON value expression

<JSON context item> is defined as a <JSON value expression>, which isin turn defined as:

<JSON val ue expression> ::=
<val ue expression> [<JSON i nput cl ause>]

<JSON i nput cl ause> ::=
FORMAT <JSON representation>

<JSON representation> ::=
JSON [ENCODI NG { UTF8 | UTF16 | UTF32 }]
| <inplenentation-defined JSON representati on option>

A <JSON value expression> may have an optional <JSON input clause>. Thisindicates that the values
expression should be parsed as JISON. The standardized option is FORMAT JSON; implementations may also
support syntax such as FORMAT AVRO or FORMAT BSON. When using the <JSON input clause>, the
<value expression> may be either a character string or a binary string.

If the user does not specify the ENCODING for a <JSON value expression>, then the SQL -implementation
will determine it as one of the three encoding alternatives: UTF8, UTF16, and UTF32.

5.2.2 Path expression

The context item is followed by a comma and the SQL/JSON path expression. <JSON path specification> is
acharacter string literal. Requiring aliteral enables the implementation to optimize the query by analyzing the
SQL/JSON path expression and planning accordingly, for example, if there are indexes available on the JSON
data.

The optional <JSON table path name> is syntax that isonly used in JSON_TABLE, and then only if the user
wantsto write an explicit plan for processing nested COLUMNS clauses. Explicit plansfor JISON_TABLE are
explained later.

5.2.3 PASSING clause

SQL's JSON facilitiesinclude a PASSING clause that is used to pass parameters to the SQL/JSON path
expression. For example, suppose that an SQL/PSM routine has parameters “upper” and “lower” and it is
desired to find rows in which the JSON data has a member called “age” between these two values. The user
might write:

SELECT *
FROM T
WHERE JSON _EXI STS (T. C,
"lax $? ($lo <= @age && @age <= $up)'
PASSI NG upper AS "up",
| ower AS "l0")

Inthisexamplethere aretwo variables defined inthe PASSING clause. In“ SQL-land” they arethe PSM variables
upper and| ower ; in“SQL/JSON-land” they are $up and $I o.

22 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.2 JSON API common syntax

Syntactically, the PASSING clause is acomma-separated list of <JSON argument>s, defined as:

<JSON argument> ::=
<JSON val ue expression> AS <identifier>

The <JSON value expression> specifies the value to be passed into the SQL/JSON path engine. This may be
of any type supported by the data model (Unicode character strings, numbers, booleans and datetimes) or any
other typethat can be cast to a Unicode character string (for example, ailmost all non-Unicode character strings,
or user-defined types with a user-defined cast to a Unicode character string type). In the example above, the
<value expression>swere SQL/PSM variables, but any <value expression> may be used. Thus, ajointo another
table can be constructed by passing a column from one table into path expression on an SQL/JSON value of
another table.

The <identifier> in the <JSON argument> specifies the variable name by which the value can be referenced
within the SQL/JSON path expression. In this example, these identifiers are “up” and “lo”. Within the path

expression, these are referenced with a prefixed dollar sign ($up and $1 o), since $ marksthe variablesin a
path expression.

5.2.4 JSON output clause

Whenever JSON dataisreturned asthe result of afunction, the application author will normally wish to control
the form in which that JSON datais returned. The syntax used to specify the data type, format, and encoding
of the JSON text created by a JSON-returning function.

<JSON out put cl ause> ::=
RETURNI NG <data type>
[FORVAT <JSON representation>]

<JSON representation> :: =
JSON [ENCODING { UTF8 | UTF16 | UTF32 }]
| <inpl enentation-defined JSON representati on opti on>

If FORMAT isnot specified, then FORMAT JSON isimplicit. If the <JSON output clause> specifiesor implies
JSON, then the <data type> shall identify a string type. FORMAT JSON specifies the data format specified in
[RFC7159]. FORMAT <implementation-defined JSON representation option> specifies an implementation-
defined data format.

NOTE 8 — For example, BSON or AV RO; see Bibliography. An <implementation-defined JSON representation option> implies

an ahility to parse a string into the SQL/JSON data model, and an ability to serialize an SQL/JSON array or SQL/JSON object to
astring, similar to the capabilities of “Parsing a JSON text”, and “ Serializing an SQL/JSON item”, respectively.

525 ON ERROR and ON EMPTY syntax

The SQL/JSON query functions a'so have ON ERROR and ON EMPTY clausesin common. However, the
details of these clauses vary depending on the query function, so they are not included in the <JSON API
common syntax> shown above. They will be described individually for each query function.

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 23

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

5.3 Query functions

The SQL/JSON query functions are:

— JSON_EXISTS — determine whether an SQL/JSON value satisfies a path specification.
— JSON_VALUE — extract an SQL scalar value from an SQL/JSON value.

— JSON_QUERY — extract an SQL/JSON value from an SQL/JSON value.

— JSON_TABLE — extract atable from an SQL/JSON value.

531 JSON_EXISTS

JSON_EXISTS determines whether a JSON val ue satisfies a search criterion. The syntax for JSON_EXISTS
is.
<JSON exi sts predicate> ::=
JSON_EXI STS <l eft paren>
<JSON APl common synt ax>

[<JSON exists error behavior> ON ERROR]
<right paren>

<JSON exi sts error behavior> ::=
TRUE | FALSE | UNKNOWN | ERROR

The syntax for JSON_EXISTSisthe shared syntax <JSON API common syntax> , plusan optional ON ERROR
clause, defaulting to FALSE ON ERROR. If the value of the <JSON context item> simply contained in the
<JSON API common syntax> is the null value, then the result of <JSON exists predicate> is Unknown.

JSON_EXISTS s apredicate that can be used to test whether an SQL/JSON path expression isfulfilled in an
SQL/JSON value. JISON_EXISTS evaluates the SQL/JSON path expression; the result is True if the path
expression finds one or more SQL/JSON items.

Consider thefollowing sample datain the following table with two columns, K (the primary key) and J (acolumn
containing JSON text):

Table 4 — JSON_EXISTSsample data

K J

101 { "who": "Fred", "where": "General Products', "friends": [{ "name": "Lili", "rank": 5},
{"name": "Hank", "rank™: 7}] }

102 { "who": "Tom", "where": "MultiCorp", "friends": [{ "name": "Sharon", "rank": 2},
{"name": "Monty", "rank": 3}] }

103 { "whao": "Jack","friends": [{ "name": "Connie" }] }

104 { "who": "Joe","friends": [{ "name": "Doris"' }, {"rank": 1}] }

105 { "who": "Mabel", "where": "Black Label","friends": [{ "name": "Buck", "rank": 6}] }

24 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

K J

106 { "who": "Louise", "where": "lana" }

L ooking at the sample data, one seesthat each row contains a JSON object with one or more members. Observe
that rows 103 and 104 have no “where” member. To find the rows that have a“where” member, one can write:

SELECT T.K
FROM T
WHERE JSON_EXI STS (T.J, 'lax $.where')

Thisis the simplest possible invocation of JSON_EXISTS. The first argument is the context item T.J, a JSON
value to be queried. The second argument is the SQL/JSON path expression.

The SQL/JSON path expression begins with the keyword lax, the alternative being strict. The choice of lax or
strict governsthe behavior in certain error situationsto be described later. In this particular example the choice
isactualy irrelevant.

After the mode declaration (lax or strict) one reaches the essence of the SQL/JSON path expression. In the
SQL/JSON path expression, thedollar sign ($) represents the context item. The dot operator (.) isused to select
amember of an object; in this case the member called “where’ is selected.

If arow hasa“where” member, then the result of the SQL/JSON path expression is the bound value of that
“where” member. Thus, the SQL/JSON path expression returns a non-empty SQL/JSON sequence for rows
101, 102, 105, and 106, and JSON_EXISTS return True for these rows.

In this example, the path expression isin lax mode, which means that any “structural” errors are converted to
the empty SQL/JSON sequence. A structural error is an attempt to access a non-existent member of an object
or element of an array. Rows 103 and 104 have structural errors, because they lack the “where” member. In
lax mode, such structura errorsare handled by returning an empty SQL/JSON sequence. (The alternative, strict
mode, treats a structural error asa“hard” error and returns that error to the invoking routine. Strict mode will
be considered later.) Onrows 103 and 104, the result of the SQL/JSON path expressionisthe empty SQL/JSON
sequence, and for these rows JSON_EXISTS returns False.

Thus, the result of the sample query isin the following table:

Table 5— Result of the sample query

K

101

102

105

106

Alternatively, the query could be run in strict mode:

SELECT T.K

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 25

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

FROM T
WHERE JSON_EXI STS (T.J, 'strict $.where')

In this case, rows 103 and 104 will have errorsin the path expression, which might be presented to the user as
exceptions. Users want the ability to handle exceptions so that the query can run to completion, rather than
halting on an exception. Thus, ON ERROR clauseis provided in each of the four query operators. For example,
the user might write:

SELECT T.K
FROM T
WHERE JSON EXI STS(T.J, 'strict $.where' FALSE ON ERROR)

Here, FALSE ON ERROR means that the result of JSON_EXISTS should be False if thereis an error. The
results of this query will therefore be as shown in Table 5, “ Result of the sample query”, matching the results
of the lax mode example. FALSE ON ERROR isthe default error behavior for JSON_EXISTS. Other choices
are TRUE ON ERROR, UNKNOWN ON ERROR, or ERROR ON ERROR.

In the examples considered above, the SQL/JSON path expression $. wher e will find either zero or one
SQL/JSON item. In general, an SQL/JSON path expression might result in more than one SQL/JSON item.
For example, some rows have more than one “rank” member; however, row 103 has no rank member (and row
106 does not even have friends). To search for rows having “rank”, one might use:

SELECT T.K
FROM T
WHERE JSON EXI STS (T.J, 'strict $.friends[*].rank')

This example shows another accessor in the SQL/JSON path language, [*] , which selects all elements of an
array. Look at how this SQL/JSON path expression is evaluated in row 101:

Table 6 — Accessor example

Path step Result
1 $ { "whao": "Fred", "where": "General Products’, "friends': [{ "name": "Lili",
"rank": 5}, {"name": "Hank", "rank": 7}]}
2 $.friends [{ "name": "Lili", "rank": 5}, { "name": "Hank", "rank": 7}]
3 $.friendg[*] { "name": "Lili", "rank": 5}, { "name": "Hank", "rank": 7}

4 $.friendg[*].rank | 5,7

Successive lines above show the evaluation of the SQL/JSON path expression $.friends[*].rank. On the first
line, $, the valueisthe entire context item. The next line drills down to the “friends” member, whichisan array.
The next line drills down to the elements of the array. Notice that at this point the square bracket [] array
wrappersare lost, and the result at this point isan SQL/JSON sequence of length two. Thefinal linedrillsdown
to the “rank” member of each SQL/JSON item in the SQL/JSON sequence; the result is again an SQL/JSON
sequence of length two.

Notein thisexample how the accessorsin the SQL/JSON path language automatically iterate over al SQL/JSON
items discovered by the previous step in the SQL/JSON path expression. In this example, thisis seenin the
transition from step 3 to step 4.

26 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

In some commercia products, it is customary for amember accessor such as. r ank to automatically iterate
over the elements of an array such as “friends’. Thus, the user of such a product would prefer to write

$. fri ends. rank, asif therewereanimplicit [*] on “friends’. This convention is supported in lax mode.
Thus, the path expression| ax $. fri ends. r ank findsthesamerowsas'strict $.friends[*].rankin
this example. In lax mode, there are effectively two automatic iterations: first, any array in the sequenceis
unwrapped (as if modified by [*]) and then the possibly expanded sequence is iterated over. Precise details
will be presented |ater when the path language is addressed.

The result of the SQL/JSON path expression in this example is 0 (zero), 1 (one), or 2 SQL/JSON items,
depending on the row. JSON_EXISTSisTrueif theresult is 1 (one) or more SQL/JSON items, False if the
result is 0 (zero) SQL/JSON items, and governed by the ON ERROR clause if the result is an error.

5.3.2 JSON_VALUE

JSON_VALUE is an operator to extract an SQL scalar from a JSON value. The syntax of JSON_VALUE is

<JSON val ue function> ::=
JSON VALUE <l eft paren>
<JSON APl comon synt ax>
[<IJSON returning clause>]
[<JSON val ue enpty behavi or> ON EMPTY]
[<JSON val ue error behavi or> ON ERROR]
<right paren>

<JSON returning clause> ::=
RETURNI NG <data type>

<JSON val ue enpty behavior> ::=
ERROR
| NULL
| DEFAULT <val ue expression>

<JSON val ue error behavior> ::=
ERRCR
| NULL
| DEFAULT <val ue expression>

<JSON value empty behavior> specifies what to do if the result of the SQL/JSON path expression is empty:
— NULL ON EMPTY means that the result of JSON_VALUE isthe null value.
— ERROR ON EMPTY means that an exception is raised.

— DEFAULT <value expression> ON EMPTY means that the <value expression> is evaluated and cast to
the target type.

<JSON value error behavior> specifieswhat to do if there is an unhandled error. Unhandled errors can arise if
thereis an input conversion error (for example, if the context item cannot be parsed), an error returned by the
SQL/JSON path engine, or an output conversion error. The choices are the same as for <JSON value empty
behavior>.

When using DEFAULT <value expression> for either the empty or error behavior, what happens if the <value
expression> raises an exception? The answer isthat an error during empty behavior “falls through” to the error
behavior. If the error behavior itself has an error, there is no further recourse but to raise the exception.

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 27

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

If <JSON returning clause> is not specified, then an implementation-defined character string type is implicit.
The <data type> contained in the explicit or implicit <JSON returning clause> is a <predefined type> that
identifies acharacter string datatype, numeric datatype, boolean datatype, or datetime datatype. The declared
type of <JSON value function> is the type specified by <data type>. If <JSON value empty behavior> is not
specified, then NULL ON EMPTY isimplicit. If <JSON value error behavior> is not specified, then NULL
ON ERROR isimplicit. If the value of the <JSON context item> simply contained in the <JSON APl common
syntax> is the null value, then the result of <JSON value function> is the null value of type <data type>.

After finding a desired row, the user might wish to extract an SQL scalar value from a JSON value. Thisis
done using JSSON_VALUE. For example, to extract the who member from each row:

SELECT T.K,
JSON_VALUE (T.J, 'lax $.who') AS Wo
FROM T

with the following result from the sample data:

Table 7 — Result 1

K WHO
101 Fred
102 Tom
103 Jack
104 Joe
105 Mabel
106 Louise

Note that JSON_VALUE by default returns an implementation-defined character string type. The user can
specify other types using a RETURNING clause, to be considered | ater.

The “where” member from each row can also be extracted. However, there is no “where” therein rows 103
and 104. Thisisastructural error when evaluating $. wher e. In lax mode, structural errors are converted to an
empty SQL/JSON sequence. For those rows, the user may desire a default value, such asnull. Thisuse caseis
supported using the underlined syntax shown below:

SELECT T. K,
JSON_VALUE (T.J, 'lax $.who') AS Wo,
JSON_VALUE (T.J, 'lax $.where'
NULL ON EMPTY) AS Nal i

FROM T

with the following result:

28 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)

Table 8 — Resault 2

5.3 Query functions

K WHO NALI

101 Fred General Products
102 Tom MultiCorp

103 Jack

104 Joe

105 Mabel Black Label

106 Louise lana

If the query isreformulated in strict mode, then the structural errors become “hard” errors, that is, errors that
are reported out of the path engine and back to the API level. To control “hard” errors, JSON_VALUE hasan

ON ERROR clause. As one possihility of the ON ERROR clause, consider

SELECT T. K,
JSON _VALUE (T.J, 'strict $.who') AS Wo,
JSON VALUE (T.J, 'strict $.where'
DEFAULT 'no where there' ON ERROR)
AS Nal i

FROM T

The result of this example would be:

Table9 — Result 3

K WHO NALI

101 Fred General Products
102 Tom MultiCorp

103 Jack no where there
104 Joe no where there
105 Mabel Black Label

106 Louise lana

JSON_VALUE expects that the SQL/JSON path expression will return one SQL/JSON item; the ON EMPTY
clause can be used to handle missing data (no SQL/JSON items) gracefully. More than one SQL/JSON item
isan error. To avoid raising an exception on more than one SQL/JSON item, the ON ERROR clause can be

used. For example, some rows have more than one “friend”. Consider this query:

SELECT T. K,

©ISO/IEC 2017 — All rights reserved

SQL/JSON functions 29

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,
JSON_VALUE (T.J, 'lax $.friends.name' NULL ON EMPTY
DEFAULT '*** error ***' ON ERROR)
AS Friend
FROM T

with the following result:

Table 10 — Result 4

K WHO NALI FRIEND
101 Fred General Products *Rx @rror **x
102 Tom MultiCorp *x%k @rrQr ***
103 Jack Connie

104 Joe Doris

105 Mabel Black Label Buck

106 Louise lana

Rows 101 and 102 have an error because the path expression $. f r i ends. nane returns more than one
SQL/JSON item. Row 106, on the other hand, has no “friends’, so the NULL ON EMPTY clause determines
the resullt.

Row 104 in the preceding example deserves a closer look. Actually the “friends” member in thisrow is

"friends": [{ "name": "Doris" }, {"rank": 1}]

Thus, $. fri ends isan array of two objects. The member accessor $. f ri ends. nanme will iterate over both
objects, asif $. f ri ends[*] . name had been written. The first object has a“name” member, the second one
doesnot. Inlax mode, $. f ri ends. nanme will quietly eliminate the SQL/JSON item in which thereis no
“name”, leaving one SQL/JSON item, and then JSON_VALUE can succeed with the result “Doris’ without
relying on either an ON EMPTY or ON ERROR clause.

The ON ERROR clause is useful in strict mode, where even structural errors are hard errors. For example,
consider the following example, with a small rewrite to specify strict mode:

SELECT T. K,
JSON_VALUE (T.J, 'strict $.who') AS Wo,
JSON VALUE (T.J, 'strict $.where' NULL ON EMPTY NULL ON ERROR) AS Nal i,
JSON_VALUE (T.J, 'strict $.friends[*].name’ NULL ON EMPTY
DEFAULT '*** error ***' ON ERROR)
AS Friend
FROM T

then the result changes to the following:

30 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 11 — Result 5

K WHO NALI FRIEND
101 Fred General Products *xE grror ***
102 Tom MultiCorp *EE @rror ***
103 Jack Connie

104 Joe *X* error ***
105 Mabel Black Label Buck

106 Louise lana

Look especially at row 104. In lax mode, the result in the FRIEND column was “Doris’, because there was
only one object in $. fri ends[*] witha“name”. In strict mode, this row has a path error, because
$. fri ends[*] hastwo objects, and one of them has no “name”.

