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The  X-ray binary Her X-1 = HZ Her consists of an accreting neutron star and ordinary optical donor star. The 35-day X-ray variability of this system is known since its discovery in 1972 by the UHURU satellite. It was shown previously that this period was caused by forced precession of the warped accretion disk tilted to the orbital plane. In this work we revealed that during the precession cycle variations of the following parameters take place: a) intensity (power) of the stream of matter flowing out of the optical star; b) X-ray luminosity of the neutron star; c) optical flux of the accretion disk; d) X-ray irradiation pattern on the donor star; e) tilt of the inner and outer edge of the accretion disk. Behavior of the variability can be explained by free precession of the neutron star with a period close to the forced one of the accretion disk. The mechanism of synchronization of these periods is discussed. . 
HZ Her = Her X-1 – то рентгеновская двойная система промежуточной массы. Она состоит из звезды массой 1.8–2.0 масс Солнца и рентгеновского пульсара массой 1.0–1.5 масс Солнца. Орбитальный период системы составляет 1.7 сут., период пульсара 1.24 сек. В системе имеет место интенсивное перетекание вещества через внутреннюю точку Лагранжа с оптической звезды на нейтронную звезду с образование аккреционного диска вокруг последней.
Рентгеновский пульсар Her X-1 был открыт спутником UHURU в 1972 г. [1]. Практически сразу он был отождествлён с оптической звездой HZ Her [2]. Оптический блеск системы менялся с тем же орбитальным периодом, что и рентгеновское излучение от Her X-1. Причина этой переменности проста: часть оптической звезды, обращенной к рентгеновскому источнику сильно прогрета рентгеновским излучением. Интересно отметить, что в эпоху до рентгеновских наблюдений переменная звезда HZ Her была известна как иррегулярная переменная. В стеклянной библиотеке ГАИШ МГУ хранятся многочисленные фотопластинки с HZ Her, на основании которых и были получены результаты [2].
Рентгеновская кривая блеска Her X-1 модулирована с периодом 35 дней. Большинство 35-дневных циклов длятся 20.0, 20.5 или 21.0 орбитальных [3]. Период состоит из «главного включения» со средней продолжительностью 7 дней и «короткого включения» меньшей интенсивности длительностью 5 дней, см. Рис. 1. Главное и короткое включение разделены интервалами времени по 4 дня, во время которых рентгеновское излучение исчезает. Эти изменения рентгеновского потока и спектральные наблюдения на спутнике RXTE ясно указывают на затмения рентгеновского источника прецессирующим аккреционным диском.
Одна из наблюдаемых особенностей 35-дневного цикла состоит в том, что момент рентгеновского открытия чаще всего происходит на орбитальных фазах ~ 0.2 или ~ 0.7. Это вызвано приливной нутацией внешних частей диска на удвоенной орбитальной частоте, так как на этих фазах угол между направлением на наблюдателя и плоскостью внешних частей диска изменяется наиболее быстро [4-6].
35-дневный цикл в Her X-1 обычно интерпретируется как проявление прецессионного движения аккреционного диска вокруг нейтронной звезды в направлении, противоположном орбитальному [7–8]. Вскоре после открытия рентгеновского пульсара была предложена свободная прецессия нейтронной звезды как возможное объяснение наблюдаемой 35-дневной модуляции рентгеновского потока [9]. Позже, по результатам наблюдений на спутнике EXOSAT, эволюция профилей рентгеновских импульсов была интерпретирована как результат свободной прецессии нейтронной звезды в Her X-1 [10].
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	Рис. 1. Наблюдаемые рентгеновские кривые блеска Her X-1, 35-дневный период. Данные спутника RXTE/ASM. Вертикальные линии отмечают моменты затмений звездой-донором. А: момент включения вблизи орбитальной фазы 0.7; B: момент включения вблизи орбитальной фазы 0.2.