So far the examples have al returned character strings. Thisis the default; to extract other types, use the
RETURNING clause. For example, the rank field isa number. A query to get the rank of thefirst friend is:

SELECT T.K,
JSON VALUE (T.J, 'lax $.who') AS Wo,
JSON VALUE (T.J, 'lax $.friends[0].rank' RETURNI NG | NTEGER NULL ON EMPTY)
AS Rank

FROM T

Note in the underlined syntax the use of the subscript [0] to access the first element of the array. This follows

the convention in [ECMAscript], section 5.1, that arrays begin at subscript O (zero). Thisis oneinstance where
it was better to follow the conventions of the JSON community rather than SQL . The example hasthefollowing
result:

Table 12 — Result 6

K WHO RANK
101 Fred 5

102 Tom 2

103 Jack

104 Joe

105 Mabel 6

106 Louise

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 31

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

533 JSON_QUERY

The JSON_VALUE function can extract a scalar from an SQL/JSON value, but it cannot extract an SQL/JSON
array or an SQL/JSON object from an SQL/JSON vaue. The JSON_QUERY function existsto extract SQL/JSON
values from SQL/JSON values.

The syntax for JSON_QUERY is:

<JSON query> ::=
JSON_QUERY <l eft paren>

<JSON APl common synt ax>
[<JSON out put clause>]
[<JSON query wrapper behavi or > WRAPPER]
[<JSON query quotes behavior> QUOTES [ON SCALAR STRING |]
[<JSON query enpty behavi or> ON EMPTY]
[<JSON query error behavior> ON ERROR]
<right paren>

<JSON query wrapper behavior> ::=
W THOUT [ARRAY]

| WTH [CONDI TI ONAL | UNCONDI TI ONAL] [ARRAY]
<JSON query quotes behavior> ::=
KEEP
| OMT
<JSON query enpty behavior> ::=
ERROR
| NULL
| EMPTY ARRAY

| EMPTY OBJECT

<JSON query error behavior> ::
ERRCOR
| NULL
| EMPTY ARRAY
| EMPTY OBJECT

The ON EMPTY and ON ERROR clauses are similar to JSON_VALUE, and handled essentially the same
way. The novel wrinkle isthat DEFAULT <value expression> options are not provided; instead, the user can
specify an empty array or empty object as the result in the empty or error cases.

If <JSON output clause> is not specified, then RETURNING FORMAT JSON isimplicit. The declared type
of <JSON query>is the type specified by the <data type> contained in the explicit or implicit <JSON output
clause>. If <JSON query empty behavior> is not specified, then NULL ON EMPTY isimplicit. If <JSON
query error behavior> isnot specified, then NULL ON ERROR isimplicit. If <JSON query wrapper behavior>
isnot specified, then WITHOUT ARRAY isimplicit. If <JSON query wrapper behavior> specifiesWITH, and
if neither CONDITIONAL nor UNCONDITIONAL is specified, then UNCONDITIONAL isimplicit. If the
value of the <JSON context item> simply contained in the <JSON API common syntax> isthe null value, then
the result of <JSON query> isthe null value.

Continuing with the example data from Table 4, “JSON_EXISTS sample data’, suppose the user wishes to
retrieve the who, wher e, and f ri ends members. who and wher e are scalars and can be extracted with
JSON_VALUE, but f ri ends isaJSON array, so JSON_QUERY is used:

SELECT T. K

32 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

JSON_VALUE (T.J, 'lax $.who') AS Who,
JSON_VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,
JSON_QUERY (T.J, 'lax $.friends') AS Friends
FROM T
WHERE JSON EXISTS (T.J, 'lax $.friends')
with the following result:
K WHO NALI FRIENDS
101 Fred General Products [{ "name": "Lili", "rank" : 5}]
{ "name": "Hank", "rank" : 7}]
102 Tom MultiCorp [{ "name": "Sharon", "rank" : 2}]
{ "name": "Monty", "rank" : 3}]
103 Jack [{ "name": "Connie" }]
104 Joe [{ "name": "Doris’, "rank" : 1}]
105 Mabel Black Label [{ "name": "Buck", "rank" : 6}]

Inrow 106, thereisno f ri ends member, so thisrow has been suppressed by the WHERE clause.

Now, consider the various special cases that can arise. One possihility is that the SQL/JSON path expression
returns an empty SQL/JSON sequence. Similar to JSON_VALUE, the user can use an ON EMPTY clause to
handle the empty case. Thus, to handle row 106, one might write:

SELECT T.K,
JSON_VALUE (T.J,
JSON_VALUE (T.J,
JSON_QUERY (T.J,
FROM T

with this result;

"lax $.who') AS Who,
"l ax $. where'
"lax $.friends'

NULL ON EMPTY) AS Nali,
NULL ON EMPTY) AS Friends

K WHO NALI FRIENDS
101 Fred General Products [{ "name": "Lili", "rank" : 5}]
{ "name": "Hank", "rank" : 7}]
102 Tom MultiCorp [{ "name": "Sharon", "rank" : 2}]
{ "name": "Monty", "rank" : 3}]
103 Jack [{ "name": "Connie" }]
104 Joe [{ "name": "Doris', "rank" : 1}]
105 Mabel Black Label [{ "name": "Buck", "rank" : 6}]
106 Louise lana

©ISO/IEC 2017 — All rights reserved

SQL/JSON functions 33

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

The example explicitly specified NULL ON EMPTY , which is also the default behavior. Other aternatives are
ERROR ON EMPTY, EMPTY ARRAY ON EMPTY, and EMPTY OBJECT ON EMPTY . The latter two
aternatives return the empty JSON forms “[]” and “{}", respectively.

A possible error condition isthat the SQL/JSON path expression may result in more than one SQL/JSON item,
or the result may be a scalar rather than an SQL/JSON array or object. For example, the path expression
$.friends. name (or $. fri ends[*] . nanme in strict mode) may result in two names in rows 101 and 102.
To handle this, the user may request that the results be wrapped in an array wrapper. Here is an example:

SELECT T. K,

JSON VALUE (T.J, 'lax $.who') AS Who,

JSON VALUE (T.J, 'lax $.where' NULL ON EMPTY) AS Nali,

JSON_QUERY (T.J, '"lax $.friends.name' WTH ARRAY WRAPPER) AS Fri endsNanes
FROM T

with the result;

K WHO NALI FRIENDSNAMES
101 Fred Genera Products ["Lili", "Hank" |

102 Tom MultiCorp ["Sharon", "Monty"]
103 Jack ["Connie"]

104 Joe ["Doris"]

105 M abel Black Label ["Buck" |

106 Louise lana [

Onceagain, row 106 isespecialy interesting. In thisrow, the result of the path expressionisan empty SQL/JSON
sequence. The array wrapper is applied to the empty SQL/JSON sequence, producing an empty array, so there
isno need to resort to the NULL ON EMPTY behavior in this case (and in fact the ON EMPTY clauseis pro-
hibited if WITH ARRAY WRAPPER is specified).

The aternative to WITH ARRAY WRAPPER isWITHOUT ARRAY WRAPPER, the default shown in the
initial examples. Actually, WITH ARRAY WRAPPER comes in two varieties, WITH UNCONDITIONAL
ARRAY WRAPPER and WITH CONDITIONAL ARRAY WRAPPER, thedefault being UNCONDITIONAL.
Thedifferenceisthat CONDITIONAL only suppliesthe array wrapper if the path expression resultsin anything
other than a singleton SQL/JSON array or object. UNCONDITIONAL aways supplies the array wrapper,
regardless of what the path expression results are.

What isthe difference between JSON_VALUE returning acharacter string and JSON_QUERY ? Thedifference
can be seen with the following example data:

J2

{a"[12]",b:[1,2], c: "hi"}

34 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Note in this data that members a and ¢ have values that are character strings, whereas member b has avalue
that isan array. Here arethe results of extracting each member, comparing JSON_VALUE with JSON_QUERY,
and comparing the different wrapper options:

Table 13 — Comparison of wrapper options

Operator $a $b $.c
JSON_VALUE [1, 2] error hi
JSON - [WITHOUT ARRAY WRAPPER error [1, 2] error
QUERY

WITH UNCONDITIONAL ARRAY WRAPPER | ["[1,2]"1| [[1.211 |["hi"]

WITH CONDITIONAL ARRAY WRAPPER ["[12]"1 | [12] ["hi"]

There are three error casesin this example. In the case of JSON_VALUE, they will be handled by using the
ON ERROR clause, as aready discussed. Asfor JISON_QUERY, the possibilitiesfor ON ERROR are the same
as ON EMPTY, namely NULL ON ERROR, EMPTY ARRAY ON ERROR, EMPTY OBJECT ON ERROR,
or ERROR ON ERROR.

5.34 JSON_TABLE

JSON_TABLE isafunction that takes JSON data as input and generates relational datafor valid input data. It
has three parameters:

1) The JSON value on which to operate.

2) An SQL/JSON path expression to specify zero or more rows.

3) A COLUMNS clause to specify the shape of the output table.

The complete syntax for JISON_TABLE is complex, because of the support for nested COLUMNS clauses.
Therefore the syntax will be presented in stages.

Consider the following sample datain atable, BOOK CLUB, that contains a JSON column, JCOL. Table 14,
“JSON_TABLE sample datain a book recommendation table” will be used in this section to illustrate some
examples of the JSON_TABLE function syntax:

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 35

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 14 — JSON_TABLE sample data in a book recommendation table

ID JCOL
111 { "Name" : "John Snmith",
"address" : { "streetAddress": "21 2nd Street",
"city": "New York",
"state" : "NY",
"post al Code" : 10021 },
"phoneNunmber" : [{ "type" : "home", "nunber" : "212 555-1234" },
{ "type" : "fax", "nunmber" : "646 555-4567" }]
"books" : [{ "title" : "The Talisnman",
"authorList" : ["Stephen King", "Peter Straub"],
"category" : ["SciFi", "Novel"]
1
{ "title" : "Far fromthe Mudding Crowd",
"authorList" : ["Thomas Hardy"],
"category" : ["Novel"]
}
]
}
222 { "Name" : "Peter Wl ker",
"address" : { "streetAddress": "111 Main Street",
"city": "San Jose",
"state" : "CA",
"post al Code"” : 95111 },
"phoneNunber™ : [{ "type" : "home", "nunber" : "408 555-9876" },
{ "type" : "office", "nunmber" : "650 555-2468" }]
"books" : [{ "title":"CGood QOrens",
"authorList” : ["Neil Gaiman", "Terry Pratchett”],
"category" : ["Fantasy", "Novel"] },
{ "title" : "Snoke and Mrrors",
"authorList"” : ["Neil Gaiman"],
"category” : ["Novel"] }] }
333 { "Nane" : "James Lee" }

5.34.1 COLUMNSclausethat isnot nested

The elementary case with no nested COLUMNS clause is supported by the following syntax:

<JSON table> :: =
JSON_TABLE <l eft paren>
<JSON APl comon synt ax>
<JSON tabl e col ums cl ause>
[<JSON table plan clause>]
[<JSON table error behavior> ON ERROR]
<right paren>

<JSON t abl e col unmms cl ause> :: =

36 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

COLUMNS <l eft paren>
<JSON tabl e columm definition>

[{ <comma> <JSON table columm definition>}...

<right paren>

<JSON tabl e colum definition> ::=
<JSON table ordinality colum definition>
| <JSON table regular columm definition>
| <JSON table formatted col um definition>
| <JSON table nested col ums>

<JSON table ordinality colum definition> ::=
<col um nanme> FOR ORDI NALI TY

<JSON tabl e regul ar columm definition> ::=
<col um name> <data type>

[PATH <JSON tabl e colum path specification>]
[<JSON table colum enpty behavi or> ON EMPTY]
[<JSON table columm error behavior> ON ERROR]

<JSON tabl e col utm enpty behavior> ::=
ERROR
| NULL
| DEFAULT <val ue expression>

<JSON t abl e columm error behavior> ::=
ERRCOR
| NuULL
| DEFAULT <val ue expression>

<JSON tabl e col utm path specification> ::=
<JSON pat h specification>

<JSON table formatted colum definition> ::=
<col um nanme> <data type>
FORVAT <JSON representation>

[PATH <JSON tabl e colum path specification>]
[<JSON table formatted col umm w apper behavi or > WRAPPER]
[<JSON table formatted col unm quot es behavi or> QUOTES

[ON SCALAR STRING]]

[<JSON table formatted col umm enpty behavi or> ON EMPTY]
[<JSON table formatted col umm error behavi or> ON ERROR]

<JSON table formatted col um wrapper behavior> ::

W THOUT [ARRAY]

| WTH [CONDITIONAL | UNCONDI TIONAL] [ARRAY]

<JSON table formatted col um quotes behavior> ::

KEEP
| oM T

<JSON table formatted col um enpty behavior> ::

ERROR
| NULL

| EMPTY ARRAY
| EMPTY OBJECT

<JSON tabl e formatted col um error behavior> ::

ERROR

©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

SQL/JSON functions 37

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

| NULL
| EMPTY ARRAY
| EMPTY OBJECT

<JSON tabl e error behavior> ::=
ERRCOR
| EMPTY

Like the other JSON querying operators, JSON_TABLE begins with <JSON API common syntax> to specify
the context item, path expression and PASSING clause. The path expression in this case is more accurately
called the row pattern path expression. This path expression isintended to produce an SQL/JSON sequence,
with one SQL/JSON item for each row of the output table.

The COLUMNS clause can define two kinds of columns: ordinality columns and regular columns.
An ordinality column provides a sequential numbering of rows. Row numbering is 1-based.

A regular column supports columns of scalar type. The column is produced using the semantics of
JSON_VALUE. The column has an optional path expression, called the column pattern, which can be defaulted
from the column name. The column pattern is used to search for the column within the current SQL/JSON item
produced by the row pattern. The column also has optional ON EMPTY and ON ERROR clauses, with the
same choices and semantics as JSON_VALUE.

The final option for a<JSON table column definition> is <JSON table nested columns>, which is considered
later.

Thisisfollowed by the PLAN clause as part of the <JSON table plan clause> option, which is used to express
the processing of multiple nested paths.

This following example generates relational data containing a column, ROWSEQ, illustrating the use of the
FOR ORDINALITY clause, acolumn, NAME, of type VARCHAR(30), and a column, ZIP, of type CHAR(5),
extracted according to the specified path expressions applied to the JSON data contained in the column JCOL
of the BOOKCLUB table.

SELECT jt.rowseq, jt.name, jt.zip
FROM bookcl ub,
JSON_TABLE (bookclub.jcol, "lax $"
COLUMNS (rowSeq FOR ORDI NALITY,
name VARCHAR(30) PATH 'lax $. Nane',
zip CHAR(5) PATH 'l ax $. address. post al Code'

)
) AS jt

The result of the query is shown in Table 15, “ Query result”.

Table 15 — Query result

ROWSEQ | NAME ZIP

1 John Smith 10021
2 Peter Walker 95111
3 James Lee

38 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

5.3.4.2 Nested COLUMNS clause

The syntax for anested COLUMNS clauseis:

<JSON t abl e nested col ums> ::=
NESTED [PATH] <JSON tabl e nested path specification>
[AS <JSON tabl e nested path nane>]
<JSON t abl e col ums cl ause>

<JSON tabl e nested path specification> ::=
<JSON pat h specification>

<JSON tabl e nested path nanme> ::=
<JSON t abl e path nane>

<JSON tabl e path name> ::=
<identifier>

The nested COLUMNS clause begins with the keyword NESTED, followed by a path and an optional path
name. The path provides arefined context for the nested columns. The primary use of the path name isif the
user wishes to specify an explicit plan.

After the prolog to specify the path and path name, thereisa COLUMNS clause, which hasthe same capabilities
aready considered.

The NESTED clause allows unnesting of (even deeply) nested JSON objects/arrays in one invocation rather
than chaining several JSON_TABLE expressionsin the SQL -statement.

The following example illustrates the use of an elementary nested COLUMNS clause in JSON_TABLE. Note
the missing phoneNumber datain the last row of the result. This default LEFT OUTER JOIN-like semantic in
this parent-child nested relationship is further explained in the next section.

SELECT bookclub.id, jt.name, jt.type, jt.number
FROM bookcl ub,
JSON_TABLE (bookclub.jcol, 'lax $
COLUWNS (nanme VARCHAR(30) PATH 'l ax $. Nane',
NESTED PATH ' | ax $. phoneNunber[*]’
COLUWNS (type VARCHAR(10) PATH 'lax $.type',
number CHAR(12) PATH 'lax $.nunber')
) ASjt;

The result of the query using the BOOK CLUB table sample datais shown in Table 16, “ Query result”.

Table 16 — Query result

ID NAME TYPE NUMBER

111 | John Smith Home 212 555-1234
111 | John Smith Fax 646 555-4567
222 Peter Walker Home 408 555-9876
222 | Peter Walker Office 650 555-2468

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 39

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

ID NAME TYPE NUMBER

333 James Lee

5.3.4.3 PLAN clause

As seen above, every path may optionally be followed by a path name using an AS clause. Path names are
identifiers and must be unique. Path names are used in the PLAN clause to express the desired output plan.

The syntax for the PLAN clauseis:

<JSON tabl e plan clause> ::=
<JSON t abl e specific plan>
| <JSON table default plan>

<JSON tabl e specific plan> ::=
PLAN <l eft paren> <JSON tabl e plan> <right paren>

<JSON table plan> ::=
<JSON t abl e path nane>
| <JSON table plan parent/child>
| <JSON table plan sibling>

<JSON tabl e plan parent/child> ::=
<JSON t abl e plan outer>
| <JSON table plan inner>

<JSON table plan outer> ::=
<JSON tabl e path nane> OUTER <JSON tabl e plan prinmary>

<JSON table plan inner> ::=
<JSON tabl e path nanme> I NNER <JSON tabl e plan primry>

<JSON table plan sibling> ::=
<JSON t abl e plan uni on>
| <JSON table plan cross>

<JSON tabl e plan union> ::=
<JSON tabl e plan prinmary> UNION <JSON tabl e plan prinary>
[{ UNTON <JSON table plan primary> }...]

<JSON table plan cross> ::=
<JSON tabl e plan prinmary> CROSS <JSON table plan prinmary>
[{ CROSS <JSON table plan primary> }...]

<JSON table plan primary> ::=
<JSON t abl e path nane>
| <left paren> <JSON table plan> <right paren>

<JSON tabl e default plan> ::=
PLAN DEFAULT <l eft paren> <JSON table default plan choices> <right paren>

<JSON tabl e default plan choices> ::=
<JSON tabl e default plan inner/outer>
[<comma> <JSON table default plan union/cross>]

40 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

| <JSON table default plan union/cross>

[<comma> <JSON table default plan inner/outer>]

<JSON tabl e default plan inner/outer> ::=

<JSON tabl e default plan union/cross> ::

I NNER

| OUTER

UNI ON

| CROSS

The INNER, OUTER, UNION, and CROSS concepts in the context of the PLAN clause have the following
characteristics.

INNER expresses INNER JOIN semantics.
OUTER expresses LEFT OUTER JOIN semantics and is the default with parent/child relationships.

Thefirst operand of an INNER or OUTER (parent/child relationship) is necessarily a <JSON table path
name> and must be an ancestor of al path names in the second operand.

If thereisan explicit PLAN clause, all path names must be explicit and appear in the PLAN clause exactly
once.

CROSS expresses CROSS JOIN semantics

UNION expresses semantics of aFULL OUTER JOIN with an unsatisfiable predicate such as1=0 and is
the default with sibling relationships

UNION is associative (no parentheses required for alist of paths to be unioned).
CROSS is associative

Parentheses are required to disambiguate complex expressions. | n particular, thereis no precedence between
UNION and CROSS.

Thefollowing query illustrates the default OUTER semantics between the parent-child relationship of the outer
context of 1D and NAME with the nested columns of the book title and first and second author columns. The
first and second author column values, if present, are explicitly placed in two separate columnsin this example.

SELECT bookclub.id, jt.nanme, jt.title, jt.authorl, jt.author2
FROM bookcl ub,

JSON_TABLE (bookclub.jcol, 'lax $
COLUWMNS (nane VARCHAR(30) PATH 'lax $. Nane',
NESTED PATH ' | ax $. books[*]"
COLUMNS (title VARCHAR(60) PATH 'lax $.title',
NESTED PATH 'l ax $.authorList[*]' AS A
COLUWMNS (aut hor1 VARCHAR(30) PATH 'lax $[0]"
aut hor 2 VARCHAR(30) PATH 'lax $[1]"

)

) ASjt;

The result of the query using the BOOK CLUB table sample datais shown in Table 17, “Query result”.

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 41

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 17 — Query result

ID NAME TITLE AUTHOR1 AUTHOR2
111 | John Smith The Talisman Stephen King Peter Straub
111 | John Smith Far From the Madding Crowd Thomas Hardy

222 | Peter Walker Good Omens Neil Gaiman Terry Pratchett
222 | Peter Walker Smoke and Mirrors Neil Gaiman

333 [JamesLee

Thefollowing query illustrates the nested COLUMNS clause using the default UNION semantic with the sibling
nested author and category columns.

SELECT bookcl ub. i d,
FROM bookcl ub,
JSON_TABLE (bookclub.jcol, 'lax $
COLUWNS (nanme VARCHAR(30) PATH 'lax $. Nane',
NESTED PATH 'l ax $. books[*]"
COLUMNS (title VARCHAR(60) PATH 'lax $.title',
NESTED PATH 'l ax $.authorList[*]' AS ATH
COLUWNS (aut hor VARCHAR(30) PATH 'lax $')
NESTED PATH 'l ax $.category[*]' AS CAT
COLUWNS (category VARCHAR(30)
PATH 'lax $')

jt.nane, jt.title, jt.authorl, jt.category

) ASjt;
The result of the query using the BOOKCLUB table sample datais shown in Table 18, “Query result”.

Table 18 — Query result

ID NAME TITLE AUTHOR CATEGORY
111 | John Smith The Talisman Stephen King

111 | John Smith The Talisman Peter Straub

111 | John Smith The Talisman SciFi

111 | John Smith The Talisman Novel

111 | John Smith Far From the Madding Crowd Thomas Hardy

111 | John Smith Far From the Madding Crowd Novel

222 | Peter Walker Good Omens Neil Gaiman

42 SQL support for JavaScript Object Notation (JSON)

©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

ID NAME TITLE AUTHOR CATEGORY
222 | Peter Walker Good Omens Terry Pratchett

222 Peter Walker Good Omens Fantasy

222 | Peter Walker Good Omens Novel

222 | Peter Walker Smoke and Mirrors Neil Gaiman

222 Peter Walker Smoke and Mirrors Fantasy

333 | JamesLee

The following query illustrates the nested columns using the PLAN clause specifying the CROSS semantics
between the sibling author and category columns. The rows with outer values that do not have any nested
columns are not present in the result given the INNER semantics.

SELECT bookclub.id, jt.name, jt.title, jt.authorl, jt.category
FROM bookcl ub,
JSON_TABLE (bookclub.jcol, '"lax $ AS PERSON
COLUWNS (nanme VARCHAR(30) PATH 'l ax $. Nane',
NESTED PATH 'l ax $. books[*]' AS BOOKS
COLUWNS (title VARCHAR(60) PATH 'lax $.title',
NESTED PATH 'l ax $.authorList[*]" AS ATH
COLUWNS (author VARCHAR(30) PATH 'lax $')
NESTED PATH 'l ax $.category[*]' AS CAT
COLUMNS (category VARCHAR(30)
PATH 'l ax $')
)
)
PLAN (PERSON | NNER (BOOKS I NNER (ATH CROSS CAT)))
) ASjt;

The query above is equivalent to using the PLAN DEFAULT clause instead of the explicit PLAN clause as
follows:

SELECT bookclub.id, jt.nanme, jt.title, jt.authorl, jt.category
FROM bookcl ub,
JSON_TABLE (bookclub.jcol, '"lax $ AS PERSON
COLUWNS (nanme VARCHAR(30) PATH 'lax $. Nane',
NESTED PATH 'l ax $. books[*]' AS BOOKS
COLUMNS (title VARCHAR(60) PATH 'lax $.title',
NESTED PATH 'l ax $.authorList[*]' AS ATH
COLUWNS (aut hor VARCHAR(30) PATH 'lax $')
NESTED PATH ' | ax $.category[*]' AS CAT
COLUWNS (category VARCHAR(30)
PATH 'lax $')
)
)
PLAN DEFAULT (INNER , CRGCSS)
) AS jt;

The result of this query using the BOOK CLUB table sample datais shown in Table 19, “ Query result”.

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 43

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

Table 19 — Query result

ID NAME TITLE AUTHOR CATEGORY
111 | John Smith The Talisman Stephen King SciFi
111 | John Smith The Talisman Stephen King Novel
111 | John Smith The Talisman Peter Straub SciFi
111 | John Smith The Talisman Peter Straub Novel
111 | John Smith Far From the Madding Crowd Thomas Hardy Novel
222 | Peter Walker | Good Omens Neil Gaiman Fantasy
222 | Peter Walker | Good Omens Neil Gaiman Novel
222 | Peter Walker | Good Omens Terry Pratchett Fantasy
222 Peter Walker | Good Omens Terry Pratchett Novel
222 | Peter Walker | Smoke and Mirrors Neil Gaiman Fantasy

5.3.5 Conformancefeaturesfor query operators

The following conformance features are defined for the SQL/JSON query operators.
— Feature T821, “Basic SQL/JSON query operators’, defined as the following:
JSON_VALUE with no PASSING clause, no ON EMPTY, no ON ERROR clause.

SQL/JSON path expression.

SQL/JSON path expression.

semantics.

has UNION join semantics.

44 SQL support for JavaScript Object Notation (JSON)

©ISO/IEC 2017 — All rights reserved

— Without explicit PASSING syntax, no values other than the context item can be passed to an

— Without explicit syntax, the default for ON EMPTY isNULL ON EMPTY.
— Without explicit syntax, the default for ON ERROR is NULL ON ERROR.

JSON_TABLE: with no PASSING clause, no sibling NESTED COLUMNS, no PLAN, no table-level
ON ERROR, and including same restrictions as JSON_VALUE for regular columns (i.e., no ON
EMPTY, no ON ERROR)

— Without explicit PASSING syntax, no values other than the context item can be passed to an

— Without explicit PLAN syntax, the default for joining parent/ child columns has OUTER join

— Without sibling NESTED COLUMNS support, thedefault for joining sibling NESTED COLUMNS

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions
— Without explicit syntax, the default for the table-level ON ERROR isEMPTY ON ERROR.
e JSON_EXISTSwith no PASSING clause and no ON ERROR clause.

— Without explicit PASSING syntax, no values other than the context item can be passed to an
SQL/JSON path expression.

— Without explicit syntax, the default for ON ERROR is FALSE ON ERROR.
e IS JSON with no <JSON key unigueness constraint>
— Without explicit UNIQUE KEY S syntax, the default is WITHOUT UNIQUE KEYS.

e Support for the SQL/JSON path language, except as listed as advanced features in Subclause 6.14,
“Conformance features for SQL/JSON path language”.

NOTE 9 — In all of the preceding, the excluded syntax options become enabled by other features enumerated bel ow.

— Feature T822, “SQL/JSON: 1S JSON WITH UNIQUE KEY S predicate’

¢ Addsthe WITH UNIQUE KEY Sand WITHOUT UNIQUE KEY S syntax to the IS JSON predicate.
— Feature T823, “SQL/JSON: PASSING clause”

* Allows passing of additional values to the SQL/JSON path expression.
— Feature T824, “JSON_TABLE: specific PLAN clause”

* Allowsexplicit specification of ajoin plan for parent/child and sibling NESTED COLUMNS.
— Feature T825, “SQL/JSON: ON EMPTY and ON ERROR clauses’

e Allowsto overwrite the default for ON EMPTY and ON ERROR options for JSON_VALUE,
JSON_TABLE, JSON_QUERY, and JSON_EXISTS.

— Feature T826, “General value expression in ON ERROR or ON EMPTY clauses’

« Without this feature, the user specified value expression in the ON ERROR clause or ON EMPTY
clausein JSON_VALUE or on aregular column definition in JISON_TABLE can only be aliteral.

— Feature T827, “JSON_TABLE: sibling NESTED COLUMNS clauses”

* With support for thisfeature, the user can specify either UNION or CROSS join semanticsfor joining
sibling NESTED COLUMNS.

— Feature T828, “JSON_QUERY”

¢ JSON_QUERY but no PASSING, ON EMPTY, ON ERROR, or wrapper clauses. These excluded
syntax options are enabled in conjunction with other features.

— Without explicit PASSING syntax, no values other than the context item can be passed to an
SQL/JSON path expression.

— Without explicit syntax, the default for ON EMPTY isNULL ON EMPTY .

— Without explicit syntax, the default for ON ERROR isNULL ON ERROR.

— Without explicit syntax, the default for the wrapper option isWITHOUT ARRAY.
— Feature T829, “JSON_QUERY: array wrapper options’

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 45

ISO/IEC TR 19075-6:2017(E)
5.3 Query functions

e With support for this feature, the user can specify whether none, al, or only scalar results should be
enclosed in an SQL/JSON array.

— Feature T838, “JSON_TABLE: PLAN DEFAULT clause’
e Thisfeature addsthe PLAN DEFAULT syntax to JSON_TABLE.

54 Constructor functionsand IS JSON predicate

To illustrate the use of the SQL/JSON constructor functions, consider the following two ordinary SQL tables
and one additional table that incorporates a single column of JSON data:

CREATE TABLE depts (
deptno | NTEGER,
dept nane CHARACTER VARYI N& 30))

CREATE TABLE j obs (
job_seq | NTEGER,
job_attrib CHARACTER(5),
job_attval CHARACTER VARYI NG(64))

CREATE TABLE enpl oyees (
enp_id | NTEGER,
nane CHARACTER VARYI NG 50),
sal ary DECI MAL(7, 2),
dept _id | NTEGER,
j son_enp CHARACTER VARYI NG 5000))

Consider the DEPT S table with the following content:

Table 20 — DEPTStable

DEPTNO DEPTNAME
314 Engineering
113 Architecture
12 Accounting

7 Sales

13 Executive

Consider also the JOBS table with the following content:

46 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand I SJSON predicate

Table 21 — JOBStable

JOB_SEQ JOB_ATTRIB JOB_ATTVAL

101 Leader 155566

101 Duration 00:30:00

101 Description Design the new table for the web site
234 Duration 01:00:00

234 Description L oad the tables with existing data

492 L eader 129596

17 Description Design the look-and-feel of the web site

Finaly, consider the EMPL QY EES table with the following content:

Table22 — EMPLOYEEStable

EMP_ID NAME SALARY DEPT_ID JSON_EMP
29334 Logan 10000 7
29335 James 7000 7
29336 Rachel 9000 7

54.1 JSON_OBJECT

SQL applications working with JSON datawill often need to construct new JSON objects, either for use within
the applications themselves, for storage in the SQL database, or to return to the application program itself. This
section of this Technical Report describes the built-in function, JSON_OBJECT, that constructs JSON objects
from explicit name/value pairs.

<JSON obj ect constructor> ::=
JSON_OBJECT <l eft paren>
[<IJSON nane and value> [{ <coma> <JSON nane and value> }...]
[<IJSON constructor null clause>]
[<JSON key uni queness constraint>]]
[<JSON out put clause>]
<right paren>

<JSON nane and val ue> :: =
[KEY] <JSON nanme> VALUE <JSON val ue expressi on>
| <JSON name> <col on> <JSON val ue expressi on>

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 47

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand IS JSON predicate

<JSON nane> ::=
<character val ue expressi on>

<JSON constructor null clause> ::=
NULL ON NULL
| ABSENT ON NULL

<JSON key uni queness constraint> ::=
W TH UNI QUE [KEYS]
| WTHOUT UNI QUE [KEYS]

The <JSON name>s may not be NULL. The <JSON value expression>s may be NULL, with the action taken
controlled by the <JSON constructor null clause>. NULL ON NULL produces an SQL/JSON null, while
ABSENT ON NULL omitsthat key:value pair from the resulting SQL/JSON object. The default if no <JSON
constructor null clause> isgivenisNULL ON NULL.

JSON_OBJECT istypically used in <select list>s, asillustrated in the following example.

SELECT
JSON_OBJECT(KEY 'deptno' VALUE d. deptno,
KEY ' dept nane' VALUE d. deptnane) AS D314
FROM depts AS d
VWHERE d. deptno = 314

Thisquery returns onerow for department 314 recorded in the DEPT Stable; that row containsasingle column,
which contains a serialization of a JSON abject having the department number and name. The result column
type is VARCHAR with an implementation-defined length. Visually, the returned JSON object would look
something like this:

NOTE 10 — This and other examplesin this Technical Report show insignificant whitespace in the result for readability only.

For exampl e, the spaces following the left curly brace, before and after the colons, etc., in the output are insignificant whitespace.
While a conforming SQL-implementation may add insignificant whitespace, no conforming SQL-implementation is required to

do so.
Table 23 — The JSON object returned
D314
{ "deptno" : 314, "deptnane" : "Engineering" }

If Feature T814, “Colon in JSON_OBJECT or JSON_OBJECTAGG” isimplemented, the query could also be
expressed using colon as a key-value separator:

SELECT JSON_OBJECT('deptno' : d.deptno, 'deptname' : d.deptnane) AS D314

FROM depts AS d
VWHERE d. deptno = 314

54.2 JSON_OBJECTAGG

Often, it isinappropriate or even impossible to construct a JSON object by explicitly specifying the names of
the contained name/value pairs (e.g., because the names are not known apriori). Instead, an application devel oper
may wish to construct a JSON object as an aggregation of information in an SQL table. Presuming that the

48 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand I SJSON predicate

SQL table actually contains a column with JSON names and another column with corresponding values, the
built-in function JSON_OBJECTAGG (“object aggregate”) performs this function.

<JSON obj ect aggregate constructor> ::=
JSON_OBJECTAGG <l eft paren>
<JSON nane and val ue>
[<JSON constructor null clause>]
[<JSON key uni queness constraint>]
[<JSON out put cl ause>]
<right paren>

The default if no <JSON constructor null clause> isgivenis NULL ON NULL.

Thefollowing example will create a JSON object containing a sequence of name/value pairs in which the name
is a department name and the value is the department number:

SELECT JSON_OBJECTAGG (deptnane VALUE deptno)
FROM dept s

The result of this query is atable containing a single row of one column, which contains a serialization of a
JSON abject. That object would look something like this:

{ "Engineering" : 314, "Architecture” : 113, "Accounting" :@ 12,
"Sales" : 7, "Executive" : 13}

The reader will observe that thisis actually akind of “pivot” of the DEPTS table.
The JSON_OBJECTAGG function can also be used in grouped queriesto good effect.
The SQL query:

SELECT j.job_seq,
JSON_OBJECTAGG (j.job_attrib, j.job_attval RETURNI NG VARCHAR(200))
AS attributes
FROM j obs AS j
GROUP BY j.job_seq

will produce atable containing four rows, each containing two columns. Thefirst column of the table contains
the job sequence numbers, while the second column contains a serialization of a JISON object that is a pivot of
the information in all of the rows associated with the corresponding job sequence number. The result type of
the JSON object is VARCHAR with amaximum length of 200, as specified in the query. An exception condition
would be raised if thislength is exceeded. The result will look something like this:

Table 24 — Returned JSON aobject with the corresponding job sequence number

JOB_SEQ | ATTRIBUTES

101 { "Leader" : "155566", "Duration" : "00:30:00", "Description" : "Design the new tables for
the web site” }

234 { "Duration" : "01:00:00", "Description" : "Load the tables with existing data" }

492 { "Leader" : "129596" }

17 { "Description" : "Design the look-and-feel of the web site" }

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 49

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand IS JSON predicate

54.3 JSON_ARRAY

Just as an application developer might wish to construct a JSON object from an explicit list of data, she might
wish to construct a JSON array from asimilar list of data. The built-in function JISON_ARRAY provides that

capability.

<JSON array constructor> ::=
<JSON array constructor by enunerati on>
| <JSON array constructor by query>

<JSON array constructor by enuneration> ::=
JSON_ARRAY <l eft paren>
[<JSON val ue expression> [{ <comma> <JSON val ue expression> }...]
[<JSON constructor null clause> 1]]
[<JSON out put clause>]
<right paren>

<JSON array constructor by query> ::=
JSON_ARRAY <l eft paren>
<query expressi on>
[<IJSON input clause>]
[<JSON constructor null clause>]
[<JSON out put cl ause>]
<right paren>

JSON_ARRAY has two variants: One variant produces its result from an explicit list of SQL values (literas
or computed val ues, including subqueries); the second variant producesitsresultsfrom an SQL query expression
invoked within the function. For the constructor-by-query form, the query expression must return exactly one
column, and the array values are formed from the column values generated by the query expression.

For JSON_ARRAY, if not explicitly specified, the default ON NULL clauseis ABSENT ON NULL (which
is different from the default for JISON_OBJECT).