После начала активного исследования Her X-1 стало ясно, что наклонный аккреционный диск в двойной системе должен иметь изогнутую форму. В ходе ретроградной прецессии внешние части такого диска открывают для наблюдателя центральный рентгеновский источник («рентгеновское открытие»), и внутренние части диска закрывают его в конце главного включения [6]. Рентгеновская кривая блеска между затмениями ассиметрична в результате рассеяния рентгеновского излучения в горячей разреженной короне над диском. В самом деле, «включение» рентгеновского источника в начале главного открытия сопровождается значительными уменьшением потока в мягкой части рентгеновского спектра, что обусловлено сильным поглощением. На стадии уменьшения рентгеновского потока существенных изменений спектра не происходит. Это связано с рассеянием фотонов на свободных электронах горячей короны вблизи внутреннего края диска [11–14].
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	Рис. 2. Схема свободной прецессии нейтронной звезды. 


Изменение формы рентгеновских импульсов с 35-дневным периодом хорошо установлено по наблюдениям на нескольких спутниках [10], [15–17]. Профили импульсов в момент главного включения и короткого включения существенно отличаются. Только прецессирующий диск не в состоянии объяснить эти изменения. В работе [18] наблюдаемые на спутнике RXTE/PCA изменения профилей рентгеновских импульсов были объяснены в рамках модели, которая включает свободную прецессию нейтронной звезды и сложную структуру магнитного поля на поверхности нейтронной звезды. Вдобавок к каноническим магнитным полюсам (дипольное поле) вокруг них должны присутствовать яркие излучающие области в виде нескольких дуг, расположенных приблизительно по окружности. Для того чтобы такие дуги существовали, магнитное поле нейтронной звезды должно сильно отличаться от диполя вблизи поверхности [19–20].
В данной работе было проведено моделирование оптических кривых блеска HZ Her с использованием модели, включающей:

1. наклонный, изогнутый, прецессирующий аккреционный диск;

2. прецессирующую нейтронную звезду.

Вид оптических кривых блеска очень сильно зависит от формы рентгеновской тени на оптической звезде и от картины облучения оптической звезды нейтронной звездой.
Рентгеновскую тень формирует аккреционный диск. Для её расчета диск разбивается на конечное число колец по радиусу и вычисляется телесный угол между i и i + 1 кольцом для всех i. Так как диск изогнут, i и i + 1 кольца в общем случае не совпадают и между ними есть конечный телесный угол, соответствующий i-му элементу рентгеновской тени. Полная тень это сумма всех элементов тени, см. Рис. 3.
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	Рис. 3. Проекция рентгеновской тени на небесную сферу для наблюдателя в нейтронной звезде. Две синие кривые показывают тень, обусловленную конечной толщиной внешнего края диска.