The following query illustrates the use of JISON_ARRAY::

SELECT
JSON_ARRAY ('deptno', d.deptno, 'deptnane', d.deptnane)
FROM depts AS d
VWHERE d. deptno = 314

Thisquery returns one row for department 314 recorded in the DEPT Stable; that row containsasingle column,
which contains a serialization of a JSON array containing two character string literals, the department number,
and the department name. Visually, the returned JSON array would look something like this:

["deptno", 314, "deptnane", "Engineering"]

544 JSON_ARRAYAGG

Just as an SQL application might need to construct a JSON object as an aggregation of SQL data, so might it
need to construct a JSON array as an aggregate.

<JSON array aggregate constructor> ::=

JSON_ARRAYAGG <l eft paren>
<JSON val ue expressi on>

50 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand I SJSON predicate

[<JSON array aggregate order by clause>]
[<JSON constructor null clause>]
[<JSON out put clause>]

<right paren>

<JSON array aggregate order by clause> ::=
ORDER BY <sort specification |ist>

The default, if no ON NULL clauseisgiven, iSABSENT ON NULL.

For example:

SELECT JSON_ARRAYAGG (j.job_attval RETURNI NG CLOB(8K)) AS attributes
FROM j obs AS j

The result of this query is atable of one row and one column, which would ook something like this:

Table 25 — Query result

ATTRIBUTES

["155566", "00:30:00", "Design the new tables for the web site",
"01:00: 00", "Load the tables with existing data", "129596", "Design the
| ook-and-feel of the web site"]

JSON_ARRAYAGG supports an optional ORDER BY clause that allows the results of the query to be ordered
before the selected data is extracted to be placed in the resulting JSON array. As an example, the SQL that
might be used to create a JSON object for each department listing all employees and their salary in order of
increasing salary looks like this:

SELECT JSON_OBJECT (

"department’ : d.nane,

"enpl oyees' : JSON_ARRAYAGG (JSON_OBJECT ('enpl oyee' : e.nane,

"salary' : e.salary)
ORDER BY e.salary ASC)) AS departnents

FROM depts d, enpl oyees e
VWHERE d. deptno = e.dept_id
GROUP BY d. dept no;

Table 26, “Query Results’, illustrates the results of this query:

Table 26 — Query Results

DEPARTMENTS
{ "departnment" : "Sal es",
"enpl oyees" : [{ "enployee" : "Janes", "salary" : 7000},
{ "enpl oyee" : "Rachel", "salary" : 9000},
{ "enpl oyee" : "Logan", "salary" : 10000}]
}

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 51

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand IS JSON predicate

In the following example, when there no employees in a department, a JSON null is output as the employee
name and the salary in the result:

SELECT JSON_OBJECT (

"departnment’' : d.nane,

"enpl oyees' : JSON_ARRAYAGG (JSON_OBJECT ('enpl oyee' : e.nane,

"salary' : e.salary)
ORDER BY e.salary ASC)) AS departnents

FROM depts d LEFT QUTER JO N enpl oyees e

ON (d.deptno = e.dept_id)
GROUP BY d. dept no;

The result would be something like those shown in Table 27, “Query Results’:

Table 27 — Query Results

DEPARTMENTS
{ "departnment" : "Sal es",
"enpl oyees" : [{ "enployee" : "Janes", "salary" : 7000},
{ "enpl oyee" : "Rachel", "salary" : 9000},
{ "enpl oyee" : "Logan", "salary" : 10000}]
}
{ "departnment" : "Engi neering",
"enpl oyees" : [{ "enployee" : null, "salary" : null }]
}
{ "departnment" : "Architecture",
"enpl oyees" : [{ "enployee"” : null, "salary" : null }]
}
{ "departnment" : "Accounting",
"enpl oyees" : [{ "enployee" : null, "salary" : null }]
}
{ "departnent" : "Executive",
"enpl oyees" : [{ "enployee" : null, "salary" : null }]
}

54.5 1SJSON predicate

Applicationswill frequently want to ensure that the datathey expect to consume as JSON datais, indeed, JSON
data. The 1S JSON predicate determines whether the value of a specified string does or does not conform to
the structural rules for JSON. The syntax of the IS JSON predicateis:

<JSON predicate> ::=
<string val ue expression> [<JSON input clause>] IS [NOT] JSON
[<JSON predicate type constraint>]
[<JSON key uni queness constraint>]

52 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand I SJSON predicate

<JSON predicate type constraint> ::=
VALUE
| ARRAY
| OBJECT
| SCALAR

If <JSON input clause> isnot specified, then FORMAT JSON isimplicit. If <JSON key uniqueness constraint>
is not specified, then WITHOUT UNIQUE KEY Sisimplicit.

5.4.6 Handling of JSON nullsand SQL nulls

SQL (correctly) distinguishes between data such as zero-length strings and the specia pseudo-value known as
“the null value”. The semantics of those two things are quite different and those differences affect agreat many
SQL operations. The differences are an important part of the semantics of the SQL language.

The JSON null provides yet another related difference. In JSON, null isan actual value, represented by a JSON
literal (“null”). It must be able to distinguish JSON nulls from SQL null values and that distinctionisan
important part of the semantics of JSON handling in the SQL context.

To illustrate the situation, consider the JSON object stored in a column of an SQL table:
{"a" : null, "b" : "nult", "c" : """}

JSON_VALUE, evaluated against that JSON object, returning the result as an SQL scalar value, would return,
for each respective name/value pair, the following: the SQL null value, the SQL character string comprising
the four characters “nul | 7, and the SQL zero-length character string; if JSON_VALUE were used to retrieve
the value associated with the name “d”, it would return the SQL null value. Note that, when retrieving the value
of the first name/value pair, the SQL/JSON null value is automatically transformed into an SQL null value.

The JSON constructor functions have to deal with situations in which the SQL datathat is being queried are
SQL null values. SQL/JSON supplies optional syntax to allow the application author to select whether SQL

null values are included in the JISON object or JSON array being constructed, or whether object members or
array elements whose (bound) values are SQL null values are omitted from the JSON object or JSON array

being constructed.

5.4.7 Conformance featuresfor constructor functions

There are five conformance features defined for the JSON constructor functions:
— Feature T811, “Basic SQL/JSON constructor functions’, defined as the following:
* JSON_OBJECT with no <JSON key uniqueness constraint>.
— Without explicit UNIQUE KEY S syntax, the default isWITHOUT UNIQUE KEYS.
« JSON_ARRAY.
* JSON_ARRAYAGG without the ORDER BY option.

— Without explicit ORDER BY syntax, the ordering of the elementsin the SQL/JSON array is
implementation-dependent.

©ISO/IEC 2017 — All rights reserved SQL/JSON functions 53

ISO/IEC TR 19075-6:2017(E)
5.4 Constructor functionsand IS JSON predicate

NOTE 11 — In all of the preceding, the excluded syntax options become enabled by other features enumerated bel ow.
— Feature T812, “ SQL/JSON: JSON_OBJECTAGG” with no <JSON key uniqueness constraint>.
— Feature T813, “SQL/JSON: JSON_ARRAYAGG with ORDER BY”
e Thisfeature allows the user to specify an order of the elements of the constructed SQL/JSON array.
— Feature T814, “Colon in JSON_OBJECT or JSON_OBJECTAGG”

e Subclause5.4.1, “JSON_OBJECT", contains examplesthat show the syntax of JISON_OBJECT with
and without support for Feature T814, “Colon in JSON_OBJECT or JSON_OBJECTAGG".

— Feature T830, “Enforcing unique keys in SQL/JSON constructor functions”

* Addsthe WITH UNIQUE KEY S and WITHOUT UNIQUE KEY S syntax to JSON_OBJECT and
JSON_OBJECTAGG.

54 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.1 Overview of SQL/JSON path language

6 SQL/JSON path language

6.1 Overview of SQL/JSON path language

The SQL/JSON path language is a query language used by certain SQL operators (JSON_VALUE,
JSON_QUERY, JSON_TABLE and JSON_EXISTS, collectively known as the SQL/JSON query operators)
to query JSON text. The SQL/JSON path language is not, strictly speaking, SQL, though it is embedded in
these operators within SQL. Lexically and syntactically, the SQL/JSON path language adopts many features
of [ECMAscript], though it isneither a subset nor asuperset of [ECM Ascript]. The semantics of the SQL/JSON
path language are primarily SQL semantics.

The SQL/JSON path language is used by the SQL/JSON query operatorsin the architecture shown in this dia-
gram:

Context ltem > / A > Context Item > / i
Path Specification - SQL/JSON > Path Specification >
PASSING clause - Query Operator > PASSING clause >
ON ERROR clause »> (JSON_VALUE, Path Engine
Other |I"|pUtS 2> JSON QUERY,
JSON_TABLE,
JSON_EXISTS
Completion Condition <« .) < Completion Condition &
Output €« \ y < SQL/JSON Sequence € \ L

Figure2 — The SQL/JSON path language ar chitecture

The SQL/JSON query operators share the samefirst threelinesin the diagram, which are expressed syntactically
in the <JSON API common syntax> that is used by all SQL/JSON query operators. This framework provides
the following inputs to an SQL/JSON query operator:

1) A context item (the JSON text to be queried).

2) A path specification (the query to perform on the context item; this query is expressed in the SQL/JSON
path |language specified in [| SO9075-2], Subclause 9.38, “SQL/JSON path language: lexical e ements”
and Subclause 9.39, “SQL/JSON path language: syntax and semantics’.

3) A PASSING clause (SQL valuesto be assigned to variablesin the path specification, for example, asvalues
used in predicates within the path specification).

The SQL/JSON operators effectively pass these inputsto a*“ path engine” that evaluates the path specification,
using the context item and the PASSING clause to specify the values of variablesin the path specification. The
effective behavior of the path engineis specified in the General Rules of Subclause 9.39, “ SQL/JSON path
language: syntax and semantics’, in [1SO9075-2].

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 55

ISO/IEC TR 19075-6:2017(E)
6.1 Overview of SQL/JSON path language

The result of evaluating a path specification on a context item and PASSING clause is a completion condition,
and, if the completion condition is successful completion, an SQL/JSON sequence. The SQL/JSON query
operators, in their General Rules, use the completion code and SQL/JSON sequence to compl ete the specific
computation specified via the particular SQL/JSON query operator.

Errors can occur at the following juncturesin this architecture:

1)

2)

3)

An error can occur when converting an input. For example, if the context item does not parse as JSSON
text, then that is an input conversion error.

An error can occur while processing an SQL/JSON path expression. This category of errorsis further
subdivided as follows:

a) A structural error occurs when an SQL/JSON path expression attemptsto access anon-existent element
of an SQL/JSON array or a non-existent member of a JSON abject.

b) A non-structural error is any other error during evaluation of an SQL/JSON path expression; for
example, divide by zero.

An error can occur when converting an output.

The SQL operators JISON_VALUE, JSON_QUERY, JSON_TABLE, and JSON_EXISTS providethefollowing
mechanisms to handle these errors:

1)

2)

3)

4)

The SQL/JSON path language traps any errors that occur during the evaluation of a <JSON filter expres-
sion>. Depending on the precise <JSON path predicate> contained in the <JSON filter expression>, the
result may be Unknown, True, or False, depending on the outcome of non-error tests evaluated in the
<JSON path predicate>.

The SQL/JSON path language has two modes, strict and lax, which govern structural errors, asfollows:
a) Inlax mode:

i) If an operation requires an SQL/JSON array but the operand is not an SQL/JSON array, then
the operand isfirst wrapped in an SQL/JSON array prior to performing the operation.

i) If an operation requires something other than an SQL/JSON array, but the operand is an
SQL/JSON array, then the operand is unwrapped by converting its elementsinto an SL/JSON
sequence prior to performing the operation.

iii) After applying the preceding resolutions to structural errors, if thereis still astructural error,
the result is an empty SQL/JSON sequence.

b) Instrict mode, if the structural error occurs within a<JSON filter expression>, then the error handling
of <JSON filter expression> applies. Otherwise, a structural error is an unhandled error.

Non-structural errors outside of a<JSON path predicate> are always unhandled errors, resulting in an
exception condition returned from the path engine to the SQL/JSON query operator.

The SQL/JSON query operators provide an ON ERROR clause to specify the behavior in case of an input
conversion error, an unhandled structural error, an unhandled non-structural error, or an output conversion
error.

56 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.2 Objectivesfor the SQL/JSON path language

6.2 Objectivesfor the SQL/JSON path language

The aobjectives for the SQL/JSON path language are:

1)

2)

3)

4)

Minimalism: aminimal language that meets a short list of use cases, leaving freedom to adapt the language
to additional use casesin the future.

The following decisions were made based on this objective:
a) Ruleout the following: union, intersection, difference, join, FLWOR expressions.

b) Only aminimal set of predicates, such as the standard comparison operators, on atomic values only
(no “deep equa”).

¢) JSON path expressions must be compile-time constants; this excludes dynamic JSON path expressions
embedded in static SQL queries.

d) Parametersto JSON queries must be passed by value, not by reference.
€e) No“reverseaxes’.

SQL semantics: the language should be readily integratable into an SQL engine; therefore, the semantics
of predicates, operators, etc. should generally follow SQL. “Push-down” optimizations are facilitated by
making the semanticsin SQL and in the path language the same.

Here are some consegquences of this objective:
a) Functionsin the path expression language should have SQL semantics.

b) Predicates should have SQL semantics; this means three-valued logic, SQL comparison rules (such
astrailing blank handling) and any other semanticsissues should a so be derived from SQL . However,
JSON null isnot the same as SQL null, sothat nul | == nul | isTrueandthereisno need for ani s
nul | predicate.

JavaScript-like: the language should evolve from JavaScript, because that is the language that users will
find most appropriate for working on JSON. JavaScript has been standardized as [ECMAscript]. This
means that lexical and syntactic issues generally follow JavaScript, while semantic issues follow SQL in
case of conflict between the two.

Here are some consequences of this objective:

a) Dot (.) for member access and [] for array access. O-relative arrays (JavaScript-like rather than SQL -
like) were adopted.

b) Lexica and syntactic design generally follow JavaScript.

| mplementation accommodation: Some platformsfor JISON have adopted some conventions that are |axer
than JavaScript, particul arly that in some contexts asingleton array can behave like ascalar, and conversely
ascalar can behave like a singleton array. As a consequence of this objective, a“lax” modeis provided
that avoids errors on certain path expressions that would be regarded as errors in JavaScript.

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 57

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

6.3 Modes

The path engine has two modes, strict and lax. The motivation for these modes is that strict mode will be used
to examine data from a strict schema perspective, for example, to look for data that diverges from an expected
schema. Therefore, strict mode raises an error if the data does not strictly adhere to the requirements of a path
expression. Lax mode is intended to be more forgiving, so lax mode converts errors to empty SQL/JSON
sequences.

In addition, lax mode adopts the convention that an array of size 1 is interchangeable with the singleton. This
convention is supported with the following conventions:

1) If an operation requires an array but the operand is not an array, then the operand isimplicitly “wrapped”
inan array.

2) If an operation requiresanon-array but the operand isan array, then the operand isimplicitly “unwrapped”
into an SQL/JSON sequence.

These modes govern three aspects of path evaluation, as shown in the following table:

Table 28 — Three aspects of path evaluation governed by modes

lax strict

Automatic
unnesting
of arrays

Certain path steps, such as the member
accessor $.key, automatically iterate over
SQL/JSON sequences. To make these
iterative path steps friendlier for arrays,
arrays are automatically unnested prior
to performing theiterative path step. This
means that the user does not need to use
an explicit [*] to unnest an array prior to
performing an iterative path step. This
facilitates the use case where afield may
be either an array or a scalar.

Arrays are not automatically unnested
(the user can till write [*] to unnest an
array explicitly).

Automatic
wrapping
within an
array

Subscript path steps, such as $[0] or $[*],
may be applied to anon-array. To do this,
thenon-array isimplicitly wrapped in an
array prior to applying the subscript
operation. This also facilitates the use
case where afield may be either an array
or ascalar.

There is no automatic wrapping prior to
subscript path steps.

58 SQL support for JavaScript Object Notation (JSON)

©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

strict

lax
Error han- | Many errorsrelated to whether dataisor
dling isnot an array or scalar are handled by

the two preceding features. The remain-
ing errors are classified as either struc-
tural or non-structural. An example of a
structural error is $.nameif $ has no
member whose key is name. Structural
errorsare converted to empty SQL/JSON
sequences. An example of a non-struc-
tural error is divide by zero; such errors
are not elided.

Errors are strictly defined in all cases

Note that the path language mode is orthogonal to the ON ERROR clause. There are numerous use cases for
having any combination of ON ERROR clauses combined with either strict or lax modes.

6.3.1 Exampleof strict vslax

Consider the following data, stored in atable called Data:

Table 29 — Example of strict vslax

pk col
1 { nanme: "Fred",
phonetype: "work",
"phone#": "650-506-2051"
}
2 { nane: "Molly",
phones: [{ phonetype: "work",
"phone#": "650-506-7000" },
{ phonetype: "cell",
"phone#": "650-555-5555" }
]
}
3 { nane: "Afu",
phones: [{ phonetype: "cell",
"phone#": "88-888-8888" }]
}
4 { nane: "Justin"
}
5 { nane: "U La La",
phones: []
}

©ISO/IEC 2017 — All rights reserved

SQL/JSON path language 59

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

This data has been created with a sloppy schema. If a person has just one phone (row 1), then the phonetype
and phonett are members of the JSON object. If a person has more than one phone (row 2), then thereisa
member called phones whose value is an array holding the phone information. But sometimes a person with
just one phone gtill has a phones array (row 3). Also, some people have no phones, which can be indicated by
an absence of the phonetype and phone# members (row 4), or by the presence of a phones array whose value
isempty (row 5).

Now the question is how to use JSON_TABLE to display all the name and phone information. Suppose one
wants to get a table with columns called name, phonetype, and phone#. If a person has multiple phones, the
display should be denormalized, with the person’s name repeated in multiple rows, in order to display each
phone number in a separate row. If a person has no phones, the person name should appear in asingle row,
with nulls for the phone information.

Processing this data would be very difficult using strict mode. Thisiswhy lax mode is provided: to make it
easier to deal with doppy schemas such asthis.

The solution to this use case is the following query:

SELECT D. pk, JT. nane,
COALESCE (JT. "phone#", JT."phones. phone#") AS "phone#",
CQALESCE (JT. "phonetype", JT."phones. phonetype#") AS "phonetype"
FROM Dat a AS D,
JSON_TABLE (D.col, 'lax $
COLUMNS (
nane VARCHAR(30) PATH 'lax $.nane',
"phone#" VARCHAR(30) PATH 'lax $. phone#',
"phonet ype" VARCHAR(30) PATH 'l ax $. phonetype',
NESTED COLUMNS PATH 'l ax $. phones[*]' (
"phones. phone#"] VARCHAR(30) PATH 'l ax $. phone# ,
"phones. phonet ype"] VARCHAR(30) PATH 'l ax $. phonetype'

)
) AS JT

Above, two output columns of the JSON_TABL E have been underlined, and two others are boxed. To understand
this query, note the following:

1) Row 1 has phone# and phonetype as “ bare” members of the outermost object. These two memberswill be
picked up by the underlined columns called “ phone#” and “ phonetype”’. The NESTED COLUMNS clause
has a path that will find no rows. The default plan for NESTED COLUMNS is an outer join. Thus, there
will be effectively adummy row created with null values for the boxed columns. In the SELECT list, each
COALESCE operator is used to choose the non-null valuesfrom an underlined column and the corresponding
boxed column.

2) Rows2 and 3 do not have bare phone# and phonetype; instead they have an array called phones. Inthese
rows, the underlined columns have paths that will find empty sequences, defaulting to the null value. The
NESTED COLUMNS clause is used to iterate over the phones array, producing values for the boxed
columns, and again, the COALESCE operatorsin the SELECT list retain the non-null values.

3) Row 4 has no phone data at all. In this case, the underlined columns have paths that will find nothing
(defaulting to null values). The NESTED COLUMNS clause also has a path that finds an empty sequence.
Using the default outer join logic, this means that the boxed columns will also be null. The COALESCE
operators must coal esce two null values, resulting in null.

60 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.3 Modes

4) Row 5 hasaphonesarray, but it isempty. This caseis processed similarly to rows 2 and 3: the underlined
columns are null because their paths are empty. The NESTED COLUMNS clauseis used, but the array is
empty, so thisis an outer join with an empty table. Thus, the boxed columns also come up null, and the
COALESCE operators combine these nulls to get null. The end result is the same as row 4.

6.4 Lexical issues

Lexically, the SQL/JSON path language generally follows the conventions of [ECMAscript] (with afew
maodifications detailed below). It follows that SQL/JSON path language is case-sensitive in both identifiers and
key words. Unlike SQL, there are no “ quoted” identifiers, and thereisno automatic conversion of any identifiers
to uppercase.

It was decided not to adopt the following lexical features of JavaScript into the SQL/JSON path language:
— Comments.
— Hex numeric literals.

— JavaScript regular expressions (instead the SQL predicate LIKE_REGEX is adopted, which uses XQuery
regular expressions, written as JavaScript character string literals).

— Automatic semicolon insertion (thisfeature pertainsto JavaScript statements; sincewe only have expressions
and not statements, this is not relevant to the SQL/JSON path language).

The following lexical adjustments were made:
— ldentifiers must not start with $.
— @ isanadditional punctuator.

It turns out that no reserved words in SQL/JSON path language are required. The issue is how to determinein
alexical scanner whether an aphabetic string is akey word or an identifier. In the defined language, identifiers
occur in only two contexts in the language:

— Beginning with adollar sign, as a variable name.
— After aperiod, as a member name (never followed by a <left paren>).

Keywords never begin with adollar sign, and, if they can come after a period, are always followed by a <left
paren>. Thus, itispossible to determineif atokenisanidentifier or akey word purely from the lexical context.

The rules for nested quoted strings were particularly examined. An SQL/JSON path expression is required to
be an SQL character string literal, so it will be enclosed in single quotes. Within thisliteral, the user may wish
to write a character string literal; such a character string literal will be written using the JavaScript convention
to enclose in double quotes. Within this character string literal, the user may wish to have a single quote. At
this point the user must escape the single quote, which can be done using either the SQL convention of writing
it twice, or using a JavaScript escape.

Here is an example. The user wishesto find names that start with “O™ such as“O'Connor”. The user writes
this query:

"lax $.nane ? (@starts with "O"'")’

The quotesin the preceding example are interpreted as follows:

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 61

ISO/IEC TR 19075-6:2017(E)

6.4 Lexical issues

— The outermost single quotes ' enclose an SQL character string literal.

— Thedouble quotes" enclose a character string in the SQL/JSON path language.

— Theinner single quotes ' are doubled in accordance with the SQL convention, because they are contained
in an SQL character string literal. The pair actually denotes one instance of a single quote.

The example could aso be written using JavaScript escapes to represent the single quote, although thisis not
agood option. The example would be written:

"l'ax $.name ? (@starts with "O"'"'")"

Herethe user is using the JavaScript escape for single quote, which is\'. However, the single quote in this must
still survive the quoting rules of the outermost container, the SQL character string literal, so it is necessary to
write\". Thus, there is no benefit in using JavaScript escape here.

It would also be feasible to use the “\u” escape for single quote, which is“\u0027”, like this:

"lax $.nane ? (@starts with "Ou0027")"'

Now let's ook at double quotes. Suppose the user wants to search $.text for an initial substring:

"hel |l o

The user might write:

"lax $.text ? (@starts with "\"hello")'

In this example there is no problem with placing a double quote within the outermost single quotes which
delimit an SQL character string literal. However, there is a problem placing a double quote within a JavaScript
double-quoted literal; therefore the need to use the JavaScript escape\ ". Alternatively, using \ u escapes:

"lax $.text ? (@starts with "\u0022hello")’

6.5 Syntax summary

The following table summarizes the features of the SQL/JSON path language:

Table 30 — Features of the SQL/JSON path language

Component Example
literals “hello”, 1.5e3, true, false, null
variables $ — context item

$f r odo — variable whose value is set in PASSING clause
@— value of the current item in afilter

parentheses ($a+ Sb)*$c

62 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.5 Syntax summary

Component Example

accessors member accessor: $. phone

wildcard member accessor: $. *
element accessor: $[1, 2, 4 to 7]
wildcard element accessor: $[*]

filter $?(@salary > 100000)
boolean &&

[

!
comparison == |= <> < <= > >=

special predicates exists ($)

($a == $b) is unknown
$ like_regex "col ou?r"
$ starts with $a

+

arithmetic - x| %

-type()
.size()

. doubl e()
.ceiling()
.floor()
.abs()
.datetine()
. keyval ue()

item functions

R e e e e

6.6 Formal semantics

6.6.1 Notational conventions

Throughout the formal semantics, there are SQL/JSON sequences of SQL/JSON items. SQL/JSON sequences
are generally denoted S, possibly with additional letters and possible with a subscript, and SQL/JSON items
are generally denoted I, possibly with additional letters and possibly with a subscript. SQL/JSON sequences
are shown enclosedin parentheses, likethis:S = (14, 15, ..., I).Individua subscriptson SQL/JSON

items are denoted with lowercase letters, such asi, j, or k.

Objectsarerepresented asan unordered set of members{ M, ..., My, },whereeach memberisakey/bound
vauepair:M = K : Vj.Oranobjectcanberepresentedas{ Ki : Vi, ..., Kn: Vn}.
Arrays are represented as an ordered list of elements: [E;, ..., Es].

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 63

ISO/IEC TR 19075-6:2017(E)
6.7 Primitive operations

6.7 Primitive operations

The formal semantics uses the following primitive operations:

6.7.1 Concatenation

Concatenation of SQL/JSON sequencesS;, Sy, ..., Spisdenoted(S;, Sy, ..., Sy). Thereisno
nesting of SQL/JSON sequences and empty SQL/JSON sequences are removed.

6.7.2 unwrap()

The unwrap() operator expands al the arraysin an SQL/JSON sequence.
LetS = (11, I, ..., In);unwap(S) isdefined by theserules:
1) Foreach| between1and n, let &2 be the SQL/JSON sequence
Case:
a) Ifljisanaray lj=[Ey, ..., En], thenlet 2= (Ey, ..., Em).
b) Otherwise, let 82 = (1;).
2) Theresult of unwrap(S) isthe concatenation of the SQL/JSON sequences (21, 25, ..., 2).

The unwrap() operator isonly used in lax mode. Its purposeisto support data that is sometimes a single object
and sometimes an array of objects. If it isan array of objects, the user wants to ignore the array boundary and
just drill down to the members of the objects. This user view is accommodated by converting the array into an
SQL/JSON sequence prior to accessing the members of the nested objects. Example: $.phones.type using the
data shown below:

Table 31 — Data used by unwrap() example

T.C

{ nane: "Babu", phones: { type: "cell", "090-0101" } }

{ nane: "Fred", phones: [{ type: "hone", nunber: "372-0453" },
{ type: "work", nunber: "506-2051" }] }

In thefirst row, phonesis just an object, so there is no problem performing $.phones.type.

In the second row, phonesis an array of objects. In lax mode, $.phones will evaluate to an array, and then the
next step to get type will use the unwrap operator to iterate over the array, so the end result is an SQL/JSON
sequence with two values, “home” and “work” . Thisis equivalent to performing $.phoneg*].typein either
mode.

64 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.7 Primitive operations

6.7.3 wrap()

wrap: wrap() converts any nonarray in an SQL/JSON sequence to an array of length 1.
Let S=(14, 1o, ..., Iy); wrap(S) is defined by theserules:
1) For eachj between 1 and n, let 12 be the SQL/JSON item
a) Ifljisanarray, thenl2; =1;.
b) Otherwise, 12j=[1;].
2) Theresult of wrap (S) isthe SQL/JSON sequence (121, 125, ..., 124)

Thewrap() operator isonly usedin lax mode. Itsroleisto handle datathat is sometimes an array and sometimes
not an array. Thisis similar to the unwrap() operator. The differenceis that wrap() is used when the user's
intended final outcomeisasingleton. That is, if the datais an array, the user only wantsto get a single element
fromthearray, say $[0]. If the dataisnot an array, then the user wantsthe operation to act asif it wereasingleton
array. Example: $.phones 0] applied to the following data:

Table 32 — Data used by wrap() example

T.C

{ name: "Fred", phones: ["372-0453", "506-2051"] }

{ name: "Babu", phones: "090-0101" }

On the first row, the result is “372-0453", on the second row the result is “090-0101".
NOTE 12 — wrap() and unwrap() are not inversesin general. However, if A=[E] isasingleton array and E is not an array, then
wrap (unwrap ([E])) =wrap ((E)) =[E]
Alsoif S=(lq, ..., Iy) isan SQL/ISON sequence that contains no arrays, then

unwrap (wrap (I, ..., In) =unwrap ([111, -, [1n]) = (1 - In)

6.8 Modedeclaration

A <JSON path expression> begins with a declaration of either strict or lax mode:

<JSON path expression> ::=
<JSON path node> <JSON path wff>

<JSON pat h node> :: =
strict
| Iax

<JSON path wff> isthe “meat” of an SQL/JSON path expression (“wff” stands for “well-formed formula”).

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 65

ISO/IEC TR 19075-6:2017(E)
6.9 <JSON path primary>

6.9 <JSON path primary>

In programming languages, a“ primary” isaBNF non-terminal that is self-delimited, either becauseitisasingle
token, or because of matching delimiters such as parentheses. (For example, <value expression primary> and
<table primary> in [ISO9075-2]). The primariesin the specified language are given by the BNF:
<JSON path primary> ::=

<JSON path literal >

| <JSON path vari abl e>
| <left paren> <JSON path wff> <right paren>

6.9.1 Literals

The atomic values in the SQL/JSON path language are written the same asin JSON, and are interpreted as if
they were SQL values. Here are some examples:

Table 33 — Examples of atomic valuesin the SQL/JSON path language

Aswritten Interpreted as

true boolean True

fal se boolean False

nul | SQL/JSON null

123 exact numeric scale 0 value 123

12.3 exact numeric scale 1 value 12.3

12. 3e0 approximate numeric value 12.3

"hel | 0" Unicode character string, value 'hello’ (without the delimiting quotes)

In character strings, the escaping rules of both SQL (asthe outer language) and JavaScript apply. Here are some
examples:

Table 34 — Examples of the escaping rules

Example Explanation

"Q ' Connor" The single quote character isescaped by doubling (SQL convention).
The valueis O'Connor

"\"hello\"" The double quote character is escaped with abackslash (JavaScript
convention). The valueis"hello"

66 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.9 <JSON path primary>

6.9.2 Variables

The BNF for variablesis:

<JSON path variable> ::=
<JSON path context variabl e>
| <JSON path naned vari abl e>
| <at sign>
| <JSON | ast subscript>

<JSON path context variable> ::=
<dol | ar sign>

<JSON path named variable> ::=
<dol I ar sign> <JSON path identifier>

<JSON | ast subscript> ::=
| ast

Context variable: The SQL/JSON path language is always invoked with a context item. The context item is
referenced using the symbol $. The context item is parsed as JSON; it isan error if the parsing fails.

Named variables: Optionally, additional values can be passed in to the path engine using the PASSING clause.
Each value in the PASSING clause has an SQL identifier declared using AS. For example:

JSON VALUE (T1.J, 'lax $.phone [$K]"
PASSI NG T2. Huh AS K)

The preceding example passesin the computed value T2.Huh as avariable named K. Within the path expression,
thisvalueis referenced using the variable $K.

In the preceding example, the declared type of T2.Huh must be supported in the SQL/JSON data model. This
means it must be a character string with character set Unicode, numeric, boolean, or datetime. It cannot be a
binary string, interval, row type, user-defined type, reference type, or collection type.

It isalso possible to pass JSON to a named variable. The (unnamed) context item is always parsed as JSON;
to parse a named variable, the FORMAT clause isrequired, asin this example:

JSON_EXI STS (T1.J1, 'lax $? (@nane == $J2. nane)’
PASSI NG T2.J2 FORVAT JSON AS J2)

The preceding example compares the nane field in two JSON values, T1.J1 and T2.J2. T1.J1 is chosen as the
context item, whereas T2.J2 is passed in the PASSING clause. T1.J1 does not need aFORMAT clause, whereas
T2.J2 does, because without it T2.J2 would not be parsed and would only be passed as a character string. The
path expression tests whether the name member in T1.J1 is the same as the nane member in T2.J2, using a
filter expression (presented later). The result of the path expression is an empty SQL/JSON sequence if the
name members are not equal, causing JSON_EXISTSto return False. If the nanme members are equal, then the
result of path expression isasingleton SQL/JSON item, and the result of JSON_EXISTSis True.

Note that it is necessary to observe theidentifier rules of both SQL and JavaScript. Going back to the first
example, the SQL identifier K was coerced to uppercase sinceit is not a quoted identifier. JavaScript does not
coerceitsidentifiers to either upper or lower case. Consequently the following would be an error:

JSON_VALUE (T1.J, 'lax $.phone [$k]'
PASSI NG T2. Huh AS k)

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 67

ISO/IEC TR 19075-6:2017(E)
6.9 <JSON path primary>

In the erroneous rewrite, uppercase K has been replaced everywhere by lowercasek. In SQL, thisisstill coerced
to uppercase, but in the path expression, $k isleft in lowercase, so there is a mismatch. To get a variable with
alowercase name, it must be double-quoted in SQL, likethis:

JSON VALUE (T1.J, 'lax $.phone [$K]
PASSI NG T2. Huh AS "k")

Other variables: Two kinds of variables occur only in special contexts; these are:

1) Thekeyword!| ast isakind of variable, referencing the last subscript of an array; thiswill be considered
with element accessors later.

2) Anat-sign @isusedin filter expressions to denote the value of the current SQL/JSON item; thiswill be
considered with filter expressions later.

6.9.3 Parentheses

Asin SQL and JavaScript, parentheses may be used to override precedence. For example:

$a * ($b + 4)

The parentheses override the usual precedence that performs multiplication before addition.

6.10 Accessors

The syntax for accessorsis.
<JSON accessor expression> ::=
<JSON path pri mary>
| <JSON accessor expression> <JSON accessor op>

<JSON accessor op> ::=
<JSON nmenber accessor>
| <JSON wildcard nenber accessor>
| <JSON array accessor>
| <JSON wildcard array accessor>
| <JSON filter expression>
| <JSON item et hod>

The first four choices are the accessors to be considered in this section. The last two are syntactically similar
but will be treated separately for semantic reasons.

So, for present purposes, there are four accessors:
1) Member accessor.

2) Wildcard member accessor.

3) Element accessor.

4) Wildcard element accessor.

68 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors
These accessors follow these genera principles:
1) Accessors are postfix operators so they can be concatenated; they are evaluated from left to right.
2) Thefirst operand of an accessor is evaluated to obtain an SQL/JSON sequence.
3) The second operand specifies which kind of accessto perform.
4) Theaccessis performed by iterating over all SQL/JSON itemsin the value of the first operand.

5) Instrict mode, an accessor resultsin an error if any SQL/JSON item in the sequence fails the access (e.g.,
member not found, subscript out of range, etc.).

6) Lax mode has three techniques to mitigate many errors:
a) Automatically unwrapping arrays before performing member access.
b) Automatically wrapping non-arraysin an array before performing element access.

¢) Converting structural errorsto empty SQL/JSON sequence.

6.10.1 Member accessor

The syntax for member accessor is:

<JSON nenber accessor> ::=
<period> <JSON pat h key nane>
| <period> <JSON path string literal >

A member accessor is used to access a member of an object by key name. There are two ways to specify the
key name:

1) If the key name does not begin with a dollar sign and meets the JavaScript rules of an Identifier, then the
member name can be written in clear text. For example,

$. nane
$.firstNane
$. Phone

2) Any key name can be written as a character string literal. This supports member names that begin with a
dollar sign or contain special characters. For example:

$. "nane"
$. "$price”
$. "hone address”

The semantics are as follows:
1) Thefirst operand is evaluated, resulting in an SQL/JSON sequence of SQL/JSON items.

2) Instrict mode, every SQL/JSON item in the SQL/JSON sequence must be an object with amember having
the specified key name. If this condition is not met, the result is an error.

3) Inlax mode, any SQL/JSON array in the SQL/JSON sequence is unwrapped. Unwrapping only goes one
deep; that is, if thereisan array of arrays, the outermost array is unwrapped, leaving theinner arrays alone.

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 69

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

4) Iterating over the SQL/JSON sequence, the bound value of each SQL/JSON item corresponding to the
specified key name is extracted. (In lax mode, any missing members are passed over silently).

Example: Suppose the context itemis:
$ = { phones: [{ type: "cell", nunber: "abc-defg" },
{ nunber: "pqgr-wxyz" },
{ type: "hone", nunber: "hij-klm" }] }

$. phones. t ype isevaluated in lax mode as follows:

Table 35 — Evaluation of ' $. phones. t ype' inlax mode

Step Value
1 $ { phones: [
{ type: "cell", nunmber: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", nunmber: "hij-klm" }] }
2 $. phones [{ type: "cell", nunber: "abc-defg" },
{ nunber: "pgr-wxyz" },
{ type: "hone", nunber: "hij-klm" }]
3 $. phones. type "cell"
"home"

In thefirst step, the value is just an SQL/JSON sequence of length 1, the context item.

In the second step, the value is the bound value of the member named phones. Thisisstill an SQL/JSON
sequence of length 1; the only item is an array.