Геометрические параметры диска задаются углом наклона и углом поворота (фазовый угол диска) внешнего края диска и внутреннего края диска. Угол наклона отсчитывается от орбитальной плоскости до плоскости диска. Угол поворота отсчитывается вокруг нормали к орбитальной плоскости в направлении, совпадающем с орбитальным движением, он принят равным нулю в момент максимального раскрытия внешнего края диска по отношению к наблюдателю. Наклон и поворот i-го кольца меняется линейно по радиусу от внешнего к внутреннему краю диска. Разность между углами поворота внутреннего и внешнего края называется закруткой диска. Закрутка и разность наклонов определяют размер тени. Если первое и второе равно нулю, это соответствует плоскому диску и тень в этом случае определяется только толщиной внешнего края диска.
Для расчета рентгеновского облучения за основу взята модель нейтронной звезды из [18]. Эта модель модифицирована так, чтобы северный магнитный полюс в ходе свободной прецессии не выходил за пределы широты 56°. Если ось магнитного диполя составляет угол 56° с осью вращения, то магнитный момент, действующий на внутренний диск, равен нулю [21–23]. Севернее и южнее этого угла магнитный момент отличен от нуля и имеет разные знаки и нужно ожидать изменение знака закрутки диска при переходе магнитного диполя через этот угол. Однако модель с меняющей знак закруткой описывала оптические наблюдения гораздо хуже, чем модель с постоянной закруткой. Поэтому мы задали угол между осью прецессии и осью вращения нейтронной звезды 80°, а угол между северным магнитным полюсом и осью прецессии 20°. В этом случае диапазон углов между диполем и осью вращения 60°–100° и магнитный момент не меняет знак в ходе свободной прецессии. На фазе 0.25 от главного включения магнитный диполь составляет максимальный угол с осью вращения 100°. На фазе короткого включения 0.75 угол минимален, 60°.
Поворот нейтронной звезды в картинной плоскости не влияет на профиль рентгеновских импульсов, но на оптические кривые блеска влияет очень сильно. Поэтому по оптическим кривым блеска можно определить ориентацию оси вращения нейтронной звезды относительно орбитальной плоскости. Угол между осью вращения нейтронной звезды и нормалью к орбитальной плоскости в проекции на картинную плоскость на нашей модели называется углом κ. По результатам оптимизации модели на всех прецессионных фазах было найдено, что κ = 5° и рентгеновская фаза, соответствующая удалению северного магнитного полюса от оси вращения на 100° равна 0.25 (на рентгеновской прецессионной фазе 0.25 фаза прецессии нейтронной звезды равна 0, на рентгеновской фазе 0.75 фаза прецессии нейтронной звезды равна 0.5).
Наклон, поворот диска, рентгеновская светимость и вклад в оптический поток от диска оптимизировались по кривым блеска на каждой прецессионной фазе, см. рис 3. Закрутка была принята равной постоянному значению –60°. Знак минус означает, что внутренний диск опережает внешний по прецессионному движению.

На рис. 5–8 приведены best-fit значения перечисленных в предыдущем абзаце параметров модели. На рис. 8 показаны теоретические кривые блеска для закруток –50, –60, –70° и наблюдаемые потоки от HZ Her.
Моделирование не производилось на орбитальных фазах 0.0–0.13 и 0.87–1.0. На этих фазах происходит затмение диска оптической звездой. Распределение яркости по диску достаточно сложное. Оно будет восстановлено в следующих работах. 
Обращает на себя внимание особенность в виде «зуба» на первых пяти прецессионных фазах (красные точки на Рис. 4). На этих фазах мы видим результат взаимодействия нестационарных струй с поверхностью аккреционного диска. Эти струи являются существенной частью нелинейного динамического механизма, который синхронизирует вынужденную прецессию аккреционного диска со свободной прецессией нейтронной звезды.
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	Рис. 4. Синтетические кривые блеска, наложенные на наблюдаемые точки. Прецессионный 35-d период разделён на 20 фаз по 0.05 P. Зелёные точки – наиболее надёжные; серые– менее надёжные; красные  соответствуют действию струи на диск (яркое пятно). На каждой фазе изображены три синтетические кривые, соответствующие  разным закруткам: желтая –50°, синяя –60°, коричневая –70.
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	Рис. 5. Наклон внешнего и внутреннего диска в зависимости от прецессионной фазы.
	Рис. 6. Угол между направлением на наблюдателя и плоскостями внешнего и внутреннего диска в зависимости от прецессионной фазы.
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	Рис. 7.  Рентгеновская светимость в зависимости от прецессионной фазы.
	Рис. 8. Вклад диска в наблюдаемый поток по отношению к необлучённой стороне звезды-донора.


На прецессионных фазах вблизи 0.25 оптические кривые блеска имеют вторичный минимум. Он обусловлен прохождением диска и наиболее широкой части тени по облученной части оптической звезды вблизи орбитальной фазы 0.5. На прецессионных фазах вблизи 0.75 вторичный минимум отсутствует, так как диск проецируется на собственную тень на оптической звезде.
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