The third step triesto access thet ype member. However, the SQL/JSON item in the SQL/JSON sequenceis
an array, not an object. Sincethisisan array in lax mode, the member accessor first unwraps this SQL/JSON
item, giving the following intermediate step:

Table 36 — Intermediate step

Step Value
2.1 Unwr ap { type: "cell", nunber: "abc-defg" }
($. phones) { nunber: "pqr-wxyz" },
{ type: "hone", nunmber: "hij-klm" }

(Note that there is no unwrap function in the path language; thisis an implicit primitive used in lax mode.)

The result of the intermediate step 2.1 is to unwrap the array, producing an SQL/JSON sequence with three
SQL/JSON items. Now, the member accessfor t ype is performed iteratively on each SQL/JSON item of the
intermediate result. The first and third SQL/JSON items have at ype member, but the second does not. The
final result (step 3) only retains the bound values for those SQL/JSON items that have at ype member. The
second SQL/JSON item, which lacks at ype member, is a structural error, which is converted to an empty
SQL/JSON sequence in lax mode.

70 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

Now let's consider thisexamplein strict mode. Step 1 isevaluated the sameasinlax mode. In step 2, astructural
error is seen, because the SQL/JSON item is an array rather than an object.

To get past this error, the strict mode user can use the wildcard element accessor presented later. The revised
path expressionis$. phones[*] . t ype, and the evaluation is shown below:

Table 37 — Evaluation of' $. phones[*] . t ype'

Step Value
1 $ { phones: [
{ type: "cell", nunber: "abc-defg" },
{ nunber: "pqr-wxyz" },
{ type: "hone", nunber: "hij-klm" }] }
2 $. phones [{ type: "cell", nunmber: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", number: "hij-klm" }]
3 $. phones|[*] { type: "cell", nunber: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "hone", nunber: "hij-klm" }
4 $. phones[*] error
.type

The revised path expression still gets an error on step 4, because the second SQL/JSON item in the value of
step 3doesnot haveat ype member. The datahas aloose schemathat does not alwaysprovideat ype member.
Most likely, this data was not created with a strict mode application in mind. However, a strict mode user can
surmount this hurdle by filtering out the SQL/JSON items that do not have a type member, using the path
expression$. phones[*] ? (exists (@type)).type.Filtersareanother capability to be presented later.
This version of the path expression is evaluated as shown below:

Table 38 — Evaluation of ' $. phones[*] ? (exists (@type)).type'

Step Value
1 $ { phones: [
{ type: "cell", nunmber: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", nunmber: "hij-klm" }] }
2 $. phones [{ type: "cell", nunber: "abc-defg" },
nunber: "pgr-wxyz" },
{ type: "hone", nunber: "hij-klm" }]
3 $. phones|[*] { type: "cell", nunber: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "hone", nunber: "hij-klm" }

©ISO/IEC 2017 — All rights reserved

SQL/JSON path language 71

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

Step Value

4 $. phones|[*] { type: "cell", nunber: "abc-defg" },
? (exists { type: "hone", nunber: "hij-klm" }
(@type))

5 $. phones|[*] "cell",
? (exists "home"
(@type))
.type

6.10.2 Member wildcard accessor

The BNF is:

<JSON wi | dcard nenber accessor> :

<peri od> <asterisk>

The semantics are as follows:

1) Thefirst operand is evaluated, resulting in an SQL/JSON sequence of SQL/JSON items.

2) Instrict mode, every SQL/JSON item in the SQL/JSON sequence must be an object. If this conditionis

not met, the result is an error.

3) Inlax mode, any SQL/JSON array in the SQL/JSON sequence is unwrapped.

4) Iterating over the SQL/JSON sequence, every bound value of each SQL/JSON object in the SQL/JSON
sequence is extracted. (In lax mode, any SQL/JSON items that are not objects are passed over silently.)
There is only an implementation-dependent order to members within an object, but the order of objects
within the SQL/JSON sequence is preserved in the result.

For example, using the datain the last section, consider the path expression $. phones. * inlax mode. The

evaluation is shown below:

Table 39 — Evaluation of ' $. phones. ** in lax mode

Step Value
1 $ { phones: [
{ type: "cell", nunmber: "abc-defg" },
{ number: "pqr-wxyz" },
{ type: "home", nunmber: "hij-klm" }] }
2 $. phones [{ type: "cell", nunber: "abc-defg" },
{ nunmber: "pgr-wxyz" },
{ type: "hone", nunber: "hij-klm" }]
2.1 Unwr ap { type: "cell", nunber: "abc-defg" }
($. phones) { nunber: "pqr-wxyz" },
{ type: "hone", nunber: "hij-klm" }

72 SQL support for JavaScript Object Notation (JSON)

©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)

6.10 Accessors

Step Value
3 $. phones. * "cell", "abc-defg", "pgr-wxyz", "hone",
"hij-klm"

Step 2.1 shows the intermediate step to unwrap the array because of lax mode.

In strict mode, the user must write $. phones[*] . * to avoid raising an error. The computation is then:

Table 40 — Evaluation of ' $. phones[*].

* 1

Step Value
1 $ { phones: [
{ type: "cell", nunber: "abc-defg" },
{ nunmber: "pqr-wxyz" },
{ type: "honme", nunmber: "hij-klm" }] }
2 $. phones [{ type: "cell", nunber: "abc-defg" },
number: "pqr-wxyz" },
{ type: "home", number: "hij-klm" }]
2.1 $. phones|[*] { type: "cell", nunber: "abc-defg" },
{ nunmber: "pgr-wxyz" },
{ type: "hone", nunber: "hij-klm" }
3 $. phones[*] . * "cell", "abc-defg", "pgr-wxyz", "hone",
“hij -kl m"

6.10.3 Element accessor

The BNFis:

<JSON array accessor> ::

<l eft bracket> <JSON subscript |ist> <right bracket>

<JSON subscript list> ::

<JSON subscript> [{ <comma> <JSON subscript>}...]

<JSON subscript> ::=

<JSON path wff 1>
| <JSON path wff 2>

<JSON path wff 1> ::

<JSON path wff>

<JSON path wif 2> ::

<JSON path wff>

<JSON path wff 3> ::

<JSON path wff>

to <JSON path wff 3>

©ISO/IEC 2017 — All rights reserved

SQL/JSON path language 73

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

An element accessor uses square brackets to enclose a comma-separated list of subscripts. The subscripts can
be specified in either of two forms:

1) A single numeric value.
2) A range between two numeric values (inclusive) indicated by the keyword t o.

Following JavaScript conventions rather than SQL conventions, subscripts are O-relative. Thus, [0] accesses
isthefirst element in an array.

To handle arrays of unknown length, the specia variable | ast may be used in asubscript. The value of | ast
isthe size of the array minus 1. For example, $[| ast] accessesthelast elementinarray $; and$l ast-1 to
| ast] accessesthelast two elements. Thisvariable can only be used within an array accessor, whereit references
theinnermost array containing | ast .

For example:

$[0, last-1 to last, 5]

The preceding accesses thefirst element of $, thelast two elements of $, and the sixth element of $. Subscripts
can be specified in any order and may contain duplicates.

In strict mode, subscripts must be singleton numeric values between 0 and | ast ; in lax mode, any subscripts
that are out of bound are ssmply ignored. In both strict and lax mode, non-numeric subscripts such as
$[" hel | 0"] arean error.

More precisely, the semantics are specified as follows:
1) Thefirst operand is evaluated, yielding an SQL/JSON sequence of SQL/JSON items.

2) Inlax mode, any SQL/JSON item in the SQL/JSON sequence that is not an array iswrapped in an array
of sizel.

3) Instrict mode, itisan error if any SQL/JSON item in the SQL/JSON sequence is not an array.
4) For every SQL/JSON item | in the SQL/JSON sequence:

a) Every subscript is evaluated and subject to implementation-defined rounding or truncation. Note that
| ast may have adifferent value on different arraysin the SQL/JSON sequence (which iswhy this
step is not performed outside the loop on SQL/JSON items). It isan error if any subscript isnot a
singleton numeric item, even in lax mode.

b) Each subscript specifies a set of integers (either asingle integer, or all integers between the lower and
upper bound inclusive).

¢) Instrict mode, itisan error if any subscript islessthan O or greater than| ast . Itisalso an error when
using t o to specify arangeif the lower bound is greater than the upper bound.

d) The sets of integers are concatenated in the order specified by the user to obtain the final set of sub-

Sscripts.
€) Theresultfor | isthe SQL/JSON sequence of elementsin | at the positions specified by the final set
of subscripts.
5) The overall result is the concatenation of the result for each SQL/JSON item | in the input SQL/JSON
sequence.

Example: Let the context item be:

74 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

$ = { sensors:
{ SF: [10, 11, 12, 13, 15, 16, 17],
FC. [20, 22, 2417,
SJ: [30, 33]
}
}

Consider the path expression| ax $. sensors. *[0, |ast, 2].Theevaluationis:

Table41l — Evaluation of ' | ax $. sensors.*[0, last, 2]’

Step Value
1 $ { sensors:
{ SF: [10,11, 12,13, 15, 16, 17],
FC [20, 22, 24],
SJ: [30, 33]
b}
2 $. sensors { SF:.[10,11, 12,13, 15, 16,17],
FC. [20, 22, 24],
SJ: [30, 33]
}
3 $. sensors. * [10, 11, 12,13, 15, 16,17],
[20, 22, 24],
[30, 33]
4 $. sensors. *[0, | ast, 2] 10, 17, 12,
20, 24, 24,
30, 33

Note that in step 3, the second array has 3 elements, so that | ast and 2 select the same element. Thus, in step
4, the element whose value is 24 is selected twice.

Also, instep 3, thethird array has 2 elements, so that 2 isout of bounds. Inlax mode, thisis passed over silently,
and only subscript positions 0 and last appear in the final result.

If thiswas evaluated in strict mode, there would be an error because the third array has a subscript that is out
of bounds. To avoid the error, the user might filter out arrays with less than three elements.

6.10.4 Element wildcard accessor

The BNFis:

<JSON wi | dcard array accessor> ::=
<l eft bracket> <asterisk> <right bracket>

For example, the accessor $[*] converts an array into a sequence of all of its elements. In strict mode, the
operand must be an array. In lax mode, if the operand is not an array, then oneis provided by wrapping it in
an array before unwrapping (effectively a no-op on non-array operands).

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 75

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

More precisely, the semantics are specified as follows:
1) Thefirst operand is evaluated, yielding an SQL/JSON sequence of SQL/JSON items.

2) Inlax mode, any SQL/JSON item in the SQL/JSON sequence that is not an array iswrapped in an array
of size 1.

3) Instrict mode, itisan error if any SQL/JSON item in the SQL/JSON sequence is not an array.
4) For every SQL/JSON item | in the SQL/JSON sequence: the result for | is the sequence of elements of I.

5) The overall result is the concatenation of the result for each SQL/JSON item | in the input SQL/JSON
sequence.

Inlax mode, $[*] isthesameas$[0 to | ast].Instrict mode, thereisasubtle difference: $[0 to | ast]
actually requires that the array have at least one element (at subscripts 0 and | ast), whereas $[*] isnot an
error in strict mode if $ isthe empty array.

6.10.5 Sequence semantics of the accessors

In review, the input to an accessor is an SQL/JSON sequence. The accessor is applied to each SQL/JSON item
in the SQL/JSON sequence in turn and the results are concatenated, preserving order. When applying an
accessor to an SQL/JSON item, the result may be an error, or an SQL/JSON sequence of some length (possibly
empty, possibly asingleton, possibly longer). Overall, thismeansthat there may be no one-to-one correspondence
between the input SQL/JSON items and the output SQL/JSON items.

For example, consider the path expression $. *[1 t o | ast] applied inlax mode to the following JSON text:

$={ "x": [12, 3017,
ytr [81,
"z": ["a", "b", "c"]}

Theresult of $. * isthe following SQL/JSON sequence:

[12, 30], [8], ["a", "b", "c"]

The next step in the evaluation is shown below:

Table 42 — The step in the evaluation

Input SQL/JSON sequence Output SQL/ISON sequence
[12, 30] 30

[8]

["a b "c"] b c

In the first SQL/JSON item in the SQL/JSON sequence, | ast =1 (SQL/JSON arrays are O-relative), so the
result isthe singleton 30. (Note that the array accessor has removed the container). In the next SQL/JSON item,
| ast =0. The subscript expression1 to 0 isastructura error but lax mode converts thisto an empty

76 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.10 Accessors

SQL/JSON sequence. In the last row, last = 2 and the result isthe last 2 SQL/JSON items of the array. The
final result is this SQL/JSON SQL/JSON sequence:

30, n bu , n Cn

6.11 Item methods

Item methods are functions that operate on an SQL/JSON item and return an SQL/JSON item. Item methods
iterate over an SQL/JSON sequence; therefore they are written like methods as postfix operators on a path
expression.

<JSON item et hod> :: =
<peri od> <JSON ret hod>

<JSON net hod> :: =
type <left paren> <right paren>
| size <left paren> <right paren>
| double <left paren> <right paren>
| ceiling <left paren> <right paren>
| floor <left paren> <right paren>
| abs <left paren> <right paren>
| datetine <left paren> [<JSON datetine tenplate>] <right paren>
| keyval ue <l eft paren> <right paren>

<JSON datetine tenplate> ::=
<JSON path string literal >

The first two item methods, t ype() andsi ze() , can be used to learn type information about the SQL/JSON
itemsin an SQL/JSON sequence. Even in lax mode, these item methods do not unwrap arrays, because if they
unwrapped arrays, it would be impossible to learn their type or size.

The other item methods automatically unwrap an array in lax mode.

6.11.1 type()

Thet ype() method returnsacharacter string that namesthe type of the SQL/JSON item. Let | bethe SQL/JSON
item, then |.type() is:

— If I isthe SQL/JSON null, then “null”.

— If listrue or false, then “boolean”.

— If I isnumeric, then “number”.

— If I isacharacter string, then “string”.

— If lisan SQL/JSON array, then “array”.
— If I isan SQL/JSON object, then “object”.

— If l isadatetime, then “date”, “time without time zone”, “time with time zone”, “timestamp without time
zone”, or “timestamp with time zone”, as appropriate.

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 77

ISO/IEC TR 19075-6:2017(E)
6.11 Item methods

For example, to filter to retain only numeric SQL/JSON items, one might use:

lax $.* ? (@type() == "nunber")

6.11.2 size()

Thesi ze() item method returns the size of an SQL/JSON item. The size is defined:
— Thesize of an SQL/JSON array is the number of elementsin the array.
— Thesize of an SQL/JSON object or ascaar is 1.

For example, to filter retain only arrays of size 2 or more, one might use:

strict $.* ? (@type() == "array" && @size() > 1)

Here, strict mode must be used, because the filter operator ? automatically unwraps arrays in lax mode.

6.11.3 Numeric item methods (double, ceiling, floor, abs)

The numeric item methods provide common numeric functions.

— doubl e() convertsastring or numeric to an approximate numeric value; thisis primarily useful to handle
character strings containing numbers.

— ceiling(),floor(),andabs() performthe same operationsas CEILING, FLOOR, and ABSin SQL.

6.11.4 datetime()

JSON has no datetime types. Datetime values are most likely stored in character strings. [RFC7159] gives no
guidance about how to format datetimesin character strings; therefore one can expect that user data exhibits a
profusion of formats, including a preference for month/day/year versus a preference for day-month-year or the
computer-friendly yearmonthday; and a preference for twelve-hour clock with am/pm vs a twenty-four hour
clock.

One way to handle datetimes would be to pull the string out to the SQL level, where products already have
functions to interpret datetime strings. However, this means that predicates on datetimes must be expressed in
SQL rather than the path language.

Itisuseful to perform predicates closeto the datain the path language. The solution isto augment the SQL/JSON
path language with a modest datetime capability. The four ingredients are:

— The SQL/JSON data model is augmented with the SQL datetime types.

— dateti me() method to convert acharacter string to an SQL datetime type, optionally using a conversion
template.

— Variables passed in to the path engine may be of datetime type.

78 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.11 Item methods
— Comparison predicates on datetimes are supported.

Thisfunctionality is not complete because it |acks datetime arithmetic. Nevertheless, it supportsthe critical use
case of comparison predicates.

Theonly ingredient listed abovethat isnot already present in SQL isthedat et i ne() method. Thedat et i me()
method is used to convert a character string to a datetime type.

6.11.5 keyvalue()
The keyvalue() method is used to interrogate an SQL/JSON object of unknown schema, by transforming to an
SQL/JSON sequence of objects with a known schema.

For example, suppose:

$ = { who: "Fred", what: 64 }
Then:

$. keyval ue() =
({ nane: "who", value: "Fred", id: 9045 },
{ nane: "what", value: 64, id: 9045 }
)

Looking at thisexample, theinput isasingle SQL/JSON object having two members; the output isan SQL/JSON
sequence of two SQL/JSON objects having three members. In the result SQL/JSON sequence, the members
are:

— nane, the key name of amember M in the input object.
— val ue, the bound value of M.
— i d, an implementation-dependent integer that is a unique identifier for the input SQL/JSON object.

Since members of an object are unordered, the order of the result SQL/JSON sequence is implementation-
dependent.

Using keyval ue() , apath expression to learn the key namesin theinput is:
$. keyval ue() . nane

and the result is the SQL/JSON sequence:
("who", "what")

Note that in lax mode, keyval ue() unwrapsitsinput. For example, suppose:

$ =[{ who: "Fred", what: 64 },
{ who: "Moe", how 22}]

Then:

lax $. keyval ue() =
({ nane: "who", value: "Fred", id: 8394 },
{ nane: "what", value: 64, id: 8394 },

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 79

ISO/IEC TR 19075-6:2017(E)
6.11 Item methods

{ nane: "who", value: "Me", id: 5372 },
{ nane: "how', value: 22, id: 5372 }

)

This example illustrates the use of the id member in the result to distinguish separate objectsin the input. The
data can be viewed using JSON_TABLE with the following query:

SELECT | D, NAVE, SVALUE, |VALUE
FROM T,
JSON_TABLE (T.J, 'lax $.keyval ue()"'
COLUMNS (
NAMVE VARCHAR(30) PATH 'l ax $.nane',
SVALUE VARCHAR(30) PATH

"lax $.value ? (@type() == "string")',
| VALUE | NTEGER PATH
"lax $.value ? (@type() == "nunber")',
I D INTEGER PATH 'lax $.id'
)) AS JT

ORDER BY | D, NAME

Note how the patterns for SYALUE and IVALUE filter the val ue member based onitst ype() aseither
string ornunber.

Result of the query with the sample datais:

Table 43 — Result of the query with the sample data

ID NAME SVALUE IVALUE
5372 how 22

5372 who Moe

8394 what 64

83%4 who Fred

6.12 Arithmetic expressions

The SQL/JSON path language uses the same arithmetic operators as [ECMAscript]:
— Unary +or -.
— Binary +-* /%

For addition, subtraction, multiplication, division, and modulus, respectively.

80 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

6.12.1 Unary plusand minus

ISO/IEC TR 19075-6:2017(E)
6.12 Arithmetic expressions

Theunary plusand minus operationsiterate over the SQL/JSON sequencethat istheir operand. Every SQL/JSON
item in the SQL/JSON sequence must be numeric (else an error israised, even in lax mode). Otherwise, the
only error isthe corner case of overflow when taking the unary minus of certain numbers at the boundary of

their range.

The unary operations are prefix operations whereas the accessors are postfix operations. The precedence binds
the accessors more tightly (the same precedence as [ECMAscript]). For example, suppose.

$ = { readings: [15.2,

-22.3, 45.9] }

Then'l ax -$.readings.floor()' isequivaentto:

lax -($.readings.floor())

Table 44 — Evaluation of | ax - $. r eadi ngs. fl oor ()

Step Expression Value

1 $ { readings: [15.2, -22.3, 45.9] }
2 $. readi ngs [15.2, -22.3, 45.9]

3 $. readi ngs. fl oor () 15, -23, 45

4 -$. readi ngs. fl oor () -15, 23, -45

To get adifferent order of evaluation, parentheses are required, asin:

lax (-$.readings).floor():

Table 45 — Evaluation of ' ax (-$. readings).fl oor ()"

Step Expression Value

1 $ { readings: [15.2, -22.3, 45.9] }
2 $. r eadi ngs [15.2, -22.3, 45.9]

3 -$. readi ngs -15.2, 22.3, -45.9

4 (-$. readi ngs) -15.2, 22.3, -45.9

5 (-$. readings).floor() -16, 22, -46

In strict mode, these examples require an explicit [*] to unnest the array, either:

strict -$.readings[*].floor(),

or.
strict (-$.readings[*]).floor()

©ISO/IEC 2017 — All rights reserved

SQL/JSON path language 81

ISO/IEC TR 19075-6:2017(E)
6.12 Arithmetic expressions

6.12.2 Binary operations
The binary operations do not iterate over an SQL/JSON sequence (such iteration would require across product).
Instead, they expect their operand to be a singleton numeric; otherwise the result isan error, even in lax mode.

The binary operators have the same precedence as in most computer languages, including [ECMAscript] and
SQL. Asusual, parentheses may be used to override the precedence.

Modulus, indicated by %as in [ECMAscript], uses the same algorithm as the SQL MOD function.

6.13 Filter expression

A filter expressionis similar to a WHERE clausein SQL — it is used to remove SQL/JSON items from an
SQL/JSON sequence if they do not satisfy a predicate. The syntax uses a question mark followed by a paren-
thesized predicate:

<JSON filter expression> ::=
<question mark> <l eft paren> <JSON path predicate> <right paren>

<JSON predicate primary> ::=
<JSON delimited predicate>
| <JSON non-delimted predicate>

<JSON delinited predicate> ::=
<JSON exi sts path predicate>
| <left paren> <JSON path predicate> <right paren>

<JSON non-delinited predicate> ::=
<JSON conpari son predi cat e>

| <JSON Iike_regex predicate>

| <JSON starts with predicate>

| <JSON unknown predicate>
To evaluate afilter, the following steps are performed:
1) Inlax mode, any SQL/JSON arrays in the operand are unwrapped.
2) The predicateis evaluated for each SQL/JSON item in the SQL/JSON sequence.
3) Theresultisthose SQL/JSON items for which the predicate resulted in True.

Within afilter, the special variable @is used to reference the current SQL/JSON item in the SQL/JSON sequence.
There have been several examples of this variable earlier in this discussion. A Syntax Rule stipulates that @is
only permitted in the predicate of afilter. The value of @is the current SQL/JSON item of the first operand of
the innermost filter containing the @

The SQL/JSON path language has the following predicates:

— exi st s predicate, to test if a path expression has a non-empty result.
— Comparison predicates ==, | =, <>, <, <=, >, and >=.

— |i ke_r egex for string pattern matching.

— starts withtotestfor aninitial substring.

82 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression
— i s unknown to test for Unknown results.

The result of evaluating a predicate is an SQL truth value (True, False, Unknown) rather than an SQL/JSON
sequence in the data model.

Unlike [ECMAscript], predicates are not expressions; instead, predicates constitute a sublanguage that is only
permitted within the filter expression.

6.13.1 true/false and True/False

JSON hasliteralst r ue and f al se, which are parsed into the SQL/JSON model as the SQL boolean values
True and False. However, there is no syntax to treat an SQL/JSON item as a boolean value. For example,
SUpPpPOSE:

$ = { nane: "Portia", skilled: true }

$. ski | | ed isTrue, but thereis no syntax such as:

$?(@skilled)

that would presumably treat $. ski | | ed asa predicate. Such syntax is not provided, because then the truth
value of an arbitrary SQL/JSON sequence must be defined, which leads to unnecessary complexity.

Instead, to test whether $. ski | | ed is True, a comparison predicate such as:

$? (@skilled == true)
should be used.

6.13.2 null and Unknown

JSON hasliteral nul | , whichisparsed into the SQL/JSON data model asaspecial value called the SQL/JSON
null. The SQL/JSON null is not the same as the SQL null. Here are some differences to be aware of:

1) TheSQL truth value Unknown isthe same asthe null value of boolean type. In the SQL/JSON data model,
there are no SQL nulls, so Unknown is not part of the SQL/JSON data model. However, SQL/JSON
predicates have results that are SQL truth values True, False, and Unknown. Recall that the SQL/JSON
path language distingui shes predi cates from expressions; predicatesresult in truth valueswhereas expressions
result in valuesin the SQL/JSON data mode!.

2) An SQL predicate operating on an SQL null usually returns Unknown. In contrast, the SQL/JSON null
valueisequal toitsalf; theresult of nul | == nul | isTrue.

6.13.3 Error handlingin filters

Errors can arisein filtersin two ways:

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 83

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

1) A predicates must evaluate its operand(s) that are expression(s), which may result in an error condition.
(Lax mode converts structural errors to an empty SQL/JSON sequence. All non-structural errorsin lax
mode, aswell as all errors of any sort in strict mode, are regarded as unhandled errors at the expression
level.)

2) After evaluating its operand(s), the predicate may find that the values are not appropriate. For example,
10 == "ten";thereareno errorsin the operands, but they are not comparable, so this predicate till has
an error.

With either kind of error, the predicate results in Unknown.
Here are some examples. First, consider a nonstructural error such as divide by a non-numeric value. Consider
atable T with two rows:

Table 46 — Table T with two rows

K J

101 { pay: 100, hours: 10 }

102 { pay: 100, hours: "ten" }

The user wishes to find rows in which the average of pay/hoursis greater than 9. The user writes this query:

SELECT K
FROM T
WHERE JSON_EXI STS (T.J, 'lax $? (@pay/ @hours > 9)'

Consider how this query is evaluated on each row of T.

In row K=101, the computation proceeds without incident. In thefilter, @ pay = 100 and @ hour s = 10, so
the quotient @ pay/ @ hour s is 10, which is greater than 9. Therefore, the filter succeeds and the overall path
expression resultsin a nonempty SQL/JSON sequence, the JISON_EXISTS is True, and 101 appearsin the
result of the query.

Asfor row K=102, one has the following computation:

Table 47 — Computation on row K=102

Step | Expression Value

1 $ { pay: 100, hours: "ten" }
2 @ { pay: 100, hours: "ten" }
3 @ pay 100

4 @ hour s "ten"

5 @ pay/ @ hours error

6 @pay/ @hours > 9 Unknown

84 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Step | Expression Value
7 $? (@pay/ @hours > 9) empty SQL/JSON sequence

Since the result of the path expression is the empty SQL/JSON sequence, JSON_EXISTS is False, and 102
does not appear in the result of the query.

Thisexamplewould behave precisely the samein strict mode, because nonstructural errors are unhandled errors
in both modes.

Next, consider a structural error. Modify the table slightly, like this:

Table 48 — Modified table T

K J
101 { pay: 100, hours: 10 }
102 { pay: 100, horas: 10 }

The difference isthat row K=102 does not have an hour s member. With the same query as before (still in lax
mode), row K=101 will process just the same and appear in the final result. Asfor row K=102, one has the
following computation:

Table 49 — Computation on row K=102 in modified table T

Step | Expression Value

1 $ { pay: 100, horas: 10 }
2 @ { pay: 100, horas: 10 }
3 @ pay 100

4 @ hours empty sequence

5 @ pay/ @ hour s error

6 @pay/ @hours > 9 Unknown

7 $? (@pay/ @hours > 9) empty sequence

With the revised data, step 4 is now an empty sequence, but step 5 is still an unhandled error, and thereafter
the computation is the same, with the same ultimate result, K=102 is omitted from the final result. Strict mode
would have the identical value at each step of the computation.

As another example, with the same data, consider thequery ' lax $? (@ hours > 9)' . The computation
for row K=101 is uninteresting; let’slook at K=102:

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 85

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Table 50 — Computationof 'l ax $? (@hours > 9)' onrow K=102

Step | Expression Value
1 $ { pay: 100, horas: 10 }
2 @ { pay: 100, horas: 10 }
3 @ hours empty SQL/JSON sequence
4 @hours > 9 False
5 "lax $? (@hours > 9)° empty SQL/JSON sequence

In this example, step 4, the comparison of an empty SQL/JSON sequence with 9, isnot an error. Instead, asis
discussed later, comparison predicates are performed with existential semantics. Essentially, the comparison
predicate forms the cross product of all SQL/JSON itemsin the first operand with all SQL/JSON itemsin the
second operand. The comparison predicate is Trueif any of these comparisons in the cross product istrue. In
this example, one of the operands is empty, so the cross product is empty, and therefore the predicate is False.

Now, let's consider the last examplein strict mode, ' strict $? (@hours > 9)':

Table51 — Computation of ' strict $? (@hours > 9)' instrict mode

Step | Expression Value

1 $ { pay: 100, horas: 10 }
2 @ { pay: 100, horas: 10 }
3 @ hour s error

4 @hours > 9 Unknown

5 "strict $? (@hours > 9)° empty SQL/JSON sequence

Step 3isastructural error, which isan unhandled error in strict mode. The unhandled error comesinto the
predicate, where it causes aresult of Unknown. The final result in step 5 isthe same asin lax mode, because a
filter rejects both False and Unknown.

6.13.4 Truth tables

By design, the boolean operators &&, | | , and ! aways have singleton operands which are truth values (True,
False, Unknown). There is no way to treat a JSON atomic valuet r ue or f al se as an operand of aboolean
operator. The user should write, e.g., $a== trueto test if $aisthe JSON literal t r ue.

86 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

The operands of && (boolean AND) may be evaluated in either order. If thefirst tested operand'svalueisenough
to determine the result, there is no need to evaluate the other operand. Otherwise, the result is given by this
table:

Table 52 — Result of &&

True False Unknown
True True False Unknown
False False False False
Unknown Unknown False Unknown

Similarly, the operands of | | (Boolean OR) may be tested in either order, with short circuit logic if thefirst to
be tested is enough to determine the result. The result is given by:

Table 53 — Result of | |

True False Unknown
True True True True
False True False Unknown
Unknown True Unknown Unknown

Thetruth tablefor! (boolean NOT) is:

Table 54 — Result of !

P NOT P
True False
False True
Unknown Unknown

6.13.5 Comparison predicates

Following [ECMAscript], the comparison operatorsare: ==, ! =, <, <=, >, and >=. Additionally, <> can be used
equivaently to! =.

NOTE 13 — Dueto abug, [1SO9075-2] does not list ! = as avalid comparison operator. This error is corrected in the Technical
Corrigendum for [1SO9075-2].

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 87

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Although the symbols are adopted from [ECMAscript], the syntax and semantics are quite different from
[ECMASscript]. Here are some of the key differences:

— Comparison operators are not left associative, unlike [ECMAscript].

— Equality operators have the same precedence as inequality comparison operators, unlike [ECMAscript].

— Automatic casting rules to support comparisons across types are not provided. (For example, in
[ECMASscript], booleans can be compared to numbers, witht rue == 1 andfal se == 0.)

— Comparison of arrays or objectsto anything, even themselves, is not supported. Thereisno “deep equals’.
— Inlax mode, comparison operators automatically unwrap their operands.

The following table summarizes which comparisons are supported:

Table 55 — Supported comparisons

SQL/JSON null | SQL/JSON scalar | SQL/JSON array | SQL/JSON object

SQL/JSON null comparable comparable not comparable not comparable

SQL/JSON scalar comparable string vs string not comparable not comparable
number vs number,
date vs date,

time vstime,
timestamp vs
timestamp
boolean vs
boolean,

SQL/JSON array not comparable | not comparable not comparable not comparable

SQL/JSON object not comparable | not comparable not comparable not comparable

Thus, comparisons to SQL/JSON arrays and objects are not supported. Note though that in lax mode, arrays
are unwrapped prior to comparison, which might mitigate this.

SQL/JSON nullsand scalars may be compared. When comparing two scalars, they must be comparable as SQL
scalars. Comparison is decided using SQL semantics, with this additional rule: SQL/JSON null is equal to
SQL/JSON null, and is not greater than or less than anything.

Comparison predicates have existential semantics. This means that the two operands may be SQL/JSON
sequences. The cross product of these SQL/JSON sequencesisformed. Each SQL/JSON item in one SQL/JSON
sequence is compared to each item in the other SQL/JSON sequence. The predicate is Unknown if there any
pair of SQL/JSON itemsin the cross product is not comparable; the predicate is True if any pair is comparable
and satisfies the comparison operator. In all other cases, the predicate is False. In lax mode, the path engineis
permitted to stop evaluation early if it detects either an error or a success (whichever oneisfound first isthe
“winner”). In strict mode, the path engine must test all comparisonsin the cross product, and the result is
Unknown if any of these comparisons is not comparable. For example:

$.x ? (2> @[*])

88 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

where $. x is[1, "one"]. The comparands are the sequences (2) and (1, "one"). The cross product of the com-
parisonsis(2>1, 2>"one"). Thefirst comparison istrue and the second comparison is an error. In strict mode
the path engine must perform both comparisons and the result is Unknown. Inlax mode, the engine may perform
the comparisonsin any order. If it tests 2 > 1 first, the path engine can quit with aresult of True. If it tests 2 >
"one" first, the path engine can quit with aresult of Unknown. If it performs both tests, it can choose either
True or Unknown as the result.

The semantics of comparison predicate can be summarized with these rules:

— Evaluate both operands, giving two SQL/JSON sequences A and B. If thereisan error in either evaluation,
the result is Unknown and no further rules are performed.

— Inlax mode, unwrap each SQL/JSON A and B.
— Let ERR and FOUND be flags that areinitially False.

— Formthe cross product of A and B. Comparethe pairsin thiscross product in an implementati on-dependent
order. If any pair is not comparable, set ERR to True. If any pair satisfies the comparison, set FOUND to
True.

— Thefinal result is determined by this table:

Table 56 — Final result

ERR =True ERR = False
FOUND = True strict mode: Unknown True

lax mode: either True or Unknown (implementation-

dependent)
FOUND =False | Unknown False

6.13.6 like regex predicate

For pattern matching, SQL's LIKE_REGEX predicate was borrowed, rather than the LIKE predicate, because
LIKE_REGEX providesarich regular expression capability. To facilitate precompilation, only character string
literals are supported in the pattern and flags. The syntax is:

<JSON | i ke_regex predicate> ::=
<JSON path wif> |ike_regex <JSON |ike_regex pattern>
[flag <JSON like_regex flags>]

<JSON | i ke_regex pattern> ::=
<JSON path string literal >

<JSON |i ke_regex flag> ::=
<JSON path string literal >

Like comparison predicates, the like _regex predicate uses existential semantics.

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 89

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

6.13.7 startswith predicate

Thestarts wi th predicate tests whether its second operand is an initial substring of its first operand. While
this could be done using like_regex, the benefit to the user is that there is no need to check the second operand
for the presence of special characters such as quantifiers which must be escaped when using regular expressions.

Thestarts with predicate can be seen as akind of range comparison. For example,

@nanme starts with "M"

is equivalent to:

@nane >= "M" & @nane < "M"

With this analogy in mind, the second operand is permitted to be an SQL/JSON sequence and to support exis-
tential semantics.

<JSON starts with predicate> ::=
<JSON starts with whole> starts with <JSON starts with initial>

<JSON starts with whole> :: =
<JSON path wff>

<JSON starts with initial> ::=
<JSON path wff>

6.13.8 existspredicate

Theexi st s predicate tests whether a path expression has at least one SQL/JSON item. The BNF is:

<JSON exi sts path predicate> ::=
exists <left paren> <JSON path wff> <right paren>

Therulesfor this predicate are simple:
1) The path expression <JSON path wff> is evaluated.
2) Case
a) If theresult of the path expression is an error, then <JSON exists predicate> is Unknown.

b) If the result of the path expression is an empty SQL/JSON sequence, then <JSON exists predicate>
isFalse.

¢) Otherwise, <JSON exists predicate> is True.

Theexi st s predicate can be used to probe for amember or element in advance of accessing it. Thisisespecially
useful in strict mode, which would otherwise raise an error.

For example, consider a table with JSON column in which some rows have a name member and other rows
do, asin this sample data:

90 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Table 57 — A tablewith JSON column

K J
201 { nane: { first: "Manny", last: "Me" }, points: 123 }
202 { points: 41}

In strict mode, an expression such as $.name-first would raise an error on row K=202. To avoid this, one could
write' strict $? (exists (@nane)). nanme' . The evaluation of this on row K=201 is asfollows:

Table58 — Evaluation of ' strict $? (exists (@ nane)).nane' onrow K=201

Step Expression Value
$ { name: { first: "Manny",
|ast: "Me" }, points: 123 }
@ { nane: { first: "Manny",
last: "Me" }, points: 123 }
@ nane { first: "Manny",
| ast: "Me" }
exi sts (@ nane) True
$?(exi sts (@nane)) { nane: { first: "Manny",
last: "Me" }, points: 123 }
$?(exi sts (@ nane)). nane { first: "Manny",
| ast: "Me" }

The evaluation on row K=202 is as follows;

Table59 — Evaluation of ' strict $? (exists (@ nane)).nane' onrow K=202

Step Expression Value
$ { points: 41}
@ { points: 41}
@ nane error
exi sts (@ nane) Unknown
$?(exi sts (@nane)) empty SQL/JSON sequence

©ISO/IEC 2017 — All rights reserved

SQL/JSON path language 91

ISO/IEC TR 19075-6:2017(E)
6.13 Filter expression

Step Expression Value
$?(exists (@ name)). name empty SQL/JSON sequence

Thus, the exists predicate enables the user in strict mode to achieve lax semantics (conversion of structural
error to empty SQL/JSON sequence) on a selective basis.

6.13.9 isunknown predicate

Thei s unknown predicate testsif aboolean condition is Unknown. Thisis provided because, without it, it
would be very difficult to find data that causes an Unknown predicate result. The syntax is:

<JSON unknown predicate> ::=
<right paren> <JSON path predi cate> <left paren> i s unknown

The boolean condition to be tested is enclosed in parentheses for clarity. Thei s unknown predicate has no
error conditionsinitsownright; instead, it isused to test for error conditionsin the parenthesi zed path predicate
(since that isthe only way to arrive at an Unknown result).

For example, adata set may have a member called sex which should have values“M” or “F". To find the rows
of males, one might write:

SELECT *
FROM T
WHERE JSON EXISTS (T.J, 'lax $? (@sex == "M)")

and similarly to find the rows of females, one might use “F” in thefilter.

Perhaps though the data al so contains a few anomal ous rows in which sex has been encoded numerically as 0
or 1. Inthat case, predicates such as @.sex == “M" will generate errors, which result in Unknown. By simply
counting rows, the user may find they have 50 rows with sex = “M”, 50 rows with sex =“F”, and two other
rows.

Finding these other rows in three-valued logic can be tricky. In this example, you could find them with:

SELECT *
FROM T
VWHERE JSON_EXI STS (T.J,
"lax $? (@sex.type() == "nunber")")

Asit happens, the problem is that the rows contain numeric values for sex, but there could be other reasons
that asex isneither “M” nor “F". To conveniently find the rows that are neither True nor False under some
predicate, what isrequired isthei s unknown predicate. Using this predicate, the user writes:

SELECT *
FROM T
WHERE JSON_EXI STS (T.J,
"lax $? (((@sex=="M) || (@sex=="F")) is unknown')

The predicate now selects precisaly the troublesome rows that are neither “M” nor “F”’ for whatever reason.

92 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)
6.14 Conformance featuresfor SQL/JSON path language

6.14 Conformance featuresfor SQL/JSON path language

The following features are defined for the SQL/JSON path language:

Feature T831, “ SQL/JSON path language: strict mode”.

e Thereisnofeaturefor lax mode; this meansthat lax mode support is mandatory for all the SQL/JSON
guery functions.

Feature T832, “ SQL/JSON path language: item method”.

e Thisfeatureenablesthet ype(),si ze(),doubl e(),ceiling(),fl oor(),abs(),datetinme(),
and keyval ue() methodsin the SQL/JSON path language.

Feature T833, “ SQL/JSON path language: multiple subscripts’.

« Without thisfeature, only asingle subscript or asingle range can be specified in aJSON array accessor.
Feature T834, “ SQL/JSON path language: wildcard member accessor”.

* Without this feature, the <JSON wildcard member accessor> . * isnot available.

Feature T835, “ SQL/JSON path language: filter expressions’.

e Thisfeature enablesthe ?(<JSON pat h predi cat e>) syntax in the SQL/JSON path langauge.
Feature T836, “ SQL/JSON path language: starts with predicate”.

e Thisfeature enablesthestarts wit h predicate.

Feature T837, “ SQL/JSON path language: regex_like predicate”.

e Thisfeature enablesthel i ke_r egex predicate.

©ISO/IEC 2017 — All rights reserved SQL/JSON path language 93

ISO/IEC TR 19075-6:2017(E)

(Blank page)

94 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)

Bibliography

[ACIDtxns] Distributed Transaction Processing: Concepts and Techniques, Gray, Jim, and
Reuter,Andreas, Morgan Kaufmann, 1993; ISBN 1-55860-190-2

[Avro] htt p: // avro. apache. or g/

[BSON] ht t p: / / bsonspec. or g/
[JSONschema] htt p: //j son- schema. org
[NoSQLDB] htt p: // nosgl - dat abase. or g/

©ISO/IEC 2017 — All rights reserved 95

http://avro.apache.org/
http://bsonspec.org/
http://json-schema.org
http://nosql-database.org/

ISO/IEC TR 19075-6:2017(E)

(Blank page)

96 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)

I ndex

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Conformance Rule, Table, or other descriptive text.

—A—
ABS - 78

ABSENT - 48, 50, 51

ARRAY 32, 34, 35, 37, 38, 45, 53

AS 21, 22, 23, 28, 29, 30, 31, 33, 34, 38, 39, 40, 41, 42,
43, 48, 49, 50, 51, 52, 60, 67, 68, 80

ASC + 51, 52
—B—

BY - 49, 51, 52, 53, 80
—C—

CEILING - 78

CHAR - 38, 39

CHARACTER » 17, 46

COALESCE « 60, 61

COLUMNS - iv, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 60,
61, 80

CONDITIONAL « 32, 34, 35, 37

CREATE - 46
CROSS « 40, 41, 43, 45
CROSS » 41
—D—
DEFAULT » 27, 29, 30, 32, 37, 40, 43, 46
— E—

EMPTY «iv, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38
44, 45

ENCODING « 22, 23

ERR » 89

ERROR - iv, 23, 24, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37
38, 44, 45, 56, 59

— F—

©ISO/IEC 2017 — All rights reserved

FALSE - 24, 26, 45

FLOOR « 78

FOR « 37, 38

FORMAT - 21, 22, 23, 32, 37, 53, 67
FOUND - 89

FROM « 22, 25, 26, 28, 29, 30, 31, 33, 34, 38, 39, 41, 42,
43, 48, 49, 50, 51, 52, 60, 80, 84, 92
FULL - 41

—G—

GROUP + 49, 51, 52
| —

INNER -« 40, 41, 43
INTEGER » 31, 46, 80
ISeiv, 7, 21, 45, 52
Identifier « 69

—J—
JOIN « 39, 41, 52
JSON ¢ v, 7, 21, 22, 23, 32, 45, 52, 53, 67
<JSON APl common syntax> 21, 23, 24, 27, 28, 32, 36,

38, 55

<JSON accessor expression> « 68
<JSON accessor op> ¢« 68
<JSON argument> « 23
<JSON array accessor> e« 73
<JSON array aggregate constructor> « 50
<JSON array aggregate order by clause> « 51
<JSON array constructor> ¢ 50
<JSON array constructor by enumeration> « 50
<JSON array constructor by query> ¢ 50
<JSON constructor null clause> » 48, 49, 50, 51
<JSON context item> « 21, 24, 28, 32
<JSON datetime template> « 77
<JSON delimited predicate> « 82

Index 97

ISO/IEC TR 19075-6:2017(E)

<JSON exists error behavior> « 24

<JSON exists path predicate> « 90
<JSON exists predicate> « 24, 90

<JSON filter expression> « 82

<JSON input clause> « 22, 50, 52

<JSON item method> « 68, 77

<JSON key uniqueness constraint> « 45, 48, 52, 53, 54
<JSON last subscript> « 67

<JSON like_regex flag> « 89

<JSON like_regex pattern>+ 89

<JSON like_regex predicate> « 89

<JSON member accessor> « 69

<JSON method> « 77

<JSON name> »« 48

<JSON name and value> « 47

<JSON non-delimited predicate> « 82
<JSON object aggregate constructor> « 49
<JSON object constructor> « 47

<JSON output clause> » 23, 32, 49, 50, 51
<JSON passing clause> « 21

<JSON path context variable> « 67
<JSON path expression> ¢ 65

<JSON path mode> « 65

<JSON path named variable> « 67

<JSON path primary> « 66, 68

<JSON path specification> « 21, 22, 37, 39
<JSON path variable> « 66, 67

<JSON path wff 1>« 73

<JSON path wff 2>« 73

<JSON path wff 3>« 73

<JSON predicate> * 52

<JSON predicate primary> « 82

<JSON predicate type constraint> « 53
<JSON query>« 32

<JSON query empty behavior> « 32
<JSON query error behavior> 32

<JSON query quotes behavior> « 32
<JSON query wrapper behavior> « 32
<JSON representation> « 22, 23, 37
<JSON returning clause> « 27, 28

<JSON starts with initial> « 90

<JSON starts with predicate> « 90

<JSON starts with whole> « 90

<JSON subscript>+ 73

<JSON subscript list> « 73

<JSON table> « 36

<JSON table column definition> « 37, 38
<JSON table column empty behavior> « 37

98 SQL support for JavaScript Object Notation (JSON)

<JSON table column error behavior> « 37

<JSON table column path specification> ¢ 37

<JSON table columns clause> ¢ 36, 39

<JSON table default plan> « 40

<JSON table default plan choices> « 40

<JSON table default plan inner/outer> « 40, 41

<JSON table default plan union/cross> » 40, 41

<JSON table error behavior> « 38

<JSON table formatted column definition> « 37

<JSON table formatted column empty behavior> « 37

<JSON table formatted column error behavior> « 37

<JSON table formatted column quotes behavior> « 37

<JSON table formatted column wrapper behavior> « 37

<JSON table nested columns> « 37, 38, 39

<JSON table nested path name> « 39

<JSON table nested path specification> « 39

<JSON table ordinality column definition> « 37

<JSON table path name> « 39, 40, 41

<JSON table plan> « 40

<JSON table plan clause> « 36, 38, 40

<JSON table plan cross> « 40

<JSON table plan inner> « 40

<JSON table plan outer>« 40

<JSON table plan parent/child> « 40

<JSON table plan primary> ¢ 40

<JSON table plan sibling> ¢ 40

<JSON table plan union> « 40

<JSON table regular column definition> ¢ 37

<JSON table specific plan>« 40

<JSON unknown predicate> « 92

<JSON value empty behavior> « 27, 28

<JSON value error behavior> « 27, 28

<JSON value expression> « 22, 23, 48, 50

<JSON value function> « 27, 28

<JSON wildcard array accessor> ¢ 75

<JSON wildcard member accessor> ¢ 72, 93

JSON_ARRAY - iv, 21, 50, 53

JSON_ARRAYAGG - iv, 21, 50, 51, 52, 53

JSON_EXISTS «iv, 21, 22, 24, 25, 26, 27, 32, 33, 45, 55,
56, 67, 84, 85, 92

JSON_OBJECT - 21, 47, 48, 50, 51, 52, 53, 54

JSON_OBJECTAGG -+ iv, 21, 49, 54

JSON_QUERY -« iv, 21, 32, 33, 34, 35, 45, 56

JSON_TABLE - iv, 21, 22, 35, 36, 38, 39, 41, 42, 43, 44,
45, 46, 55, 56, 60, 80

JSON_VALUE - iv, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35,
38, 44, 45, 53, 55, 56, 67, 68

— K —

©ISO/IEC 2017 — All rights reserved

KEEP « 32, 37
KEY 47, 48
KEYS » 16, 45, 48, 53, 54

— L —
LEFT « 39, 41, 52
LIKE « 89
LIKE_REGEX « 61, 89
last 67

— N —
NESTED « 39, 41, 42, 43, 44, 45, 60, 61
NOT « 52

NULL « 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 44, 45, 48,
49, 50, 51

—0—

OBJECT « 32, 34, 35, 37, 38, 53

OMIT « 32, 37

ON e v, iv, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 44, 45, 48, 49, 50, 51, 52, 56, 59

ORDER - 51, 52, 53, 80

ORDINALITY « 37, 38

OUTER - 39, 40, 41, 44, 52

— P —
PASSING -« iv, 21, 22, 38, 44, 45, 55, 56, 67, 68
PATH « 37, 38, 39, 41, 42, 43, 60, 80
PLAN - 38, 40, 41, 43, 44, 46
<predefined type> « 17, 28

QUOTES « 32, 37
—R—

RETURNING « 23, 27, 28, 31, 32, 49

S —

SCALAR « 32, 37, 53

SELECT » 22, 25, 26, 28, 29, 30, 31, 32, 33, 34, 38, 39,
41, 42, 43, 49, 50, 51, 52, 60, 80, 84, 92

SELECT « 48

SET « 17

STRING « 32, 37

—T—

Feature T811, “Basic SQL/JSON constructor functions” ¢
53

©ISO/IEC 2017 — All rights reserved

ISO/IEC TR 19075-6:2017(E)

Feature T812, “SQL/JSON: JSON_OBJECTAGG” » 54

Feature T813, “SQL/JSON: JSON_ARRAYAGG with
ORDER BY”« 54

Feature T814, “Colon in JSON_OBJECT or
JSON_OBJECTAGG” « 48, 54

Feature T821, “Basic SQL/JSON query operators” « 44

Feature T822, “SQL/JSON: 1S JSONWITH UNIQUE KEYS
predicate” » 45

Feature T823, “SQL/JSON: PASSING clause” « 45
Feature T824, “JSON_TABLE: specific PLAN clause” « 45

Feature T825, “SQL/JSON: ON EMPTY and ON ERROR
clauses” » 45

Feature T826, “General value expression in ON ERROR
or ON EMPTY clauses” « 45

Feature T827,“JSON_TABLE: sibling NESTED COLUMNS
clauses” * 45

Feature T828, “JSON_QUERY" » 45

Feature T829, “JSON_QUERY: array wrapper options” ¢
45

Feature T830, “Enforcing unique keys in SQL/JSON
constructor functions” « 54

Feature T831, “SQL/JSON path language: strict mode” «
93

Feature T832, “SQL/JSON path language: item method”
«93

Feature T833, “SQL/JSON path language: multiple
subscripts” ¢ 93

Feature T834, “SQL/JSON path language: wildcard
member accessor” ¢ 93

Feature T835, “SQL/JSON path language: filter
expressions” * 93

Feature T836, “SQL/JSON path language: starts with
predicate” » 93

Feature T837, “SQL/JSON path language: regex_like
predicate” » 93

Feature T838, “JSON_TABLE: PLAN DEFAULT clause”
.46

TABLE - 46

TRUE « 24, 26

—U—
UNCONDITIONAL « 32, 34, 35, 37
UNION - 40, 41, 42, 44, 45
UNIQUE - 16, 45, 48, 53, 54
UNKNOWN - 24, 26

UTF16 « 22, 23

UTF32« 22, 23

UTF8 e« 22, 23

—V —
VALUE » 47, 48, 49, 53

Index 99

ISO/IEC TR 19075-6:2017(E)

VARCHAR - 38, 39, 41, 42, 43, 48, 49, 60, 80
VARYING - 46

— W —
WHERE « 22, 25, 26, 33, 48, 50, 51, 82, 84, 92
WITH « 16, 32, 34, 35, 37, 45, 48, 54

WITHOUT - 32, 34, 35, 37, 45, 48, 53, 54
WRAPPER -« 32, 34, 35, 37

100 SQL support for JavaScript Object Notation (JSON) ©ISO/IEC 2017 — Al rights reserved

ISO/IEC TR 19075-6:2017(E)

ICS 35.060
Price based on 100 pages

© ISO/IEC 2017 - All rights reserved

	Contents
	Tables
	Figures
	Foreword
	Introduction
	1 Scope
	2 Normative references
	2.1 ISO and IEC standards
	2.2 Other international standards

	3 JavaScript Object Notation (JSON)
	3.1 What is JSON?
	3.2 Representations of JSON data
	3.2.1 Avro
	3.2.2 BSON

	3.3 Schemas
	3.3.1 JSON schemata and validity
	3.3.2 Avro schemata
	3.3.3 BSON schemata

	3.4 Why does JSON matter in the context of SQL? What is JSON’s relationship to NoSQL?
	3.5 JSON terminology
	3.6 Use cases for JSON support in SQL
	3.6.1 JSON data ingestion and storage
	3.6.2 JSON data generation from relational data
	3.6.3 Querying JSON as persistent semi-structured data model instances

	3.7 What features address those use cases?
	3.7.1 Storing JSON data in an SQL table
	3.7.2 Generating JSON in an SQL query
	3.7.3 Querying JSON data in SQL tables using SQL

	4 The SQL/JSON data model
	4.1 SQL/JSON items
	4.1.1 Atomic values
	4.1.2 SQL/JSON arrays
	4.1.3 SQL/JSON objects

	4.2 SQL/JSON sequences
	4.3 Parsing JSON
	4.4 Serializing JSON

	5 SQL/JSON functions
	5.1 Handle JSON using built-in functions
	5.2 JSON API common syntax
	5.2.1 JSON value expression
	5.2.2 Path expression
	5.2.3 PASSING clause
	5.2.4 JSON output clause
	5.2.5 ON ERROR and ON EMPTY syntax

	5.3 Query functions
	5.3.1 JSON_EXISTS
	5.3.2 JSON_VALUE
	5.3.3 JSON_QUERY
	5.3.4 JSON_TABLE
	5.3.4.1 COLUMNS clause that is not nested
	5.3.4.2 Nested COLUMNS clause
	5.3.4.3 PLAN clause

	5.3.5 Conformance features for query operators

	5.4 Constructor functions and IS JSON predicate
	5.4.1 JSON_OBJECT
	5.4.2 JSON_OBJECTAGG
	5.4.3 JSON_ARRAY
	5.4.4 JSON_ARRAYAGG
	5.4.5 IS JSON predicate
	5.4.6 Handling of JSON nulls and SQL nulls
	5.4.7 Conformance features for constructor functions

	6 SQL/JSON path language
	6.1 Overview of SQL/JSON path language
	6.2 Objectives for the SQL/JSON path language
	6.3 Modes
	6.3.1 Example of strict vs lax

	6.4 Lexical issues
	6.5 Syntax summary
	6.6 Formal semantics
	6.6.1 Notational conventions

	6.7 Primitive operations
	6.7.1 Concatenation
	6.7.2 unwrap()
	6.7.3 wrap()

	6.8 Mode declaration
	6.9 <JSON path primary>
	6.9.1 Literals
	6.9.2 Variables
	6.9.3 Parentheses

	6.10 Accessors
	6.10.1 Member accessor
	6.10.2 Member wildcard accessor
	6.10.3 Element accessor
	6.10.4 Element wildcard accessor
	6.10.5 Sequence semantics of the accessors

	6.11 Item methods
	6.11.1 type()
	6.11.2 size()
	6.11.3 Numeric item methods (double, ceiling, floor, abs)
	6.11.4 datetime()
	6.11.5 keyvalue()

	6.12 Arithmetic expressions
	6.12.1 Unary plus and minus
	6.12.2 Binary operations

	6.13 Filter expression
	6.13.1 true/false and True/False
	6.13.2 null and Unknown
	6.13.3 Error handling in filters
	6.13.4 Truth tables
	6.13.5 Comparison predicates
	6.13.6 like_regex predicate
	6.13.7 starts with predicate
	6.13.8 exists predicate
	6.13.9 is unknown predicate

	6.14 Conformance features for SQL/JSON path language

	Blank Page

